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Robust perception systems allow farm robots to recognize weeds and
vegetation, enabling the selective application of fertilizers and herbicides to
mitigate the environmental impact of traditional agricultural practices. Today’s
perception systems typically rely on deep learning to interpret sensor data
for tasks such as distinguishing soil, crops, and weeds. These approaches
usually require substantial amounts of manually labeled training data, which
is often time-consuming and requires domain expertise. This paper aims to
reduce this limitation and propose an automated labeling pipeline for crop-
weed semantic image segmentation in managed agricultural fields. It allows the
training of deep learning models without or with only limited manual labeling
of images. Our system uses RGB images recorded with unmanned aerial or
ground robots operating in the field to produce semantic labels exploiting the
field row structure for spatially consistent labeling. We use the rows previously
detected to identify multiple crop rows, reducing labeling errors and improving
consistency. We further reduce labeling errors by assigning an “unknown”
class to challenging-to-segment vegetation. We use evidential deep learning
because it provides predictions uncertainty estimates that we use to refine and
improve our predictions. In this way, the evidential deep learning assigns high
uncertainty to the weed class, as it is often less represented in the training
data, allowing us to use the uncertainty to correct the semantic predictions.
Experimental results suggest that our approach outperforms general-purpose
labeling methods applied to crop fields by a large margin and domain-specific
approaches on multiple fields and crop species. Using our generated labels to
train deep learning models boosts our prediction performance on previously
unseen fields with respect to unseen crop species, growth stages, or different
lighting conditions. We obtain an IoU of 88.6% on crops, and 22.7% on
weeds for a managed field of sugarbeets, where fully supervised methods
have 83.4% on crops and 33.5% on weeds and other unsupervised domain-
specific methods get 54.6% on crops and 11.2% on weeds. Finally, our method
allows fine-tuning models trained in a fully supervised fashion to improve their
performance in unseen field conditions up to +17.6% in mean IoU without
additional manual labeling.
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1 Introduction

The demand for food is constantly increasing due to the
growing world population, requiring new methods to optimize
crop production (Horrigan et al., 2002; Ewert et al., 2023;
Storm et al., 2024; Walter et al., 2017). The use of robotic
systems in agriculture has the promise to make processes, such as
monitoring fields (Ahmadi et al., 2020; Boatswain Jacques et al.,
2021), phenotyping (Weyler et al., 2022b), and weed spraying
(Wu et al., 2020), more efficient and sustainable (Cheng et al.,
2023). Commonly, robotic platforms perceive their environment
using deep learning methods to semantically interpret complex data
collected with onboard sensors (Dainelli et al., 2024). However,
these approaches usually require large amounts of human-labeled
data to achieve satisfactory performance for real-world deployment
and often fall short in unseen field conditions (Wang et al., 2022;
Magistri et al., 2023).

In this paper, we examine the problem of automated semantic
crop-weed segmentation in RGB images, enabling robots to perform
tasks, such as automated weeding (Balabantaray et al., 2024;
Saqib et al., 2023), controlled usage of pesticide (Murugan et al.,
2020), harvesting (Pan et al., 2023), or phenotyping (Weyler et al.,
2022a). We aim to maximize a semantic segmentation neural
network’s performance in various field deployment conditions, e.g.,
different growth stages, crop species, or lighting conditions, without
human-labeled training data.This is crucial to ensure a robust crop-
weed segmentation in new unseen fields to enable robots to perform
weeding and harvesting. Our approach automatically labels onboard
RGB images based on the robot’s pose and the current map of the
field semantically segmented into crops and weeds. In this way,
semantic labels are generated using the robot’s spatial information
and the field arrangement’s crop row structure.

Previous heuristic-based methods for unsupervised semantic
segmentation in agriculture proposed by Lottes et al. (2017) and
Winterhalter et al. (2018) rely on poorly generalizing assumptions
about field arrangements, e.g., absence of weeds in the crop
row (Lottes et al., 2017), constant distance between plants’ rows
(Lottes and Stachniss, 2017; Winterhalter et al., 2018), or non-
overlapping vegetation components (Lottes et al., 2017). Although
fully supervised deep learning-based approaches do not rely on
geometric assumptions, they rely on in-domain human-labeled
training data. The performance of such approaches is satisfactory
when being deployed in conditions similar to those they were
trained on. However, their performance usually rapidly deteriorates
in novel deployment conditions, e.g., different crop species, weeds
pressure, lighting conditions, or growth stage, requiring new
human-labeled training data. This is costly and makes these
approaches impractical for application when there is not enough
time, money, or data to re-train the approach on new field
conditions.

