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Abstract

Recent advances in human stem cell-derived brain organoids promise to replicate

critical molecular and cellular aspects of learning and memory and possibly

aspects of cognition in vitro. Coining the term “organoid intelligence” (OI) to

encompass these developments, we present a collaborative program to

implement the vision of a multidisciplinary field of OI. This aims to establish OI as

a form of genuine biological computing that harnesses brain organoids using

scientific and bioengineering advances in an ethically responsible manner.

Standardized, 3D, myelinated brain organoids can now be produced with high

cell density and enriched levels of glial cells and gene expression critical for learning.
Integrated microfluidic perfusion systems can support scalable and durable
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culturing, and spatiotemporal chemical signaling. Novel 3D microelectrode arrays

permit high-resolution spatiotemporal electrophysiological signaling and recording

to explore the capacity of brain organoids to recapitulate the molecular

mechanisms of learning and memory formation and, ultimately, their

computational potential. Technologies that could enable novel biocomputing

models via stimulus-response training and organoid-computer interfaces are in

development. We envisage complex, networked interfaces whereby brain

organoids are connected with real-world sensors and output devices, and

ultimately with each other and with sensory organ organoids (e.g. retinal

organoids), and are trained using biofeedback, big-data warehousing, and

machine learning methods. In parallel, we emphasize an embedded ethics

approach to analyze the ethical aspects raised by OI research in an iterative,

collaborative manner involving all relevant stakeholders. The many possible

applications of this research urge the strategic development of OI as a scientific

discipline. We anticipate OI-based biocomputing systems to allow faster decision-

making, continuous learning during tasks, and greater energy and data efficiency.

Furthermore, the development of “intelligence-in-a-dish” could help elucidate the

pathophysiology of devastating developmental and degenerative diseases (such as

dementia), potentially aiding the identification of novel therapeutic approaches to

address major global unmet needs.
KEYWORDS

organoid intelligence, biocomputing, microphysiological systems, electrophysiology,
cognition, artificial intelligence
Key points
• Biological computing (or biocomputing) could be faster,
more efficient, and more powerful than silicon-based
computing and AI, and only require a fraction of
the energy.

• ‘Organoid intelligence’ (OI) describes an emerging
multidisciplinary field working to develop biological
computing using 3D cultures of human brain cells (brain
organoids) and brain-machine interface technologies.

• OI requires scaling up current brain organoids into
complex, durable 3D structures enriched with cells and
genes associated with learning, and connecting these to
next-generation input and output devices and AI/
machine learning systems.

• OI requires new models, algorithms, and interface
technologies to communicate with brain organoids,
understand how they learn and compute, and process and
store the massive amounts of data they will generate.

• OI research could also improve our understanding of
brain development, learning, and memory, potentially
helping to find treatments for neurological disorders such
as dementia.

• Ensuring OI develops in an ethically and socially
responsive manner requires an ‘embedded ethics’
approach where interdisciplinary and representative
02
teams of ethicists, researchers, and members of the public
identify, discuss, and analyze ethical issues and feed these
back to inform future research and work.
Introduction

Human brains are slower than machines at processing simple

information, such as arithmetic, but they far surpass machines in

processing complex information as brains deal better with few and/or

uncertain data. Brains can perform both sequential and parallel

processing (whereas computers can do only the former), and they

outperform computers in decision-making on large, highly

heterogeneous, and incomplete datasets and other challenging forms

of processing. The processing power of the brain is illustrated by the

observation that in 2013, the world’s fourth-largest computer took 40

minutes to model 1 second of 1% of a human’s brain activity (1).

Moreover, each brain has a storage capacity estimated at 2,500 TB,

based on its 86–100 billion neurons havingmore than 1015 connections

(2, 3). In this article, we describe the emerging field that we term

“organoid intelligence” (OI), which aims to leverage the extraordinary

biological processing power of the brain.
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Superficially, both biological learning and machine learning/AI by

an intelligent agent build internal representations of the world to

improve their performance in conducting tasks. However, fundamental

differences between biological and machine learning in the

mechanisms of implementation and their goals result in two

drastically different efficiencies. First, biological learning uses far less

power to solve computational problems. For example, a larval zebrafish

navigates the world to successfully hunt prey and avoid predators (4)

using only 0.1 microwatts (5), while a human adult consumes 100

watts, of which brain consumption constitutes 20% (6, 7). In contrast,

clusters used to master state-of-the-art machine learning models

typically operate at around 106 watts. Since June 2022, the USA’s

Frontier has been the world’s most powerful supercomputer, reaching

1102 petaFlops (1.102 exaFlops) on the LINPACK benchmarks. The

power consumption of the new supercomputer is 21 megawatts, while

the human brain operates at the estimated same 1 exaFlop and

consumes only 20 watts (Table 1) (8–11). Thus, humans operate at a

106-fold better power efficiency relative to modern machines albeit

while performing quite different tasks.

Second, biological learning uses fewer observations to learn how

to solve problems. For example, humans learn a simple “same-versus-

different” task using around 10 training samples (12); simpler

organisms, such as honeybees, also need remarkably few samples

(~102) (13). In contrast, in 2011, machines could not learn these

distinctions even with 106 samples (14) and in 2018, 107 samples

remained insufficient (15). Thus, in this sense, at least, humans

operate at a >106 times better data efficiency than modern

machines. The AlphaGo system, which beat the world champion at

the complex game Go, offers a concrete illustration (16, 17). AlphaGo

was trained on data from 160,000 games (17); a human playing for

five hours/day would have to play continuously for more than 175

years to experience the same number of training games – indicating
Frontiers in Science 03
the far higher efficiency of the brain in this complex learning activity.

The implication is that AI and machine-learning approaches have

limited usefulness for tasks requiring real-time learning and dynamic

actions in a changing environment. The power and efficiency

advantages of biological computing over machine learning are

multiplicative. If it takes the same amount of time per sample in a

human or machine, then the total energy spent to learn a new task

requires 1010 times more energy for the machine. AlphaGo was

trained for 4 weeks using 50 graphics processing units (GPUs) (17),

requiring approximately 4 ×1010 J of energy – about the same amount

of energy required to sustain the metabolism of an active adult

human for a decade. This high energy consumption prevents AI from

achieving many aspirational goals, for example matching or

exceeding human capabilities for complex tasks such as driving

(18). Even large multinational corporations are beginning to reach

the limits of machine learning owing to its inefficiencies (19), and the

associated exponential increase in energy consumption is

unsustainable (20), especially if technology companies are to adhere

to their commitments to become carbon negative by 2030 (21, 22). At

a national level, already in 2016 it took the equivalent of 34 coal-

powered plants, each generating 500 megawatts, to meet the power

demands of US-based data centers (23). Being much more energy

efficient than current computers, human brains could theoretically

meet the same US data storage capacity using only 1,600 kilowatts of

energy. Notably, the power demands of any current or future

implementation of OI is very different from the energy

consumption of the human body, especially considering the energy

footprint of modern cell culture relative to small organoids today.

These comparisons of brains and computers serve only as

illustrations of the high efficiency of the human brain.

Together, these observations have created high expectations for

biological, brain-directed computing (24–26) as an alternative to

silicon-based computing, with the potential for unprecedented

advances in computing speed, processing power, data efficiency,

and storage capabilities – all with lower energy needs. However,

realizing the potential of biocomputing has proved challenging, and

most research remains in its infancy. To date, the term “biological

computing” has been used mainly to describe the use of DNA to store

digital data (27, 28). An exception to this is the recent work by Kagan

et al. (29), which uses the term “synthetic biological intelligence”

(SBI) to describe the use of synthetic biology to generate intelligent

systems through brain-directed computing, albeit using only simple

2D monolayer cell cultures (which poorly replicate the complexity of

the in vivo brain) as a proof-of-concept.

