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Organoid intelligence (OI): the new frontier in biocomputing and
intelligence-in-a-dish
Key points

• Brain organoids could represent the ultimate form of neuromorphic
computing.

• Organoids could also function as experimental models in neurobiology,
especially as models of active sensing.

• Organoids also have important potential as in vitro patients, providing a
personalised experimental model to test pharmacological and genomic
interventions.
Introduction

The review—or perhaps White Paper—by Smirnova et al. (1) offers an incredibly useful

orientation to the emerging world of organoids and the exciting opportunities ahead. This

viewpoint picks up on three cardinal themes as viewed through the lens of the free energy

principle and active inference, namely: the potential for organoids as sentient artefacts with

(artificial) generalised intelligence, as experimental models in neurobiology, and as in

vitro patients.
Organoids as intelligent artefacts

This theme can be framed in terms of machine learning and engineered intelligence,

i.e., the use of organoids to study sentient behaviour and active computers. Smirnova et al.

start their overview by comparing current approaches in artificial intelligence and machine

learning research with natural intelligence, noting the six orders of magnitude difference

between in silico and in vivo computers (i.e., von Neumann architectures and functional

brain architectures). These differences are expressed in terms of computational and

thermodynamic efficiency, speaking to a change in the direction of travel for machine

learning—a direction of travel that may be afforded by the introduction of organoids.
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From a theoretical perspective, this can be usefully understood

in terms of the physics of self-organisation. If one commits to the

free energy principle, then one can describe the self-organisation of

cells, organoids, and brains as minimising a bound on the log

evidence or marginal likelihood of sensory inputs (2). The self-

organisation comes into play when the cell, organoid, or brain

actively samples or selects its inputs (a.k.a., active inference). But

why inference? Here, inference speaks to the fact that—to define

this kind of universal objective function—one needs a model that

defines the likelihood of any sensory exchanges with the

environment. This model is variously known as an internal,

world, or generative model and is entailed by the structure and

message-passing on the interior of the structure in question. This

formalisation generalises things like reinforcement learning by

absorbing preferred states into the prior preferences of the

generative model (3). In this way, one can then use variational

calculus to derive a lower bound on model evidence—known as the

evidence lower bound (ELBO) in machine learning (4)—to describe

the dynamics, plasticity, and morphogenesis as a gradient flow on

variational free energy (5). So, why is this a useful formulation?

In the present setting, this objective or Lyapunov function has

efficiency baked into it. This follows from the fact that model

evidence can be expressed as accuracy minus complexity, where

complexity corresponds to the divergence between prior and

posterior representations (6, 7): namely, the degree of Bayesian

belief updating associated with dynamics, plasticity, or

morphogenesis. The complexity term is especially interesting

here: it effectively scores the degree of departure from prior

beliefs and the inverse efficiency of computation (in the spirit of

both information theory and universal computation). Furthermore,

via the Jarzynski equality, minimising complexity also minimises

the thermodynamic cost (8–10). In short, the computational and

thermodynamic efficiency of neuromorphic computation—under

the free energy principle—are just two sides of the same coin and

are emergent properties of a physics of sentience (11).

Having said this, the theoretical considerations above only place a

lower bound on thermodynamic cost in the sense that belief updating

—or message passing—on von Neumann architectures introduces a

further cost, sometimes referred to as the ‘memory wall’ or von

Neumann bottleneck (12, 13), read here as the inefficiency induced

by reading and writing connectivity tensors into working (computer)

memory. Practically, this can induce profound thermodynamic

inefficiency, even in biomimetic computers whose connectivity (i.e.,

the message-passing structure) is not embodied or physically

instantiated. This suggests that the next generation of ‘computers’

may turn to photonic, quantum, and neuromorphic computing (12,

14). Clearly, brain organoids are the ultimate neuromorphic computer.
Organoids in neurobiology

Another perspective on the utility of brain organoids concerns

their potential as an experimental model for understanding how the

brain works. In other words, organoids offer an empirical system

that can be used to answer foundational questions about functional

brain architectures and neuronal message passing (15). There are
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many interesting issues here. Smirnova et al. make the point (albeit

implicitly) that all the questions, tools, and advances in

contemporary neuroscience can now be deployed to understand

how organoids work. But why would we want to do this?

One clear answer is that the opportunity for experimental

intervention is much greater in organoids than in brains studied

in vivo. However, to achieve a good model of the brain, one must

establish some construct validity for the organoid model before any

firm conclusions can be drawn or generalised from organoid to

brain. A review of neuroscience over the past decades speaks to

some foundational principles that one might expect to emerge in

organoid research. For example, there are two principles of

functional anatomy in the brain—functional specialisation and

functional integration (16). The former speaks to the

specialisation or segregation of selective responses to particular

sensory inputs (and motor outputs). This principle suggests that the

scaffolding or induction of segregated responses (perhaps via the

use of assembloids) will be a key issue in organoid research, both in

establishing functional specialisation and determining the situations

under which it emerges developmentally, and through activity-

dependent plasticity. From the perspective of the free energy

principle, this kind of segregation emerges under what physicists

would call a mean field approximation, namely, a factorisation of

probabilistic representations that best explain sensory or observable

data (4, 17–19). In turn, this speaks to the nature of generative

models that underlie structured message passing. These generative

models can be read as a modern-day version of the good regulator

theorem (20, 21): any system that successfully controls its

environment must be a sufficiently good model of that

environment. Perhaps the most celebrated example here is the

functional segregation into dorsal (‘where’) and ventral (‘what’)

visual pathways in the human brain (22, 23). Theoretically, this is

entirely predictable from the fact that knowing ‘what’ something

does not tell you ‘where’ it is and vice versa. The ensuing conditional

independence then underwrites the factorisation of posterior

representations—which reduces their complexity—in accord with

the maximisation of model evidence, which is sometimes known as

self-evidencing (24).