The main contribution of this paper is a novel heuristic
approach for unsupervised soil-weed-crop segmentation in
managed agricultural fields addressing these limitations. Our
method automatically generates labels used to train deep semantic
segmentation networks. The overview of our pipeline is shown
in Figure 1. Our pipeline takes the current RGB image and the
camera pose of the robotic platform as input to compute a semantic

map of the field. As a key novelty, we use the semantic map to
enforce the spatial consistency of labels. To this end, we propagate
the information about the crop rows in the map, leading to better
crop segmentation across different growth stages. Additionally,
we do not assign labels to vegetation components that are close
to the crop rows but are not classified as crops. This reduces
possible labeling errors and thus improves model predictions after
training on our generated labels. We use the generated image-
label pairs to train an uncertainty-aware evidential semantic
segmentation network (Sensoy et al., 2018). At inference, as a post-
processing step, we exploit the predicted uncertainties to refine the
final semantic predictions.

In sum, we make three key claims: our approach (i) generates
more accurate semantic labels than previous unsupervised label
generation approaches on multiple crop species, growth stages,
and lighting conditions; (ii) we outperform previous unsupervised
semantic segmentation approaches by combining our spatially
consistent generated labels and uncertainty-aware semantic neural
networks; and (iii) improve performance of fully supervised models
on previously unseen crops, growth stages, or soil conditions after
fine-tuning using our automatically generated labels. These claims
are backed up by our experimental evaluation. We open-source our
code upon paper acceptance.

2 Related work

Our work uses heuristic-based computer vision techniques
for semantic segmentation of RGB images to automatically
generate weed-crop segmentation labels of agricultural fields
for training a semantic segmentation network. We train the
network in an uncertainty-aware fashion using evidential
deep learning (Sensoy et al., 2018) to post-process predictions at
inference time based on their uncertainty.

2.1 Heuristic-based semantic segmentation

Otsu (1979) proposed using gray-level histograms for binary
image segmentation based on an automatic threshold assuming a
bimodal distribution for fore- and background pixels. Pong et al.
(1984) propose the region-growing algorithm segmenting images
in multiple regions after providing initial seeds for each region.
Similarly, the Watershed algorithm (Najman and Schmitt, 1996)
requires user-defined markers to segment objects using a distance
function. To overcome the need for initial seeds, Canny (1986)
used edge detectors to distinguish regions. To incorporate statistical
image features for segmentation, Loyd (1982) adopted the K-
means algorithm. To allow automatic robotic intervention in the
fields, Riehle et al. (2020) and Gao et al. (2020) applied semantic
segmentation techniques to the agricultural domain. Lottes et al.
(2017) further advance these general-purpose approaches by
exploiting the field arrangement and deploying their method on
a ground field robot. Similarly, our approach also exploits the
field arrangement to automatically segment images. In contrast,
we additionally enhance spatial label consistency using robotic
semantic mapping. Further, we do not assign labels to image parts
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FIGURE 1
The overview of our pipeline to generate semantic labels for images of crop fields. We use a robotic platform equipped with an RGB camera to collect
posed images of the field. Each image gets processed by our automatic labeling method, generating a semantic segmentation of the image to fuse into
the semantic map. At each time step, we use the current semantic map to generate the image’s semantic label and update the map accordingly.

likely to include labeling errors. In this way, we reduce the number
of erroneous crop and weed instances, which is essential to achieve
high prediction performance and consistent uncertainty estimation
of the trained deep neural network.

2.2 Learning-based semantic segmentation

Recent approaches mainly use neural networks to extract latent
image features for semantic segmentation. Various convolutional
neural network architectures (Romera et al., 2018; He et al.,
2017), and more recently, Vision transformers (Strudel et al., 2021;
Cao et al., 2023) have been applied to semantic segmentation.
A large portion of these approaches have also been evaluated
or adapted to the agricultural domain. Cui et al. (2024) propose
an improvement to the U-net architecture by Ronneberger et al.
(2015) to segment corns and weeds while Zenkl et al. (2022) use
the DeepLabV3 architecture by Chen et al. (2017) to segment
wheat. These approaches usually require vast amounts of per-
pixel human-labeled training data, covering all the desired crop
species, growth stages, lighting conditions, and other deployment
conditions to ensure promising test-time performance.Hence,many
works have investigated how to reduce the labeling effort of deep
learning-based approaches. One popular method is pre-training the
network on different easy-to-label tasks, e.g., image classification
(Deng et al., 2009) or using self-supervision (Chen et al., 2020),
and fine-tuning the pre-trained network using few human-labeled
per-pixel annotations specific to the target application. Other works
propose to train networks on sparse labels instead of dense per-
pixel labels (Lee et al., 2022), so called weakly supervised semantic
segmentation. In the agricultural domain, Zhao et al. (2023)
reduce the need for per-pixel labels using scrawl annotations, i.e.,
manually drawn lines, to weakly supervise a semantic segmentation
model. Chen et al. (2024) remove per-pixel annotations completely,
only exploiting reference images to localize disease symptoms in
plants, using an innovative class activation mapping method. In
contrast to Chen et al. (2024), we propose a new unsupervised
approach to automatically generate per-pixel semantic segmentation

labels exploiting domain knowledge of the field arrangement. Our
semantic labels can be directly used for network training without
the need for human labels or for fine-tuning pre-trained networks
on unseen fields.