We have coined the term “organoid intelligence” (OI) to describe

an emerging field aiming to expand the definition of biocomputing

toward brain-directed OI computing, i.e. to leverage the self-assembled

machinery of 3D human brain cell cultures (brain organoids) to

memorize and compute inputs. Brain organoids recapitulate organ

histoarchitecture and functionality far more closely than traditional 2D

cultures. They can contain myelinated axons (30–32) and not only

show spontaneous electrophysiological activity (33) but also

demonstrate complex oscillatory behavior (34), and exhibit high cell

density and layering patterns, all of which make brain organoids

superior to traditional monolayer cultures (34–36). The question is:

can we learn from and harness the computing capacity of these
TABLE 1 Comparison of the latest supercomputer (June 2022) and a
human brain.

Frontier supercomputer
(June 2020)

Human brain

Speed 1.102 exaFLOPS ~1 exaFLOPS (estimate)

Power
requirements

21 MW 10–20 W

Dimensions 680 m2 (7,300 sq ft) 1.3–1.4 kg (2.9–3.1 lb)

Cost $600 million Not applicable

Cabling 145 km (90 miles) 850,000 km (528,000 miles)
of axons and dendrites

Memory 75 TB/s read; 35 TB/s write;
15 billion IOPS flash storage
system, along with
the 700 PB Orion site-wide
Lustre file system

2.5 PB (petabyte)

Storage 58 billion transistors 125 trillion synapses, which
can store 4.7 bits of
information each
The Hewlett Packard Enterprise Frontier, or OLCF-5, is the world’s first exascale
supercomputer, hosted at the Oak Ridge Leadership Computing Facility (OLCF) in
Tennessee. It is compared here with the human brain. For sources see (6–11).
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organoids? Achieving this will require major advances in the

interfacing of brain cell cultures and computers. We envision using

biofeedback to systematically train organoids with increasingly

complex sensory inputs and output opportunities – interfacing the

brain organoids with computers, sensors, and machine interfaces to

facilitate supervised and unsupervised learning. We use the term “OI”

for this approach to stress its complementarity to AI – where

computers aim to perform tasks done by brains, often by modeling

our understanding of learning. However, while AI aims to make

computers more brain-like, OI research will explore how a 3D brain

cell culture can be made more computer-like.

The many possible applications of this work include a new

generation of biological and hybrid (biological-electronic) computing

technologies, together with advances in our understanding of the

physiology of cognition, learning, and memory, and the

pathophysiological effects of developmental and degenerative

diseases, intoxication, and infection – which in turn could stimulate

drug development and other interventions. OI also has the potential to

unlock new neuromimetic AI algorithms (with the potential to

overcome current AI limitations) and aid the development of new

brain-computer-interface technology.

The concept of brain-machine interfacing emerged around five

decades ago. Before the advent of more complex human neuronal

cultures and brain organoids, pioneering work on learning and

memory was carried out using primitive animals such as the

lamprey, showing long-term potentiation (37). This led to brain-

machine interaction studies establishing bidirectional

communications between the nervous system and external devices

(38). Others used brain slices of different species to study the basic

phenomena of learning on a cellular level (39). Neuron cultures

were later shown to perform simple robotic tasks or demonstrate

increased plasticity within a delayed closed-loop environment (40,

41). The combination of brain cell cultures and computers has also

been attempted: 2D cultured rat neurons displayed evidence of self-

organized activity in a computational task (blind source separation)

when supplied with electrical information (42). A different study

showed that these cultures learned to respond in the form of distinct

electrophysiological patterns to low-frequency focal stimuli (43, 44).

To the best of our knowledge, however, no relevant approach using

brain organoids as learning systems has been reported. Previous research

has demonstrated spontaneous electrophysiological signals and

synchronous neural network activity of dissociated organoids (45),

sliced organoids (46), or developing full organoids (34, 47), and

advanced manipulation of neural circuits within assembloids

(organoids merging two distinct brain regions) was recently published

(48). The only study resembling our vision is the recent work by Kagan

et al. (29), which embeddedmonolayers of cortical neurons in a real-time

closed-loop environment via electrophysiological stimulation and

recording. These cultures self-organized to rapidly alter their activity to

display goal-directed behavior in a simulated game environment.

Similarly, the European Union-funded NEU-CHiP project aims to

demonstrate the growth of layered networks of brain stem cells on

microchips (49). In addition, the Human Brain Project models similar

(but virtual) input-brain output machine models (50).
Frontiers in Science 04
Obviously, terms such as “cognition,” “intelligence,” “sentience,”

and “consciousness,” describing human capabilities, cannot be

directly translated to simple cell culture models; they are used here

to describe the realization of basic functions underlying these higher-

order functionalities. A workshop to define adequate terminology for

the field is in preparation. Please see the glossary included, which

attempts to provide definitions in the context of this manuscript.

In this article, we present an architecture (Figure 1) and

blueprint for an OI development and implementation program

designed to:
• Determine the biofeedback characteristics of existing

human brain organoids caged in microelectrode shells,

potentially using AI to analyze recorded response patterns

to electrical and chemical (neurotransmitters and their

corresponding receptor agonists and antagonists) stimuli.

• Empirically test, refine, and, where needed, develop

neurocomputational theories that elucidate the basis of in

vivo biological intelligence and allow us to interact with and

harness an OI system.

• Further scale up the brain organoid model to increase the

quantity of biological matter, the complexity of brain

organoids, the number of electrodes, algorithms for real-

time interactions with brain organoids, and the connected

input sources and output devices; and to develop big-data

warehousing and machine learning methods to

accommodate the resulting brain-directed computing

capacity.

• Explore how this program could improve our understanding

of the pathophysiology of neurodevelopmental and

neurodegenerative disorders toward innovative approaches

to treatment or prevention.

• Establish a community and a large-scale project to realize

OI computing, taking full account of its ethical implications

and developing a common ontology.
To the latter point, a community-forming workshop was held in

February 2022 (51), which gave rise to the Baltimore Declaration

Toward OI (52). It provides a statement of vision for an OI

community that has led to the development of the program

outlined here.
Prerequisites for biocomputing models

Culture and bioengineering technologies
to advance 3D brain organoids

The advent of two biological technologies makes our OI

approach possible: the groundbreaking work to reprogram human

somatic cells back to stem cells [i.e. induced pluripotent stem cells

(iPSC)] (53); and the more recent development of 3D brain

organoids from iPSC.
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Advances in 3D organoid culture
The past decade has seen a revolution in brain cell cultures,

moving from traditional monolayer cultures to more organ-like,

organized 3D cultures – i.e. brain organoids (Figure 2A). These can

be generated either from embryonic stem cells or from the less

ethically problematic iPSC typically derived from skin samples (54).

The Johns Hopkins Center for Alternatives to Animal Testing,

among others, has produced such brain organoids with high levels

of standardization and scalability (32) (Figure 2B). Having a

diameter below 500 mm, and comprising fewer than 100,000 cells,

each organoid is roughly one 3-millionth the size of the human

brain (theoretically equating to 800 MB of memory storage). Other

groups have reported brain organoids with average diameters of 3–5

mm and prolonged culture times exceeding 1 year (34–36, 55–59).

These organoids show various attributes that should improve their

potential for biocomputing (Figure 2). First, cell density in these 3D

models is similar to the in vivo cell density, and much higher than in

monolayer cultures; the ratio of cells to media volume is also much

higher compared to monolayers. Second, most of these brain organoids

show spontaneous electrophysiological activity and reactivity to electrical

stimulation (via evoked field potentials) (32), confirming the presence of

active synapses. Trujilio et al. have shown patterning of cortex layers and
Frontiers in Science 05
oscillation waves comparable to electroencephalograms (EEGs) from

human preterm babies’ brains (34).

Third, axons in these organoids show extensive myelination.

Pamies et al. were the first to develop a 3D human brain model

showing significant myelination of axons (32). About 40% of axons

in the brain organoids were myelinated (30, 31), which approaches

the 50% found in the human brain (60, 61). Myelination has since

been reproduced in other brain organoids (47, 62). Myelin reduces

the capacitance of the axonal membrane and enables saltatory

conduction from one node of Ranvier to the next. As myelination

increases electrical conductivity approximately 100-fold, this

promises to boost biological computing performance, though its

functional impact in this model remains to be demonstrated.