Functional integration is just the statement that functional

specialisation reflects a sparse message passing or connectivity

architecture. Empirically, these architectures are characterised in

terms of functional and effective connectivity. In the neurosciences,

this is usually done using methods such as dynamic causal

modelling to assess the recurrent but directed connectivity among

neuronal populations (7). The sparsity of this connectivity defines

the factorisation above and other key architectural or structural

attributes that one might hope to see emerge in organoids, namely,

hierarchical structures (25, 26) that usually go hand-in-hand with

the separation of temporal scales (27, 28). But how does one infer

this kind of connectome?

Perhaps one insight is that empirical neuroscience uses

carefully designed studies to evoke functionally specialised

responses and thereby assess or infer the connectivity among

neuronal populations. One might argue that exactly the same

approach will be mandated in organoid research. Strategically,

this has an important implication. It means that one should be
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complementing the exquisite and impressive technological

developments—in organoid research—with consideration of

experimental design; in other words, designing the right kind of

experiments to estimate the internal architecture and belief

updating in response to sensory perturbations. Interestingly, this

places greater emphasis on eliciting ‘smart data’ from organoids in

contrast to ‘big data’.

A second pointer from neuroscience (that may be relevant for

organoid research) is the pragmatic turn or enactive focus over the

past decades (24, 29, 30). In other words, an appreciation that

message passing and belief updating is embodied, situated, and,

crucially, under the control of the brain—or organoid. This control

is of course foundational for the good regulator theorem above (20).

The implication here is that closed-loop experiments will involve an

organoid acting or selecting its exchange with the external world

(31) whether this be another organoid, a computer, or robotic

actuators. The key thing here is that the organoid can act on its

world in a way that has consequences for sensory inputs. The

mediation of these consequences by the world is what gets installed

into the generative model and, therefore, the structure and

connectivity of the organoid. If this commitment to active

inference as a description of sentient behaviour is correct, it raises

a fundamental question: can organoids self organise to recognise

causal structure in the world de novo or do they need some initial

conditions or priors, e.g., epigenetic specification through an

evolutionary process? Early evidence suggests that, at a minimal

level, in vitro cultures can recognise causal structure and do so in an

enactive context (15, 31). It will be fascinating to see to what extent

more elaborate world or generative models emerge through

structure learning (32–34) in the absence of genetically endowed

anatomical scaffolds.
Organoids as in vitro patients

Smirnova et al. offer an excellent survey of the translational

potential of organoids. They highlight the ability to perform

in vitro neuropharmacology (and possibly disconnection or

lesion experiments) in ways that would not be possible in real

patients. Furthermore, one might imagine that having particular

cell lines—from various neurological or psychiatric cohorts—

would permit the kinds of invasive studies in ‘personalised’

organoids that would not be feasible in vivo . This is a

potential ly exciting avenue of research because many

neuropsychiatric conditions can be cast as a form of functional

dysconnection. In particular, most psychiatric disorders can be

read as a particular form of synaptopathy, involving aberrant

neuromodulation or neuroplasticity: e.g., ranging from epilepsy

through autism to schizophrenia and Parkinson’s disease (35–

37). Having a validated organoid model of plasticity—and faster

fluctuations in synaptic efficacy—would be invaluable, especially

if differences can be systematically traced back to functional

genomics via the mediating molecular biology at the cellular and

synaptic levels.
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A final perspective—afforded by the free energy principle—

speaks to the nature of invasive experiments enabled by organoids:

the free energy principle rests upon something called a Markov

blanket that individuates something (e.g., a cell, organoid or brain)

from everything else (38, 39). The Markov blanket constitutes a set

of states that separates internal from external states. The separation

rests upon sparse coupling in the sense of the underlying dynamics

or statistical independencies in terms of the density dynamics self-

organising things must evince. The key point here is that the

internal states, interior to the Markov blanket, are unobservable

from the outside unless one breaches the Markov blanket, as in

invasive measurements in neuroscience.

This is a fundamental problem when imputing the internal

architectures and dynamics of any self-organising system, and it

leads to the need to infer what is going on in the interior based on

measurements of blanket states. In the context of an organoid, the

blanket states would constitute all the sensory inputs that mediate

external stimuli and all the outputs that influence the ‘world’

mediating those sensory inputs. In this respect, organoid research

faces exactly the same problem (e.g., the ill-posed inverse problem

of reconstructing interior source activity from sensor measurements

of electrophysiology). It was interesting to see in Smirnova et al. that

much energy is focused on high-density recordings that do not

interfere with the internal states of an organoid. One might imagine

that in a few years’ time, organoid researchers will deploy tools to

reconstruct internal dynamics and connectivity based on techniques

developed in neuroimaging. However, with careful scaffolding and

microfluidics it sounds as though organoid researchers may be able

to breach Markov blankets in a way that has never been

possible before.
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