2.3 Uncertainty-aware deep learning

Classical neural networks are known to often provide
overconfident wrong point estimate predictions (Abdar et al., 2021).
Several works, including the one by Lakshminarayanan et al. (2017),
use ensembles of multiple independently initialized and trained
neural networks to quantify predictive uncertainty. Although
ensembles improve prediction performance and model calibration,
they induce high computational costs during training. Gal and
Ghahramani (2016) propose Monte Carlo dropout to approximate
predictive uncertainty with a single network trained with dropout.
At inference, multiple forward passes with independently sampled
dropout masks are performed to compute predictive uncertainty.
Although more compute-efficient at train time, Monte Carlo
dropout produces overconfident predictions compared to ensembles
(Beluch et al., 2018b). More recently, Sensoy et al. (2018)
proposed evidential deep learning for image classification to
predict uncertainty using a single forward pass. As evidential
deep learning performs on par with ensembles while drastically
reducing online compute requirements, we adapt the evidential
deep learning framework to our semantic segmentation task using
the predictive uncertainties for label post-processing, facilitating
deployment on compute-constrained robots. We use the network’s
uncertainty to correct its prediction about the weeds, which is the
most under-represented class and, thus, the most uncertain for
the model.

Our approach combines a heuristic-based method to
automatically generate partial but consistent per-pixel semantic
labels. In contrast to learning-based approaches, our approach does
not require human-labeled data and, at the same time, improves
label consistency and, thus, the network’s prediction performance
over previous heuristic-based approaches.
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3 Materials and methods

We propose a heuristic-based approach to automatically
semantically segment RGB images of agricultural fields collected
using unmanned ground vehicles (UGVs) or unmanned aerial
vehicles (UAVs) in three classes: soil, crop, and weed. Based on
the robot’s pose, we fuse each generated semantic image label
in an online-built global semantic field map. A key aspect of
our approach is that we enforce spatial label consistency based
on the global semantic field map. To reduce the possibility of
labeling errors, we only label the detected rows as crops and
the vegetation components that are far away from the rows as
weeds. In this way, we trade off label quality with quantity to
improve prediction performance after training our uncertainty-
aware semantic segmentation network (Sensoy et al., 2018) on labels
extracted from the global semantic field map. At inference time,
we post-process the network’s predictions using their associated
uncertainty to refine uncertain vegetation predictions.

3.1 Semantic field mapping

We perform semantic mapping to enforce spatial consistency
across automatically generated semantic labels. Furthermore, the
semantic map allows us to extract image-label pairs from the map
with different rotations, positions, and scales. We assume that our
robotic system is equipped with a downwards-facing RGB camera.
At each time step t, it collects an image It ∈ ℝH×W×3, where H and
W are the height and width of the image, respectively. Let pt =
(xt,yt,zt,ϕt)

⊤ be the robot pose, where we consider the 3D position
(xt,yt,zt) and the yaw angle ϕt ∈ (−π,π] with respect to the origin of
the mapping mission. Any path is defined by a sequence of poses
that we use to fuse our predicted labels in the global semantic field
map St:G→ℕK×Ĥ×Ŵ, whereG is a grid discretizing the environment
into Ĥ× Ŵ cells with K possible semantic classes. Each image It
along the path is segmented by our approach based on the previous
map St−1 and then fused into the semantic map to compute St
accumulating predictions. We use majority voting to assign the
most likely class. In practice, we follow a common lawnmower-like
coverage path to efficiently cover agricultural fields (Höffmann et al.,
2023), as shown in Figure 2.

3.2 Automatic labeling

At each time step t, our automatic labeling approach takes as
input the image It and the semantic field map St−1 to produce a
semantic label for image It.We use themap St−1 to estimate potential
weeds and crops in image It to enforce spatial consistency and reduce
labeling errors. Our automatic labeling procedure is exemplarily
visualized in Figure 3 and consists of the following steps: first, we
extract the vegetationmask and apply theHough transform to detect
the main crop row in the current image It. Second, we propagate
all previously detected lines Rt−1 to the current pose to segment
multiple crop rows. Third, we label the vegetation components with
a minimal distance to all rows as weeds.

FIGURE 2
Example of a typical UAV mission. The coverage path along which we
fuse semantic image labels is depicted in white, the square is the initial
pose, and the arrows indicate the direction of movement. The images
can overlap, but it is not required. This path maximizes the crop field
coverage and is typically used in aerial data collection missions.