Finally, these organoid cultures can be enriched with various cell

types involved in biological learning, namely oligodendrocytes,

microglia, and astrocytes. Glia cells are integrally important for the

pruning of synapses in biological learning (63–65) but have not yet

been reported at physiologically relevant levels in brain organoid

models. Preliminary work in our organoid model has shown the

potential for astroglia cell expansion to physiologically relevant levels

(47). Furthermore, recent evidence that oligodendrocytes and

astrocytes significantly contribute to learning plasticity and
FIGURE 1

Architecture of an OI system for biological computing. At the core of OI is the 3D brain cell culture (organoid) that performs the computation. The
learning potential of the organoid is optimized by culture conditions and enrichment by cells and genes critical for learning (including IEGs). The
scalability, viability, and durability of the organoid are supported by integrated microfluidic systems. Various types of input can be provided to the
organoid, including electrical and chemical signals, synthetic signals from machine sensors, and natural signals from connected sensory organoids
(e.g. retinal). We anticipate high-resolution output measurement both by electrophysiological recordings obtained via specially designed 2D or 3D
(shell) MEA, and potentially from implantable probes, and imaging of organoid structural and functional properties. These outputs can be used
directly for computation purposes and as biofeedback to promote organoid learning. AI and machine learning are used throughout to encode and
decode signals and to develop hybrid biocomputing solutions, in conjunction with a suitable big-data management system.
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memory suggests that these processes should be studied from a

neuron-to-glia perspective, rather than the neuron-to-neuron

paradigm generally used (63–65). In addition, optimizing the cell

culture conditions to allow the expression of immediate early genes

(IEGs) is expected to further boost the learning and memory

capacities of brain organoids since these are key to learning

processes and are expressed only in neurons involved in memory

formation – as detailed below.
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Scaling up these 3D organoids is a key early aim. We set out to

produce brain organoids with about 10 million neural cells (66).

Existing differentiation protocols for scaling up the cultures, and

starting 3D differentiation directly from iPSC (bypassing the

intermediate generation of neuroprogenitor cells), are very

promising (67, 68). These developments benefit from general

progress in microphysiological systems (MPS), which include

organoids, and aim to establish organ architecture and functionality
FIGURE 2

Advances in 3D cell culturing provide the foundation for systems to explore organoid intelligence. (A) 3D neural cell cultures have important advantages
for biological learning, compared with conventional 2D monolayers – namely a far greater density of cells, enhanced synaptogenesis, high levels of
myelination, and enrichment by cell types essential to learning. (B) Brain organoid differentiation over time from 4 to 15 weeks, showing neurons
(microtubule associated protein 2 [MAP2]; pink), oligodendrocytes (oligodendrocyte transcription factor [OLIG2]; red), and astrocytes (glial fibrillary acidic
protein [GFAP]; green). Nuclei are stained with Hoechst 33342 (blue). Images were taken with an LCM 880 confocal microscope with 20x and 63x
magnification. Scale bars are 100 mm and 20 mm, respectively. The images show the presence of MAP2-positive neurons as early as 4 weeks, while glial
cells emerge at 8 weeks and there is a continuous increase in the number of astrocytes over time.
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such as OI as proposed here. Notably, some coauthors are involved in

spearheading quality assurance guidance for Good Cell Culture

Practice, expanding earlier guidance to stem cell-based models,

MPS, organ-on-chip models (69), and establishing an annual MPS

World Summit series (70) and international society.
Microfluidic perfusion systems
While brain organoids may recapitulate spatiotemporal

molecular signatures, gene expression networks (71), certain

histoarchitectures (e.g. cortex patterning), and neuron phenotypes

within the human brain, they do not reflect its regional organization

and the complexity of its neuronal circuitry to levels allowing for

higher-order brain function (35, 72, 73). Part of the human brain’s

complexity stems from its size and the vasculature that supports its

growth (74, 75). Although brain vasculature models are under

development (76, 77), most brain organoid models so far are still

avascular and rely on passive diffusion to deliver nutrients; the

average scope of diffusion is approximately 300 mm before starving-

derived necrosis occurs at the core (78) (Figure 3A). Thus, the lack

of a perfusable vasculature is a major limitation for improving

biological complexity and in vivo-like functionality (78).

Microfluidic systems that substitute for vasculature – allowing

controlled perfusion of oxygen, nutrients, and growth factors and

the removal of waste products – will be critical to the scalable

and durable culturing of brain organoids (Figure 3B) (79, 80). These

will support the homeostasis and viability of the organoids, allowing

a more physiologic-like differentiation toward a more complex,

sophisticated, and “in vivo-like” model. Flexible, self-folding

microfluidics can already del iver chemicals with 3D
Frontiers in Science 07
spatiotemporal control (81), and recent advances in 3D printing

with sacrificial materials offer the potential to create perfusable

scaffolds for organoids (82, 83).

These microfluidic systems will also support chemical signaling

to organoids. The importance of spatiotemporal chemical

patterns to encode information is well established in neuroscience

and behavioral science (84–86). Significant advances in

micropatterning and microfluidics over the past two decades have

already allowed 2D chips to offer significant tunability of the

chemical microenvironment around neurons, and tree-like

microfluidic gradient generators have been widely used to create

chemical patterns (87). Importantly, 3D spatiotemporal

microfluidic interfaces (88) now enable localized dosing and

replication of chemical environments with neurotransmitters,

neuropeptides, and other neurochemicals. A comprehensive list of

the agonists and antagonists is available (89).
High-resolution recording of complex
neuronal networks

3D microelectrode arrays for brain organoids
Robust and reproducible systems to record electrophysiological

outputs from brain organoids are critical to developing OI systems

and will need to address various challenges in reading and writing to

complex neural assemblies. Brain-machine interface technologies

have been in progress for at least two decades (90) but remain

primitive. Microelectrode arrays (MEAs) form the heart of many

such interfaces since they can be used to both stimulate and record,
FIGURE 3

3D microfluidic devices to support scalability and long-term homeostasis of brain organoids. (A) Cells within brain organoids require perfusion with
oxygen, nutrients, and growth factors, as well as the removal of waste products, to provide conditions approximating physiologic homeostasis.
Passive diffusion penetrates to a depth of only around 300 mm, and so necrosis occurs at the core of larger organoids owing to starvation. This
prevents brain organoids from being scaled up to the size and complexity required for OI research and limits their durability. (B) 3D microfluidic
systems enable greater scalability and durability by providing controlled perfusion throughout larger organoids. They also enable 3D spatiotemporal
dosing of chemicals for signaling purposes.
frontiersin.org

https://doi.org/10.3389/fsci.2023.1017235
https://www.frontiersin.org/journals/science
https://www.frontiersin.org


Smirnova et al. 10.3389/fsci.2023.1017235
and offer unprecedented parallelism and individual addressability.

However, most are predominantly in a 2D chip-based format, being

designed for use with monolayer cell cultures (91). This represents a

likely problem as brain organoids are spherical 3D structures that

make limited contact with a 2D MEA chip. Furthermore, most 2D

electrode chip interfaces are rigid, and a mismatch in the stiffness of

the recording interface and cell system compromises performance

(92, 93).

Therefore, we and others are developing novel 3D MEA

interfaces specifically designed for organoids (93–96) and inspired

by the EEG caps used to record brain electrical patterns from the

scalp. Organoids are grown inside flexible, ultra-soft-coated, self-

folding, and buckled shells, covered with patterned nanostructures

and probes (92, 93, 97–99) (Figure 4). This model allows

multichannel stimulation and recording spatiotemporally across

the entire surface of the organoid with unprecedented resolution

and high signal-to-noise ratio, resulting from the greatly enhanced

recording surface areas (92, 93). After the spontaneous signal is

stabilized and synchronized, the response to repeated chemical

stimuli from neurotransmitter gradients [glutamate, g-
Aminobutyric acid (GABA), dopamine, serotonin, acetylcholine]

and main receptors agonists/antagonists [e.g. kainic acid, kynurenic

acid, g-Amino-b-hydroxybutyric acid (GABOB), bicuculline,

haloperidol, nicotine, methylbromide (89)] can be recorded to

address and modulate the synaptic plasticity.

