
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Robot. AI
Sec. Robotic Control Systems
Volume 12 - 2025 | doi: 10.3389/frobt.2025.1565173
This article is part of the Research Topic Advances in Distributed Control for Multiple Robots View all articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
One of the fundamental limiting factors in planetary exploration is the level of autonomy achieved by planetary exploration rovers. This study proposes a novel methodology for the coordination of an autonomous multi-robot team that evaluates efficient exploration routes in Jezero crater, Mars. A map is generated consisting of a 3D terrain model, traversability analysis, and probability distribution map of points of scientific interest. A three-stage mission planner generates an efficient team-wide route, which maximises the accumulated probability of identifying points of interest. A 4D RRT* algorithm is used to determine smooth and flat paths for individual rovers, following the team-wide route planner, and prioritized planning is used to coordinate a safe set of individual paths. The above methodology is shown to coordinate safe and efficient rover paths, which ensure the rovers remain within their nominal pitch and roll limits throughout operation.
Keywords: Planetary exploration, Robot team, coordination, autonomy, Mission planning, Micro rover
Received: 22 Jan 2025; Accepted: 25 Mar 2025.
Copyright: © 2025 Swinton, Ewers, McGookin, Anderson and Thomson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Sarah Swinton, University of Glasgow, Glasgow, United Kingdom
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.