3.2.1 Hough transform
We compute a binary vegetation mask It,vm ∈ {0,1}

H×W

using graph-based segmentation proposed by Felzenszwalb and
Huttenlocher (2004), where a pixel is 1 if it contains vegetation,
i.e., crop or weed, and 0 if it contains soil. We apply the Hough
transform introduced by Hough (1959) to the vegetation mask It,vm
to detect crop rows in image It.This gives us a set of supporting lines
in It. Each line i is parameterized by the distance rt,i from the image
origin to the closest point on the line, and the angle θt,i between
the image’s x-axis and the line connecting the origin to the closest
point on the line. The origin is the lower-left pixel of It. The best-
fitting line is the one that maximizes the overlap with the vegetation
mask It,vm. In Figure 4, we show an example of a fitted crop row line
(white). We discretize the Hough line radius search space using a
pixel resolution of lw = 5px to robustly fit lines in presence of noisy
vegetation masks. We define the minimum number of overlapping
pixels τpx =H to fit the line along the whole image height. We keep
only the best-fitting line of parameters (rt,θt) returned from the
Hough Transform and add it to the set of the crop rows detected in
the mapRt =Rt−1 ∪ (rt,θt) to use them in the following step. Based
on the best-fitting line parameters (rt,θt), we create a binary mask
It,line, which is 1 for all pixels on the line and 0 otherwise. We save
the line mask to facilitate the computation of the following steps.
The mask obtained from our example image is shown on top of the
vegetation mask in Figure 3. We transform the line parameters for
this time step t into the coordinate system of the mapping mission’s
origin p0.

3.2.2 Propagating predictions
We use our semantic map St−1 to retrieve the predicted lines

Rt−1 and propagate them into our current image It. This allows
us to predict multiple crop rows consistent with the rows detected
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FIGURE 3
Flowchart of our automatic labeling approach with an example image.
At time step t, we take as input the RGB image It recorded from pose
pt and the set of previously detected lines Rt−1, depicted in blue
boxes. First, we extract the vegetation mask It,vm using a
graph-segmentation approach (Felzenszwalb and Huttenlocher,
2004). Based on It,vm, we compute the connected components to
extract plant instances and compute the most prominent crop row via
the Hough transform. We propagate the set of previously detected
crop rows Rt into the current image It to track multiple crop rows.
The newly detected crop row in It is added to Rt. Then, we label all
connected components in It,vm that intersect one of the crop rows in
Rt as crops. Furthermore, we check the distance of all other
vegetation components to their closest crop row in Rt and assign
them to the weed class if their distance is above a certain threshold.
Vegetation components which are too close to detected crop rows
are assigned an “unknown” class that is ignored during network
training to minimise labeling errors and thus maximise prediction
performance.

in previously explored areas of the crop field. At the first time
step t = 0, the semantic map and R0 are both empty, thus we
skip this step. At each time step t ≥ 1, we compute the position
of the newly acquired image in the coordinate system of the
initial pose p0, given by the transformation matrix T0

t ∈ ℝ
3×3.

Then, we check which lines in Rt−1 intersect It and should be
propagated into its semantic prediction.

FIGURE 4
Given the vegetation mask, we visualize the line detected by the
Hough transform (in white). Considering the origin as the bottom left
corner, we show the parameters ri and θi defining the detected lines.
The vegetation components intersecting the line are thus labeled as
crop (green). We can see a weed (red) on the left of the image, since
the vegetation component is far away from the detected line.

For each line i inRt−1, we compute the parameters rt,i and θt,i in
the coordinate system of p0 as.

rt,i =
||||

|

||||

|

(T0
t )
−1[[[[

[

rt−1,i cos(θt−1,i)

rt−1,i sin(θt−1,i)

0

]]]]

]

||||

|

||||

|

2,

θt,i = θt−1,i −ϕt,

Where rt−1,i cos (θt−1,i) and rt−1,i sin (θt−1,i) represent the (x,y)
coordinates of the closest pixel to the origin for line i, assuming
flat terrain. We include these lines in It,line, i.e., we set the pixels
covered by these lines to 1. To reduce the computation time,we reject
lines that are too close to those already present in the mask It,line.
In particular, we reject line i if its distance to any other line in Rt
is smaller than 2lw. In Figure 3, we showcase line propagation from
a previous image, enabling us to detect a second crop row on the
image’s right side.

As we propagate our line predictions from previously recorded
images into the current image, we use an eroded version of the
vegetation mask It,vm to extract single vegetation components. We
use a square kernel of size 3 for the erosion to remove noise from It,vm
and reduce the mislabeling of weeds touching the crops in the crop
row. Then, all vegetation components intersecting lines in It,line are
assigned to the crop class, yielding a new binarymaskMt ∈ {0,1}H×W

where a pixel is 1 if it is labeled as crop, and 0 otherwise. We show
the result in Figure 3, where soil is depicted in black and crop is
depicted in green. Next, we describe which remaining vegetation
components are assigned the weed class.