These shell MEA interfaces can be integrated with the

aforementioned 3D microfluidic systems, supporting the scalability

and durability of the system and chemical signaling via spatial

patterning and gradients. Together, they create a robust platform

to gain an iterative, in-depth understanding of organoid behavior

and responses to a range of highly modifiable environmental and

input stimuli, which in turn will allow us to explore their capacity to

recapitulate the molecular mechanisms of learning and memory

formation and ultimately their computational potential.
High-resolution implantable
electrophysiology devices

We consider that the shell MEAs described above strike an

appropriate balance by providing comprehensive, high-resolution

electrophysiological recordings with minimal disruption to the

organoid. However, future systems might permit organoids to be

grown around implantable electrodes to further enhance signal

resolution and to access the inside of the organoid. The efficiency of

such systems must be balanced by their invasiveness since any

damage to neuronal networks could alter the behavior of

the organoid.

Neuropixels are silicon probes developed for extracellular

recording in animals (mostly mice and rats) (100). They lend

themselves to direct integration with brain organoids, though in

principle, Neuropixels can also be integrated into shells. These large

(10 mm), dense (100 sites/mm) implantable neural devices allow

the recording of hundreds of well-resolved single neuron signal

traces. They can be combined with light sources, electrical

stimulation, and photometry, dramatically increasing the input

and output opportunities and the mapping of activity in the
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learning organoid. These devices also appear uniquely capable of

long-lived exposure to neural tissue. Chronic implants in rats and

mice frequently last for 150 days or more with little degradation in

recorded neural activity, indicating suitable compatibility and

stability (100, 101). Recently, the Kosik laboratory (University of

California Santa Barbara, CA, USA) used such CMOS shank probes

in parallel with 2D high-density MEAs to record intrinsic network

activity in brain organoids (46).

Mounting and inserting such probes into the organoid is a

complex challenge, and work is ongoing to develop a new

generation of suitable (more flexible) probes. If the organoid is

grown in well plates, mounting of the probe would be like skull

mounting in a rodent. If the growth medium needs to be exchanged

periodically for organoid health without disturbing the probe-

organoid interface, then an unconventional means for removing

and adding media to the wells would need to be developed. The

minimum size of the probe base (4.2 mm × 1 mm) allows sufficient

“headroom” for this fluidic machinery. Once a microfluidic growth

chamber is adopted, a membrane interface to the probe shank

would be needed. Neuropixels are routinely used with a Kwik-Sil

(WPI) silicon layer over the brain while recording and sealing

chronic implants. Further investigation may be required to perfect

this geometry, but interfacing with a low-pressure fluidic chamber

does not present any fundamental problem. Finally, a Neuropixels

2.0 probe (101) has four shanks, each 10 mm long with a cross-

section of 70 mm × 24 mm. For a 1 mm diameter organoid,

approximately 500 electrodes would contact the cells, giving the

capacity to record from 384 switch-selectable sites at a time. The

probe electrodes would displace ~1.5% of the current organoid

volume, likely an acceptable perturbation. Yields of 200–600 “units”

are typical in recordings from rodents, limited by activity. The

probe would be within detection distance of ~14% of the cells in a 1

mm diameter organoid.

Among the challenges facing brain-machine interface

technologies is the scale of connectivity. Cortical neurons each

have in the order of 104 input synapses and connect to in the order

of 103 cells, some across many millimeters – even in small brains

such as those of mice. It is not yet clear if organoids have similar or

reduced synaptic counts. Current brain-machine interfaces

have many unresolved cells per input (reading) for each

electrode (all within 20–80 mm) and a largely unknown number

of cells for output (writing or stimulation). Except for special

cases in the visual cortex, the cellular understanding of writing

remains difficult, while reading has enabled the control of

prosthetic robots.

How might traction be achieved to begin harnessing organoid

computing power? We propose that two paths be explored.

All-optical

An all-optical path for organoids would allow cell-by-cell

excitation and whole organoid reading (again cell-resolved).

While optical imaging is not likely a terminal technology for

harnessing OI, it allows exploration of the system behavior, and

the kinds of computation that could be initially (102) performed.

There are rapidly developing technologies for large-volume

imaging that make this attractive. Techniques such as Bessel
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holography can image volumes with hundreds of mm diameter at

kHz rates, with an accurate cellular resolution if the activity is

relatively sparse (102). Directly writing with opsins is also well

established, and holographic methods are again exploited (103),
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but the cell write rate is significantly lower than the cell read

rate. These methods are immediately available and would help

inform the design of electrophysiological systems necessary to

progress OI.
FIGURE 4

Interfacing organoids with 3D microelectrode arrays (MEAs) to allow electrophysiological output recording. (A) Organoid-MEA interfaces were
inspired by the electroencephalograph (EEG) used to take electrophysiological recordings from the human brain. (B) Organoids are grown inside
flexible, ultrasoft-coated, self-folding, and buckled shells covered with patterned multielectrode nanostructures and probes. These interfaces allow
ultra-high-resolution 3D spatiotemporal stimulation and recording of electrophysiological patterns across the entire organoid surface (see also 93).
(C) Brightfield image of brain organoid captured inside the shell. (D) Confocal image showing the side view (projected confocal stack) of a brain
organoid (green; Fluo-4 calcium dye) with a diameter around 500 mm encapsulated in the electrodes of the 3D shell (blue). (E, F) Three channels of
electrodes are distributed across the shell with representative raster plot showing the spontaneous electrical activity of the brain organoid. (G)
Overlaid spike waveform from channels 1, 2, and 3.
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High-throughput electrophysiology

Electrophysiology recording capacity is impeded by the “dark

matter” observation resulting from the fact that most neurons are

not firing most of the time. As such, an electrophysiology channel

sensitive to reading and writing individual local neurons can be

inefficient: even the best-performing probes “see” <1% of the

neurons within their detection range (104). It seems unnecessary

to achieve a synapse level of interpretability of these systems if the

base principles are elucidated, empirically tested, and used to

control the system as a whole. Notably, bionic implants for

humans have managed to convey significant information with

relatively few input electrodes; e.g. the bionic eye (105) used 24

electrodes, and current cochlear implants use between 10 and 22

(106, 107). Therefore, different resolutions may be required for

input vs. output.

Although organoid EEG and implantable neural devices are

feasible to investigate the scale of required input/output contacts,

both technologies need to be explored further to assess the

recording patterns and learning potential of brain organoids.
Memory and learning in organoids: training using
biofeedback, big data, and AI/machine learning

Understanding the capacity of brain organoids to learn is

fundamental to determining whether they can be used

computationally by harnessing the advantages of biological

learning. At this stage, learning is identified as an increased

frequency to show and memorize a response pattern to a

stimulatory pattern. We aim to use the iterations of technologies

described above to interface organoids and computers to initiate

supervised learning simulations (i.e. trained stimulus response

patterns). To achieve this goal, the brain organoids should be

exposed to spatiotemporal patterns of electrical and chemical

stimulation, with the associated recordings delineating

relationships between inputs and outputs. A feedback loop is

required to train a learning system. Changes in the brain

organoid architecture and functionality (synaptic connections and

electrophysiology) due to such training cycles can then be analyzed.

These two factors affect synaptic plasticity – the main mechanism of

memory formation and learning. Hence, the recorded responses to

electrical or chemical stimuli should demonstrate whether and how

learning may occur in the organoids.

Ultimately, robust, high-resolution encoding and decoding of

signals going into and out of human cortical tissue is required.

Recent achievements using intracortical microstimulation (ICMS)

and decoding of motor and sensory cortices using MEA in human

subjects offer promise (108, 109), though further advances in scale

and resolution will be necessary.

AI analysis of responses
Organoid-MEAs will generate massive recording datasets that

will themselves need to be analyzed by statistical and machine

learning techniques. Given the recording density and volume, this

will necessitate a novel big-data infrastructure and supercomputing

capacity tailored to the sophisticated needs of this form of modern

biological data.
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Fundamentally, the two major challenges for AI analysis in this

context are : (a) how to decode the input provided to an organoid

(e.g. the game Pong) (29) to relate to changes with its architecture

and/or functionality; and (b) how to relate these organoid changes

to certain outputs (e.g. the improvement in playing Pong). In other

words, biological computing includes OI as a mediating

mechanistic process between the inputs and outputs. To answer

these two challenges, we foresee the use of interdisciplinary tools

integrating machine learning, statistics, signal processing,

information theory, and optimization. We also believe that the

questions raised will motivate new methodological developments in

these fields.