3.2.3 Weed labeling
Naively classifying any vegetation component in It,vm not

yet labeled as crop in Mt usually results in poor weed label
quality. Although these remaining vegetation components might be
crop, the row detection could have failed because of low sensor
resolution, wrong odometry or pose information, or bad lighting
conditions (Lottes et al., 2016), such that these crop instances are not
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included inMt. To avoid labeling these potential crops as weeds, we
donot label the vegetation components, which are likely to introduce
labeling errors and ignore them during network training. To this
end, we compute the distance from each of the N crop pixels of Mt
with value 1 to their respective closest line as follows

d (x,y) = arg min(rt,i,θt,i)∈Rt
|x cos(θt,i) + y sin(θt,i) − rt,i|.

We aim to estimate crop sizes along the detected rows using
these distances d(x,y). Hence, we use an indicator function 𝟙(x,y)
that returns 1 if the pixel (x,y) is 𝟙 in Mt and zero otherwise
to extract the mean μd =

∑(x,y)𝟙(x,y) d(x,y)
N

and standard deviation

σd = √
∑(x,y)𝟙(x,y) (d(x,y)−μd)2

N
. We define the minimum distance dmin

required for any unlabeled vegetation instance to be labeled
as a weed as

dmin = μd + δ σd,

where δ = 3 in our setting, such that only vegetation instances with
a large distance from all rows are considered weeds. All vegetation
components that were not labeled as crops andwhose distance to the
lines is smaller than dmin are left unlabeled. Note that large values of
δ reduce the number of components labeled as weeds, while small
values of δ are prone to weed labeling errors. The key idea behind
this step is that μd and σd represent the area around the detected
crop row where we assume there may be other crops that were not
touched by the line and that we leave unlabeled. Outside of this area,
we are fairly confident that the vegetation component is a weed as
it is far from the detected crop row with plants of estimated size
μd. The resulting label for the example image is shown in Figure 3,
where components close to the crop row on the right are not
labeled while the component on the upper-left corner is labeled
as a weed.

3.3 Learning with uncertainty

Once we finish ourmappingmission as described in Section 3.2,
we can extract any number of image-label pairs with any size,
rotation, and aspect ratio. We use the extracted labels to train
a semantic segmentation network. We follow the evidential deep
learning framework by Sensoy et al. (2018) to predict semantic
segmentation and the network’s prediction uncertainty at the same
time. Estimating the prediction uncertainty allows us to account for
the “unknown” class by refining the network’s semantic predictions
in a post-processing step described in Section 3.4.

The key idea behind evidential deep learning is to predict
a Dirichlet distribution over all possible class probabilities
instead of a single point estimate as in deterministic deep neural
networks. In this way, the evidential network minimizes the
prediction error while maximizing the prediction uncertainty for
ambiguous image parts. We use evidential deep learning instead
of Bayesian deep learning approaches (Gal and Ghahramani,
2016; Beluch et al., 2018a) as it is empirically shown to produce
similarly or better-calibrated prediction uncertainties (Sensoy et al.,
2018) while being computationally more efficient during training
than ensemble methods and during inference than Monte
Carlo dropout.

We train the network to minimize the Bayes risk cross-entropy
for a pixel (x,y) of image I,

LCE,(x,y) =
K−1

∑
k=1

y(x,y),k (ψ(Q(x,y)) −ψ(α(x,y),k)) ,

where ψ is the digamma function, y(x,y),k = 1 if the pixel (x,y)
of I belongs to ground truth class k, Q(x,y) = ∑Kk=1α(x,y),k, and
α(x,y),k is the evidence predicted by the network in support of
class k. We do not compute this loss for the pixels assigned to
the “unknown” class, so we sum only over the remaining K− 1
classes, i.e., soil, crop, and weed. We additionally minimize the
Kullback-Leibler (KL) divergence between the uniform D(1K−1)
and predicted Dirichlet distribution D(α̃(x,y)) for all non-ground-
truth classes (Sensoy et al., 2018),

L(x,y) = LCE,(x,y) + λepochKL[D(α̃(x,y))‖D (1K−1)] , (1)

α̃(x,y),k = y(x,y),k + (1− y(x,y),k)α(x,y),k,

for all K− 1 classes, and λepoch = min (1.0, epoch
T
) with epoch being

the current training epoch and T the maximum annealing epoch.
We minimize the overall training loss

L = 1
HW

H

∑
x=1

W

∑
y=1

L(x,y),

which is the average over all image pixels, iterating over all training
images. At inference time, the network predicts the semantic class
and an uncertainty for each pixel, that we use for our label
refinement.

3.4 Uncertainty-based label refinement

We use the network’s predicted Dirichlet distribution D(α(x,y))
over all K− 1 classes to quantify the prediction uncertainty for post-
processing and refining the predicted semantic labels.The network’s
prediction uncertainty (Sensoy et al., 2018) for a pixel (x,y) of image
I is given by

ut,(x,y) =
K− 1
∑K−1

k=1
α(x,y),k
,

where K− 1 is the number of classes without the “unknown” class.
In our crop-weed segmentation case, the most under-represented
class is weed. Thus, the network will be more uncertain about areas
representing weeds than the other classes. We define an adaptive
threshold to select the most uncertain pixels (x,y) in any image I as

τ =
max(u(x,y)) −min(u(x,y))

2
+min(u(x,y)) .