Specifically, we believe the following three paths must be

explored to relate OI inputs to outputs:
1. Machine learning and statistical algorithms are needed to

quantify organoid function changes. This involves: (a)

sensor integration to accelerate processing based on

unsupervised learning and dimension reduction, such as

principal component analysis (PCA), independent

component analysis (ICA), and autoencoders including

hierarchical versions (110–112); (b) signal detection using

sequencing and time series (e.g. state-space) models (113–

115), which are often used in brain imaging analysis; (c)

pattern recognition to identify the real signal pattern and

deconvolute it from the background noises (116).

2. Algorithms are also needed to quantify organoid architecture

changes. Challenges include pinpointing the exact parts of

the organoid that respond to the input [e.g. using mixture

models (117)] and then quantifying these changes by

monitoring their physical appearances. The application of

multiscale unsupervised structure learning methods to the

recorded responses can identify discrete, statistically

distinguishable, observer-unbiased response phenotypes.

3. Models must then be trained to relate the quantified

organoid changes to the output variables via multivariate

causal models (118–120). OI will require novel

developments integrating AI/machine learning and both

space- and time-dependent causal modeling (121–123).
Clearly, inferring or estimating the connectivity of organoids

will be a core endeavor. Connectivity, in neuronal circuits, is usually

divided into structural, functional, and effective connectivity (124).

The distinction between functional and effective connectivity is

particularly prescient here: functional connectivity refers to the

statistical correlations between neuronal fluctuations in different

populations, while effective connectivity refers to the causal and

directed connectivity between populations. The corresponding data

analysis techniques can be parsed into frontal connectivity methods

such as coherence analyses and Granger causality. These can be

contrasted with inferences about directed (effective) connectivity,

usually using some form of dynamic causal modeling (125).

Applying these statistical and computational methods and

modern big and complex data tools, such as those from brain

imaging and computational biology, will allow us to map input and

outputs from organoids’ neurological connections. As an example of
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a relevant technique, a fundamentally different approach to neuron

behavior mapping was developed in Drosophila: optogenetic

activation of neurons and the application of multiscale

unsupervised structure learning methods to the recorded responses

to identify discrete, statistically distinguishable, observer-unbiased

response phenotypes (126). This could be a starting point for

connectivity- and activity-mapping studies to further investigate the

mechanisms through which neurons mediate diverse behaviors.

However, with respect to its application to brain organoid

recordings, we are entering terra incognita.

Machine learning and other mathematical models are

increasingly applied to certain parts of organoid research (127–

129). However, machine learning, in the sense of deep learning and

supervised learning, deserves further comment. This is because it

presupposes that supervised learning is an appropriate theoretical

formulation of self-organization in organoids, in the sense that the

opportunities afforded by organoid research transcend questions

about how to engineer a particular behavior through supervised

learning (130). The opportunities probably require a more generic

theoretical framework within which to formalize self-organization

and active exchange between an organoid and its external milieu

(131, 132). Practically, if one wanted to train an organoid to do this

or that, it would be impossible to implement the procedures

for supervised learning in machine learning (i.e. either

backpropagation of errors or local energy-based schemes).

Current developments favoring reinforcement learning, where

self-organization is met by feedback on functionality, lend

themselves to such problems. Strategically, if correct, this means

that the direction of travel of organoid research may be either

toward reinforcement machine learning or more aligned with some

of the foundational questions posed in neurobiology (133) or,

indeed, the physics of nonequilibrium self-organization (134, 135).
Big-data infrastructures
Providing suitable infrastructure for the storage, curation, and

processing of OI big data is a scientific challenge of its own. Analytic

datasets need to be stored in efficient shared memory structures;

appropriate technology will be needed where manipulations, such

as standard matrix or tensor calculations, can be obtained without

partial or streaming access to the full dataset. Furthermore, a fast,

robust, and scalable computational analytic and curation

infrastructure for the resulting data will be needed. A likely

requirement will be efficient dimension-reducing transforms of

the 3D sensor arrays applicable for streaming data; e.g. by

“scattering transform” (136), which has been particularly

successful in analyzing audio streams (137).

Each deep biological network computes some function,

transforming inputs to outputs depending on many variables,

chief among them: (1) the weights and biases and (2) the

activation functions. In both AI and OI, it is reasonably safe to

assume that the activation functions are essentially static; i.e. any

given node at any given time is activated only upon reaching a

certain threshold. However, Sinapayen et al. (138) suggest that

neural networks can autonomously change activity to avoid external

stimulation. The key difference between AI and OI networks is that
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in OI networks, the weights and biases may dynamically change

over time – for example, owing to growth and/or maintaining

homeostatic equilibrium – however, with unclear changes in the

network function. Indeed, vastly different neural networks can

implement approximately the same function (139). A similar

result is well established in biological networks (140). We,

therefore, hypothesize that although the precise weights and

architecture of the OI may be dynamic, the memories may be

stable over time.

The amount of data and respective curation, compression,

and processability will dramatically increase with boosted

electrophysiological recordings from OI systems. Additional

challenges come from spatiotemporal recording and the

combination of electrophysiology and high-content imaging. In

addition, the training and experimental data created will require

efficient frameworks for storage and analyses. This could include a

combination of in vivo proto-neural networks developed in brain

organoids and in si l ico analog/digital hybrid, and/or

neuromorphic computing (41, 90, 141, 142). Transmedia

progressive learning will therefore exhibit the advantages of

both biological and machine computing and learning, while

mitigating the limitations of each. The main aspect of our

strategy for storage is to develop a scheme resembling the Large

Hadron Collider experiment at CERN, where sophisticated

triggers are used to detect events in real time and only events

with a potential discovery value are kept – greatly decimating the

data rate. We envisage a similar event-driven way of analyzing the

data: we will send discrete stimuli to the brain organoids, look for

coordinated responses in many channels, and store only the

discrete events related to these intervals. We will use insights

gained through multiple versions of experiment reduction to

develop a sensor correlation model and optimal event triggers

that optimize the trade-offs between data reduction and

discovery value.

Many large ongoing efforts aim to create data-processing tools,

storage solutions, and standards to handle the scale of data

generated by modern neuroscience experiments, e.g. the US

BRAIN Initiative (143). Open-source community solutions, which

the OI community could leverage, are being developed for terabyte-

and even petabyte-scale data across multiple modalities. As high-

throughput MEAs represent the most promising initial technology

for interfacing with organoids, solutions from the invasive and in

vitro electrophysiology communities can likely serve as the basis for

the OI community. Standardized community-processing pipelines

exist for this application, including machine learning tools such as

DataJoint Elements (144). Many individual tools and techniques for

electrode arrays have been developed for spike sorting (145) and

analysis of local field potentials (146). Community cloud-based

archives are available for publishing such electrophysiological data

in an open and accessible manner, such as the OpenNeuro Archive

(147) and DANDI (148). These archives are hosting an ever-

increasing range of data from varied experimental paradigms.

Several standards initiatives could be leveraged to facilitate reuse,

reanalysis, and meta-analysis, such as the Brain Imaging Data

Standard (BIDS) (149) or Neurodata Without Borders (NWB)

(150). By leveraging the standards, processing pipelines, storage,
frontiersin.org

https://doi.org/10.3389/fsci.2023.1017235
https://www.frontiersin.org/journals/science
https://www.frontiersin.org


Smirnova et al. 10.3389/fsci.2023.1017235
and dissemination techniques developed by the larger

electrophysiology community, the OI community can rapidly

establish a robust and reproducible big-data infrastructure.

Looking to the future, additional imaging modalities may

become critical to providing further insights into organoid

function and learning. Other processing tools and archives exist

for relevant modalities such as fluorescence microscopy and also

other forms of microscopy; for example, the CaImAn pipeline for

calcium imaging data analysis (151) and the Brain Imaging Library

(152) for archiving and storage. In the invasive in vivo

neuroimaging community, functional and structural connectivity

(or connectomics) is also being studied with improved resolution

and larger volumes (153, 154). Cloud-based processing pipelines for

deriving connectivity are under development (155), and the Brain

Observatory Storage Service and Database (BossDB) ecosystem has

been developed to host and archive large connectivity datasets at the

neuron-synapse level (156). Many emerging graph analysis tools

enable improved insight, such as statistical characterization of

connectomics (157) and identification of repeated motifs (158). In

time, multimodal datasets and infrastructure may play an

important role in the development of the OI community.

Ultimately, the OI community should seek to build on these

tools to establish standardized analysis and storage infrastructures.

Open data sharing can be a powerful approach to grow the

community and maximize the reuse of experimental data.

Establishing a large-scale, standardized set of experimental data

may rapidly improve processing tools, provide theoretical insight,

and generate hypotheses for future experiments. An interesting

model approach is the Human Connectome Project (159), which

used standardized approaches to high-resolution magnetic

resonance imaging to produce a gold-standard dataset for the

emerging field of human connectomics. A similar data and

infrastructure effort for the OI community could provide

invaluable insights.

To summarize, a big-data ecosystem necessary to study OI

will require:
Fron
• Standardization of experimental data and metadata,

building on existing standards such as BIDS or NWB

• Robust, repeatable, and standardized processing pipelines

that scale to large electrophysiological datasets

• Efficient, accessible, and open data storage, possibly

leveraging existing cloud archives such as OpenNeuro or

DANDI

• The potential development of multimodal OI datasets

• The establishment of standard, reference datasets for the

community
In the foregoing discussion, we have anticipated a need for the

collation, storage, and dissemination of big data, under the

assumption that organoid research will recapitulate developments

in neuroscience (and in particular imaging neuroscience). However,

there is an alternative path, which reflects a move from “big data” to

“smart data.” In other words, we need only informative data that

enables people to answer well-posed questions. In effect, this would

represent a pushback against big data and a return to carefully
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designed experiments that elicit the right kind of data to make

inferences about the dynamics, plasticity, and functional

architectures in brain organoids. In short, the experiences of the

neuroscience community may usefully inform the kind of resources

needed to realize the full potential of organoid research over the

ensuing years.
Advancing biocomputing complexity

Optimized algorithms for organoid-in silico
interactions

Realizing the potential of OI requires more than interfacing a

computer with an organoid. In OI, the organoid can take on the role

of an embodied agent that interacts with an environment through

the organoid-in silico interface. This will require optimized

algorithms for organoid-in silico interactions as well as research

into theoretical frameworks for learning and adaptations in

organoids drawing from the theoretical neuroscience literature.

The viability of OI is dependent on optimized algorithms for

organoid-in silico interactions, in addition to the fast data storage

and retrieval described above.

There are two broad environments in which OI may operate:

open-loop or closed-loop:
• Open-loop involves feeding information into cells and

measuring the response. Recent work leveraging this

approach has found that neural systems can alter their

activity to perform various tasks, including context-

dependent encoding (160) and blind-source separation

(42), and to display features such as adaption toward

scale-free dynamics (161) or long-term activity-dependent

plasticity (41).

• Closed-loop extends the open-loop environment to include

feedback to the neural systems about the result of the

system activity. Examples of this are limited owing to

technical difficulties, but high-latency/low-temporal

resolution analysis suggests that under these conditions,

cultures can demonstrate changes in neural dynamics (41)

and arbitrary learning (44). Moreover, real-time

implementations have recently resulted in goal-directed

learning displayed through a change in neural culture

activity when applied in line with neurocomputational

theories (29).
Exploring, applying, and refining empirically supported

theories of what fundamentally drives learning intelligence is a

critical factor. So far, numerous theories have been proposed to

explain how, at the fundamental level, neural systems process and

respond to information.

The first branch of theories focuses on how neural systems are

organized, both structurally and functionally. Key notions include

neural criticality (162), neural Darwinism (163), cell assembly and

Hebbian plasticity (164), rule-based learning (165), and core ideas

behind population coding approaches (166, 167). Generally, these
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theories aim to explain how the incredibly complex organization

within the brain results in its ultimate functioning. Thus, they offer

generally compatible frameworks for analyzing and interacting with

brain organoids, providing the opportunity for optimized input and

decoding of output.

A second “optimization” category of theories generally focuses

on how a system or agent works to maintain homeostasis in a

dynamic environment. Broadly, this can be achieved either through

maximizing a utility or reward or by minimizing surprise or

uncertainty (165, 168). Key theories include the Bayesian brain

hypothesis (169), efficient coding hypothesis (170), value-

dependent learning (171), optimal control theory (172), and

learning by stimulation avoidance (138). Attempts have been

made to unify these theories, recently by exploring the underlying

compatibilities, most notably through the proposal of the free

energy principle (173), where the system or agent may engage in

active inference to construct a generative model of the external

environment and act in a manner to minimize the difference

between the internal model and the perceived external world. At

present, it is difficult to empirically test many of these theories in a

controlled manner because in vivo organisms possess compensatory

mechanisms that hamper the interpretation of results. OI offers a

pathway for highly controlled experiments to empirically test

these theories.

In addition to frameworks for learning in neural systems, the OI

community will require methods to assess embodied intelligence;

i.e. computational approaches to understand intelligent behavior in

organoids for both open-loop and closed-loop environments.

Previously, in vitro experiments have demonstrated the ability of

cell cultures to control both physical robotic systems and simulated

video games (29, 174). Experience within the AI community

suggests that the OI community will likely benefit from

standardized testing environments and conditions, accounting for

variability and constraints in input/output interfacing in terms of

channel count and bandwidth. The AI reinforcement learning

community has produced a huge range of games, simulation

environments, and physical systems that could be adapted to OI

evaluation. Of particular interest to the OI community may be the

field of continual or lifelong learning (175, 176), where embodied

agents are assessed in learning that occurs over a sequence of

experiences (often referred to as a “lifetime”). Such testing

environments may serve the OI community by providing

important benchmarks for understanding functional activity and

learning in organoids.
Incorporating complex biological
inputs in OI

Previous sections describe how we intend to interface organoids

and computers. Combining organoids with various types of more

complex inputs and output stimulation and recording interfaces (177,

178) will allow us to understand the potential for real-time controls.

The consequences of such interconnections can be explored, starting

with two brain organoids, one with complex input and one with
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complex output connections. A sensory organ, such as a retinal

organoid, could then be connected with a brain organoid. Eventually,

networks of organoids will be interconnected to implement more

complex OI. The organoid will be interfaced with electrical and

fluidic-sensing and simple outputs controlling machines through

biofeedback on the cellular level; i.e. giving the brain organoid

control by feeding back the results of its induced actions.

By connecting retinal and brain organoids we can determine

whether signals can transfer between these different neuronal

organoids and how this exogenous biological signaling will be

interpreted by the brain organoid – establishing the initial baseline

of organoid–organoid communication. Retinal organoids containing

laminated retinas with outgrowth of outer segment-like structures and

synaptic ribbons have been developed (179, 180). Synapse formation

between two organoids is complex and was demonstrated recently in

assembloids (48). Retinal and brain organoids can be connected either

through electrodes or directly. Since methods to generate mature,

endogenous, light-sensing retina are preliminary and very inefficient,

engineered photosensitive ion channels, which are expressed under

the control of a photoreceptor-specific promoter (181–183), can

substitute as a proxy for light-reactive photoreceptors. Optimization

of retinal organoid culture conditions to promote more robust

signaling has recently been published (184).

Understanding and perhaps even influencing the connectivity

of retinal and brain neurons would be extremely exciting. Although

we and others are actively investigating ways to establish and

modulate these connections, we are still quite far away from a

system that can demonstrate robustly modifying neuronal

connections in a directed manner. Ultimately, we aim to build on

this simplified approximation or representation of visual input

toward a system that more fully approximates vision.
Leveraging advances in the molecular basis
of biological learning

Advances in the molecular biology of synaptic plasticity will be

critical for optimizing the capacity of organoid systems for learning

and OI. Growth conditions can now be optimized to allow organoid

neurons to optimally express genes essential for learning in the

human brain.