We compute a binary mask Ut ∈ {0,1}H×W where a pixel (x,y)
is 1, if u(x,y) > τ, and 0 otherwise. We compute the connected
components of our semantic prediction, aiming to use the ratio
between the size of the object and its number of uncertain pixels
to refine the component’s label. Most of the vegetation components
have high uncertainty at their instance boundaries. Instead, we
are interested in those components for which also large amounts
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FIGURE 5
For the RGB input image on the left, we show the semantic ground truth labels, where crops are represented in green, weeds in red, and the soil in
black. Then, we show our network’s prediction and we highlights some mistakes using white dotted circles, where weeds are mislabeled as crops. The
fourth image shows our network’s uncertainty. As expected, the network is mostly uncertain about the boundaries of the plants and about the weeds,
we see that even the weeds labeled as crops in our prediction have high uncertainty. The last image shows our post-processed prediction, after we
label as weeds the highly uncertain vegetation components. We can see that this corrects many of the network’s errors.

of interior pixels are uncertain. We iterate over all c ∈ {1,…,C}
crop components in our network’s prediction and compute for
each one a binary mask Cc ∈ {0,1}H×W, which is 1 for all pixels
belonging to the component. We also compute their bounding
box bc = (bxc ,b

y
c ,b

height
c ,bwidthc ), where bxc and byc are the coordinates

of the upper left corner of the bounding box, while bheightc and
bwidthc are the height and width of the bounding box. We define an
adaptive threshold

τc =
1
4
min(

bwidthc

bheightc

,
bheightc

bwidthc
).

This threshold helps us avoid detecting as weeds a lot of small
spikes of uncertainty that could arise because of shadows, reflections,
or insects. In this way, we only act upon vegetation components
where there is a large uncertain area. If the network is uncertain
about the prediction of crop component c, it holds that

∑
(x,y)

U(x,y)Cc,(x,y)

bwidthc   b
height
c

> τc. (2)

If crop component c fullfills Equation 2, we assign the component’s
uncertain pixels (x,y) with U(x,y) = 1 to the weed class. We do
not re-assign the whole vegetation component as a weed because
our network does not provide instances. Hence, there may be
components that contain both weeds and crops. These components
likely have higher uncertainty since they are labeled as “unknown”
and thus being ignored during training. We show in Figure 5 the
result of our post-processing operation for an example image,
highlighting the correspondence between the network’s wrong
predictions, the estimated uncertainty and the post-processed
semantic prediction.

4 Results

Themain focus of this work is an automatic labeling pipeline for
semantic soil-weed-crop segmentation of RGB images.The results of
our experiments support our key claims: our approach (i) generates
more accurate semantic labels than previous unsupervised label

generation approaches on multiple datasets; (ii) we outperform
previous unsupervised semantic segmentation approaches by
combing our spatially consistent generated labels and uncertainty-
aware semantic neural networks; and (iii) we improve the
performance of fully supervisedmodels on previously unseen crops,
growth stages, and soil conditions after fine-tuning the network
using our automatically generated labels.

4.1 Experimental setup

4.1.1 Datasets
We use four datasets, three of which are publicly available:

PhenoBench (Weyler et al., 2024), as well as the Carrots and Onions
from Lincoln University (Bosilj et al., 2020), and a Sugar Beets
dataset introduced by Weyler et al. (2022b). The Carrots dataset
was recorded in Lincolnshire, United Kingdom, in June. The field is
under substantial weed pressure and contains weeds with a similar
appearance to the crop. Furthermore, several regions of vegetation
contain crops and weeds in close proximity. The Onions dataset
was also recorded in Lincolnshire, United Kingdom, but in April.
The weed pressure is lower compared to the Carrots dataset. The
PhenoBench dataset was recorded in Meckenheim, Germany, on
different dates between May and June to capture different growth
stages. The field contains two varieties of sugar beets and six
different weed varieties. The weed pressure varies as the dataset
contains images from fields that were fully, partially, or not treated
at all with herbicides. The Sugar Beets dataset was also recorded
in Meckenheim, Germany, over five different weekly sessions. The
field is arranged with small spacing between plants and shows high
weed pressure, inducing challenging conditions. We refer to Table 1
for information about the camera, image resolution, and ground
sampling distance of the datasets.

4.1.2 Training details and hyperparameters
We use ERFNet (Romera et al., 2018) as our network trained

using the Adam (Kingma and Ba, 2015) optimizer, a learning rate
of 0.01, and a batch size of 32. We set T = 25 in Equation 1 to
linearly increase λepoch over the first 25 epochs. We report all the
hyperparameters of our method with their values in Table 2. To
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TABLE 1 Details for the datasets used in the paper: name, reference paper, camera sensor, image resolution and GSD.