First, they need to express genes coding for the neurotransmitter

receptors that mediate synaptic transmission. We have already

characterized the expression dynamics of different subunits of the N-

methyl-D-aspartate (NMDA) glutamate receptor during differentiation

(unpublished observation). The long-term organoid maturation and

age based on gene expression and switch of the main receptor subunits

were recently extensively characterized (185). The machinery of the

organoid’s biochemistry, especially of neurotransmitters, will be an

important part of understanding the signaling cascades and synaptic

plasticity necessary for learning; to this end, a thorough

characterization of protein expression is warranted.

Secondly, it will be important for organoids to express IEGs.

IEGs mediate synaptic processes essential to memory consolidation

and are rapidly transcribed in adult neurons as they process
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information (186). Moreover, evidence indicates that IEGs are

required for circuits capable of gamma frequency rhythmicity

(187), which is associated with attention and information

processing. Using RNA-sequencing to compare organoids (at

different stages of maturation and grown under different culture

conditions) with fetal, adolescent, and adult brains will allow the

identification of growth conditions that optimize expression of

these essential genes. It is critical to ensure IEG expression that is

robust and dynamically responsive to activity evoked by a

pharmacological block of GABAA inhibition (e.g. using

bicuculline). Dynamic, activity-dependent IEG expression would

assure the presence of molecular substrates necessary for organoids

to establish circuits with balanced excitatory and inhibitory neurons

and synapses. The cell culture conditions should be optimized so

that 10–30% of neurons express IEGs in response to informational

inputs. This level of sparsity is typical of brain regions involved in

learning and memory (including the hippocampus and neocortex)

and may ensure that multiple ensembles can be created to uniquely

encode different streams of data. This contrasts with the global

activation of IEGs that may occur with non-informational activity,

such as a seizure. IEG expression and/or associated reporters can

also provide a means to assess the formation of ensembles of

neurons that are stably linked to specific inputs. In the brain,

such ensembles are thought to represent memory engrams. EEG

data can then be correlated with dynamic activity reporters (Ca2+ or

voltage) and IEG expression data. Ultimately, neuronal activity can

be stimulated and recorded optogenetically, as recently described

(48). To our knowledge, IEG expression has not previously been

utilized as an endpoint for optimizing organoid growth conditions.

Successful use of this parameter would establish a biological basis

for OI and address concerns regarding the uncertainty of the

developmental state of organoids and their potential utility as

information-processing memory units.
OI-led advances in medical research
and innovation

In addition to pioneering the use of human brain organoids for

computing and learning, OI research will also allow the exploration of

inter-individual neurodevelopmental and neurodegenerative

differences between stem cell donors. Alzheimer’s disease and other

dementias could represent one particularly important priority for

research. Globally, more than 55 million people are living with

dementia, and this number is projected to exceed 150 million by

2050 (188, 189). Dementia is among the top 10 leading causes of

death (190) and globally costs at least $1 trillion annually (191, 192).

Clinical trials of novel Alzheimer’s disease therapies have shown very

poor success rates, in part owing to premature translation of

successful results in animal models that mirror only limited aspects

of the pathology in humans (193, 194). The adaptation of OI research

models to neurodegenerative diseases would offer the first human-

based preclinical model to help us understand and develop effective

treatments for these devastating diseases.
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In addition to neurodegenerative diseases, neurodevelopmental

disorders also lend themselves to OI, given that the different stages of

brain development are reflected in the bioengineering of these models

from stem cells. Conditions such as autism are major concerns owing

to the enormous increase in prevalence. In the US, autism spectrum

disorder (ASD) was diagnosed in the 1970s in 1 in 10,000 children,

but according to the Centers for Disease Control (CDC), in 2021 it

was 1 in 44 (195). While the disorder has heritable aspects,

environmental influences are an increasing focus. The brain

organoid model has shown promise for both developmental

neurotoxicity (196, 197) and gene × environment (198) studies of

autism. A varying combination of cognitive impairments

characterizes this complex spectrum of diseases (199). Similarly,

leukodystrophies are a diverse group of rare genetic disorders

affecting white matter and linked to cognitive impairment (200).

Using OI to explore the genetic basis of autism or leukodystrophies

appears to represent an important path to understanding these

disorders and to allowing screening of potential drugs that might

boost underdeveloped cognitive functions.

Schizophrenia affects around 1% of the population worldwide

and is one of the top 10 illnesses contributing to the global burden

of disease (201). Schizophrenia has a prominent genetic basis, and it

has been suggested that it may be neurodevelopmental in origin

(202). Prenatal complications are an important contributor to the

condition (203), while cognitive dysfunction is a hallmark (204),

with a strong similarity to autism (205). Human iPSC lines, e.g. with

genetic backgrounds associated with disorders, are available and

continuously growing [e.g. SFARI base for autism (206)]. Organoids

developed from iPSCs from individuals with various conditions

could be compared against control samples to help identify

differences that may elucidate the pathogenesis, risk factors, and

treatments. The application of an OI approach using these cell lines

would thus be very promising to aid further understanding and

characterization of the etiology of the neurodegeneration,

neurodevelopmental, and psychiatric disorders. This enables a

multitude of applications, from de-risking (pediatric) drugs for

adverse effects on cognitive development (207), the identification of

toxicants and illicit drugs with long-term effects on cognitive

capabilities, and the optimization of lead drug candidates acting

on respective pharmacological targets.

The study ofmemory, learning, and cognition – and the impact of

neurodegeneration on these functions – will require physiologically

relevant neuron-to-glia ratios and high levels of biological complexity

and interregional communication. Besides assembloids (48, 208, 209),

aspects of ventral and dorsal regions in the absence of external

morphogens or growth factors have been recapitulated (210–212),

highlighting an innate ability of self-organization in both cases.

Recently, Cederquist et al. (213) demonstrated that a chimeric

assembloid of an early organoid and a cluster of sonic hedgehog

(SHH)-secreting cells resulted in dorsal-ventral and anterior-posterior

positional axes. However, organoids do not have predictable anatomy

nor defined topography, and generally do not reflect the characteristic

developmental asymmetry (208, 213). Nonetheless, brain organoids

do show a remarkable self-organizational capacity. This might

be further enhanced by functional demands, which may be
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harnessed when scaling up the size and inducing regional

polarization, thereby increasing the biological complexity of neural

networks and interregional connections to better reflect brain

architecture and function (48, 208–213). Bioprinting approaches

might also help here.
Ethics of biological computing
with organoids

Creating a human brain model with input and output as well as

learning capabilities raises complex ethical questions. At 12 weeks of

fetal development, a human brain has a weight of approximately 3 g,

a volume of approximately 3.5 ml, and 3 × 109 cells in the neocortical

part of the fetal telencephalon (214–216). An adult mouse brain

weighs approximately 0.4 g. In comparison, current brain organoids

have a diameter below 500 mm in culture, with less than 100,000

cells. The maturation of the brain organoid is accelerated by growth

factors so that at 10 weeks of culture, organoids show some features

(such as myelination) that start in the fetus after 20 weeks of

gestation (217). Furthermore, the stimulation with information

input might lead to very different organoid development, and

much longer culture periods would be envisaged for training

organoids, together possibly augmenting cognitive capabilities.

The ethical concerns raised by brain organoid research have

mainly focused on questions about creating entities that could

potentially exhibit consciousness (45). Could organoids

experience pain and, if so, would they suffer – even in

rudimentary ways? These concerns will mount during the

development of OI, as the organoids become structurally more

complex, receive inputs, generate outputs, and – at least

theoretically – process information about their environment and

build a primitive memory. This will require deeper analysis and

research regarding the morally salient neurobiological features that

contribute to human capacities, including consciousness, and the

implications for OI research and implementation when some or all

of these are met. Articulating the physiological conditions that are

necessary and sufficient for consciousness is one of the most difficult

puzzles of neuroscience (143, 218). To assess whether organoids

exhibit the criteria for consciousness will require some consensus to

be reached about what those criteria are (219). Work underway to

uncover the neural basis of consciousness will inform the evaluation

of the ethical issues raised by OI. However, it will also be important

to distinguish “consciousness” from “sentience,” formally

considered as “awareness to stimuli,” i.e. response to sensory

input (220, 221). Such use of terminology can be debated and

represents a critical challenge for the forming OI community. We

use the term “sentience” in its most basic way, similar to the way in

which many aspects of cognition have to be understood as very

basic cellular mechanisms, not human-level brain functions. Even

recent proposals (222) for the use of the perturbational complexity

index (PCI) assume the more complex idea of phenomenological

consciousness when the behavior could be explained by simpler

sentience (174). Notably, the suggested OI program does not aim to

recreate human consciousness, but rather functional aspects related

to learning, cognition, and computing.
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Nevertheless, as advances in the structural and functional

complexity of OI systems begin to recapitulate aspects of human

neurobiological (sub)-processes, such as learning and cognition,

researchers will inevitably encounter the Greely Dilemma: a

situation whereby incremental successes in modelling aspects of

the human brain will raise the same kind of ethical concerns that

originally motivated their development (223). Sufficient advances in

OI will raise questions about the moral status of these entities and

concerns for their welfare. Frameworks have been proposed to

address these ethical concerns in research practices (224, 225) but it

remains unknown whether these proposals adequately attend to

moral concerns held by the public. For example, harm reduction

policies are often unsuccessful in gaining public support when the

underlying attitude is based on a moral conviction (226) with

implications for public discourse (227). Comprehensive ethical

analysis of OI will require input from diverse publics and relevant

stakeholder groups (228), in order to (i) prevent misunderstandings

from creating unintended moral appraisals, and (ii) and foster trust,

confidence, and inclusion through responsible public engagement.

Notably, moral attitudes toward OI may depend less on

epistemological concerns mentioned above, such as the role of

specific cognitive capacities in assessments of moral status, and

more on ontological arguments of what constitutes a human being.

Perceptions of (re)creating ‘human-like’ entities in the lab are likely

to evoke concerns about infringing on human dignity that could

reflect secular or theological beliefs about the ‘essential’ nature of

the human being (229, 230). Our approach to embedded ethics in

OI will seek to identify and attend to these ethical concerns by

informing future public engagement and deliberation on OI.

Other issues anticipated to require attention include privacy

concerns on the part of iPSC donors and aspects of intellectual

property. What does the organoid exhibit about the cell donor? Is

there a moral obligation to inform the donor if, for example,

something relevant to their health is identified during research?

Do donors have rights that extend beyond the donation?

In common with other scientific and bioengineering aspects of

OI, this is truly uncharted territory. The ethical considerations

and viewpoints can be expected to evolve with an increased

understanding of organoid systems. It is therefore critical to

frame the ethical considerations at the onset of this research in

a manner that encompasses all anticipated issues, and which

continually reflects on progress and new lessons. We propose to

use an “embedded ethics” approach whereby an ethics team will

identify, discuss, and analyze ethical issues as they arise in the

course of this work. Embedded ethics is a standard approach in

interdisciplinary ethics research, whereby expert ethicists join and

collaborate integrally with research and development teams to

consider and address ethical issues via an iterative and continuous

process as the research evolves (231). Box 1 offers a preliminary

framework of ethical considerations informed by discussions at

the “First organoid intelligence (OI) workshop to form an OI

community” workshop (22–24 February 2022) (51).

While the embedded ethics approach provides a mechanism for

investigating the philosophical and scientific conditions relevant to the

moral status of brain organoids, it has no inherent mechanisms for

seeking, identifying, or incorporating public values in the development
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of OI. It is important to understand public perceptions of OI, and this

cannot be delegated to ethicists alone. It needs to be embedded within

the field as a three-way feedback loop involving researchers, ethicists,

and members of the public, including stakeholders who could be

especially impacted by advances in OI (e.g. neurodiversity advocates).

This feedback loop will enable specific applications of OI to be

articulated by researchers, analyzed by ethicists based on theoretical

principles, and evaluated by members of the public with diverse moral

perspectives. The views expressed by the public then inform the work

of both scientists and ethicists seeking to advance OI in a socially

responsive manner. This call for public dialogue has been echoed by a

National Academy of Sciences report on human neural organoids

(232), the recommendations on innovation in neurotechnology by the

Organisation for Economic Co-operation and Development (233),

and various neuroethics committees. Moreover, researchers in science

communication and deliberative democracy have demonstrated that

deliberative techniques are one of the most effective mechanisms for

informing the public and mitigating the risk of polarization on

contentious issues. Finally, public engagement on OI will not only

be necessary to prevent adverse public reactions but will also maximize

the future impact of the field and serve as an exemplar of how to

embed society within science.
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Of relevance in this context, coauthor JK co-chaired the

neuroethics subcommittee for the new strategic plan for NIH

BRAIN 2.0 (234). The only project we know of with relevant

parallel aspects is the Brainstorm Project led by Insoo Hyun at

CaseWestern University (235). We will be further actively promoting

discussions between biologists, ethicists, and philosophers who are

interested in brain organoids and navigating brain organoid ethics in

research, as we did before (219). A recommended way forward would

include: (1) an agreement on commonly used language, (2) the need

for research on the neural basis for consciousness (as above); and (3)

the development of best practice guidelines that consider the views of

all relevant stakeholders.
Conclusion: an action plan
for OI research

We present a collaborative, iterative multidisciplinary program

aiming to establish OI as a form of genuine biological computing that

harnesses brain organoids using the scientific and bioengineering

approaches described here in an ethically responsible manner

(Figure 5). Ultimately, we aim toward a revolution in biological
BOX 1 Preliminary framework of ethical considerations in organoid intelligence research. Organoid intelligence research entails many important
ethical aspects that warrant an iterative, collaborative ethical process as the field develops, involving all relevant stakeholders. Here we offer a
preliminary framework of issues for consideration.
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computing that could overcome many of the limitations of silicon-

based computing and AI and have significant implications

worldwide. Specifically, we anticipate OI-based biocomputing

systems to allow faster decision-making (including on massive,

incomplete, and heterogenous datasets), continuous learning during

tasks, and greater energy and data efficiency. Furthermore, the

development of “intelligence-in-a-dish” offers unparalleled

opportunities to elucidate the biological basis of human cognition,

learning, and memory, together with various disorders associated

with cognitive deficits – potentially aiding the identification of novel

therapeutic approaches to address major global unmet needs.
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Glossary
Biological computation calculation (not necessarily as mathematical operation
s) carried out by a biological system.

Biological computing tasks typically done by computers carried out by biological systems.

Brain organoid induced pluripotent stem cell (iPSC)-derived 3D neural cultures, recapitulating aspects of brain cellular composition, architecture, and
functionality.

Cognition the human mental action or process of acquiring knowledge and understanding through thought, experience, and the senses (236).

Cognition-in-a-dish a basic ability to process an input and provide a measurably output; a learned adequate response to the stimuli which is enabled by the
presence of the necessary molecular machinery and physiological features such as learning circuits of long-term memory.

Consciousness the human state of being aware of and responsive to one’s surroundings (236); a hypothetical organoid’s state of being responsive to and
“aware of” the environment.

Embodied intelligence the computational approach to the design and understanding of intelligent behavior in embodied and situated agents through the
consideration of the strict coupling between the agent and its environment (situatedness), mediated by the constraints of the agent’s own
body, perceptual and motor system, and brain (embodiment) (237).

Intelligence the human ability to acquire and apply knowledge and skills (238).

Intelligence-in-a-dish vision of OI-implementing cell models to perform computer functions (238) and to test substances (e.g. for toxicological or
pharmacological purposes).

Learning and memory in the context of OI, learning is identified as an increased frequency to show and memorize a response pattern to a stimulatory pattern.

Organoid intelligence (OI) describes an emerging field aiming to expand the definition of biocomputing toward brain-directed OI computing, i.e. to leverage the self-
assembled machinery of 3D human brain cell cultures (brain organoids) to memorize and compute inputs.

Sentience in humans, the simplest or most primitive form of cognition, consisting of a conscious awareness of stimuli without association or
interpretation (220); for OI, basic responsiveness to sensory input, e.g. light, heat, etc.
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