Dataset Reference Camera Image resolution [px] GSD [mm
px
]

PhenoBench Weyler et al. (2024) PhaseOne iXM-100 with a 80 mm RSM prime lens on a gimbal (UAV) 11 664× 8 750 1

Carrots Bosilj et al. (2020) Teledyne DALSA Genie Nano deployed on a manually pulled cart (UGV) 2 428× 1 985 0.4

Onions Bosilj et al. (2020) Teledyne DALSA Genie Nano deployed on a manually pulled cart (UGV) 2 149× 1 986 0.4

Sugar Beets Weyler et al. (2022b) PhaseOne iXM-100 (UAV) 4 320× 4 100 1.5

TABLE 2 List of the hyperparameters of our method, where they are used, and their chosen values.

Hyperparameter Method Value

Minimum number of pixels for detection (τpx) Hough line detection H (i.e., image height)

Width of the line to fit (lw) Hough line detection 5 px

Confidence interval for crop rows (δ) Weed labeling 3

Maximum number of annealing epochs (T) Evidential deep learning 25

evaluate the quality of the labels, we generate labels for the validation
sets of PhenoBench and Sugar Beets, as well as for the whole Carrots
andOnions dataset. Second, we automatically generate labels for the
images in their training sets to train our network and evaluate the
results on the manually annotated validation sets. We do not split
Carrots and Onions to train on them since they consist of only 20
images each. Thus, we do not use them for model training. Instead,
we evaluate our label generation and the generalization capabilities
of fine-tuned models on these datasets.

4.1.3 Metrics
We use the intersection over union (IoU) (Everingham et al.,

2010) as a metric for all of our experiments. For the automatic
labeling pipeline, we also report the boundary IoU (Cheng et al.,
2021) to have a better understanding of the approaches’ limitations.
The reported mean IoU (mIoU) values are the macro-averages over
all classes.

4.1.4 Baselines
We use three baselines: two are general-purpose unsupervised

semantic segmentation networks not specifically developed for the
agricultural domain, while one is an automatic labeling method
specifically developed for the agricultural domain.The first baseline
is STEGO by Hamilton et al. (2022), which provides an official
implementation for the evaluation alongside their models. We use
the model trained on MS COCO (Lin et al., 2014) with the vision
transformer architecture (Dosovitskiy et al., 2021). STEGO predicts
different per-pixel features and then clusters them using self and
cross attention mechanisms (Vaswani et al., 2017). Our second
baseline is U2Seg byNiu et al. (2024), which builds on top of STEGO
and uses instance information to overcome some of the limitations
of the previous work; they also open-source their code and provide
their models. U2Seg proposes a universal segmentation, coupling
instances and semantic classes at training time, to predict clusters

at inference time for which they recover class and instance labels.
We use the model trained on Imagenet (Deng et al., 2009) and MS
COCO with 800 clusters. Lottes et al. (2016) propose a domain-
specific method for generating per-pixel crop and weed labels. They
use a vegetation mask to detect the main crop row and then label
all other vegetation components as weeds. We use their official
implementation, removing the NIR image channels. We evaluate
their automatically generated labels (base) and the performance of
ERFNet trained on their labels (learned).We train the same network
with the same training hyperparameters on their and our generated
label to ensure a fair comparison. We report the results of ERFNet
trained on the manually annotated training set of PhenoBench and
evaluated on the validation set as an upper performance bound.

4.2 Automatic labeling

In the first experiment, we show that our automatic labeling
pipeline generates more accurate semantic soil-weed-crop labels
than other methods on multiple datasets. We compare against two
general-purpose unsupervised semantic segmentationnetworks and
the domain-specific approach by Lottes et al. (2016).

We show the results on all four datasets in Table 3. The
general-purpose approaches perform worse than the domain-
specific methods across all datasets, except for U2Seg on the Onions
dataset. As Onions have thin leaves, they are hard to detect with
common color histogram thresholding methods, such as the one
by Lottes et al. (2016). Furthermore, the weeds in this dataset are
the same size as the crops, leading to bias in crop row detection
and introducing a higher risk of confusing weeds and crops. Our
approach for label generation, referred to as Ours (base), shows
higher crop label quality than Lottes (base) while performing
on par or better in terms of weed label quality. Particularly,
Lottes (base) confuses substantially more weeds with crops, while
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TABLE 3 Performance of all the baselines on the PhenoBench dataset, Carrots dataset, Onion dataset, and Sugar Beets dataset.

Dataset Approach IoU [%] mIoU Boundary IoU [%]

Soil Crop Weed Soil Crop Weed

PhenoBench

STEGO 21.4 11.9 0.4 11.2 0.0 1.5 0.0

U2Seg 84.6 40.0 2.4 42.3 45.8 11.7 3.4

Lottes (base) 99.6 44.1 7.6 50.5 0.0 0.0 0.9

Ours (base) 98.8 80.7 7.2 62.2 86.3 79.1 13.2

Carrots

STEGO 28.4 5.1 15.8 16.4 0.0 0.9 0.0

U2Seg 80.1 20.4 2.3 34.3 36.2 0.0 19.3

Lottes (base) 89.1 15.9 34.0 46.3 0.0 0.0 6.8

Ours (base) 90.4 12.6 42.7 48.6 84.4 23.6 9.4

Onion

STEGO 26.5 5.1 3.0 11.5 0.0 2.4 0.0

U2Seg 92.8 0.0 4.3 32.4 24.2 0.0 8.2

Lottes (base) 89.7 1.4 1.1 30.7 0.0 0.0 1.6

Ours (base) 95.4 10.7 16.6 40.9 74.2 10.7 16.7

Sugar Beets

STEGO 24.9 4.7 1.3 10.3 0.0 1.9 0.0

U2Seg 77.9 9.9 6.7 31.5 1.8 2.8 0.0

Lottes (base) 98.0 23.6 18.8 46.8 0.0 0.0 1.5

Ours (base) 97.7 50.6 24.7 57.7 88.7 0.0 1.8

The top rows are the general purpose approaches, while the bottom rows are the domain-specific ones. We report the mean IoU, plus the IoU and boundary IoU per class. In bold the best
results per column.

our approach, by design, does not assign labels to hard-to-label
vegetation components, as described in Section 3.2. The Carrots
dataset is the only one where U2Seg outperforms the domain-
specific approaches, which suffer from the weed pressure when
estimating the crop rows. Our method consistently outperforms all
other baselines across all datasets with different crop species, weed
pressure, growth stages and lighting conditions. Most approaches
fail on the Onions dataset due to brighter illumination and thin
crops. In contrast, our approach improves by approx. 9% mIoU
over the second-best baseline, U2Seg, importantly showing highest
improvements in both vegetation classes.

The boundary IoU confirms the result of the standard IoU
metric. As shown in Table 3, the approach by Lottes et al. (2016)
poorly segments boundaries on most of the datasets. This might
be due to wrongly segmented vegetation masks. Aiming to include
the boundary of weeds more accurately may worsen the overall
performance since soil could be wrongly considered as vegetation.
We hypothesise that our approach might suffer from the same
problem on the Carrots dataset. The difference between IoU and
boundary IoU per class suggests that we underestimate the size
of weeds, i.e., high IoU but low boundary IoU for weeds, and
overestimate crop size, i.e., low IoU but high boundary IoU for

crops. On the Carrots dataset U2Seg outperforms the othermethods
on the weeds boundary IoU. The weed IoU suggests that U2Seg
overestimates weeds, thus obtaining a boost as the total number of
pixels in the IoU computation is low. On the Onions dataset, our
method’s IoU and boundary IoU are almost the same irrespective
of the semantic class since the crops and weeds are thin. Thus,
the boundary area covers the whole vegetation instance. The other
approaches fail to correctly assign weed and crop boundaries on
the Onion dataset, which follows from the low weed and crop
IoU. On the Sugar Beets dataset, all approaches fail to predict
boundaries, most likely due to unusually high weed pressure. Our
method accurately segments soil boundaries, suggesting that it at
least successfully differentiates between soil and vegetation. Overall,
the results suggest that most approaches underestimate the size of
vegetation, both crops and weeds. Instead, our automatic labeling
method shows the strongest boundary segmentation performance
across all methods and classes on most datasets, often by a large
margin compared to the second-best method. This further verifies
our claim that our automatic labeling pipeline generates more
accurate semantic soil-weed-crop labels than previous methods.
We show qualitative results of Lottes et al. (2016) and our
approach in Figure 6.
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FIGURE 6
Qualitative results of our and Lottes et al. methods on PhenoBench (top row) and Onions (bottom row). Soil is black, crops are green, weeds are red,
vegetation that we leave unlabeled is white. In the dashed blue circles, we highlight segmentation errors.

4.3 Unsupervised semantic segmentation

The second experiment evaluates the performance of our
automatic label generation combined with network training and
uncertainty post-processing on the PhenoBench dataset. We
show that training the evidential ERFNet using our automatically
generated labels outperforms other unsupervised semantic
segmentation models. The general-purpose learning-based
approaches have not been fine-tuned on human-labeled field images
to ensure a fair comparison. Our approach and Lottes et al. (2016)
generate labels on the PhenoBench training set. We use the public
training set of images to have a fair comparison with the fully
suprvised ERFNet model, trained on the manual labels. Trained
models are evaluated on the official PhenoBench validation set.

Table 4 summarizes the results. We use (learned) to refer to
the results obtained by ERFNet after being trained on the labels
generated by the approach, and we use (+uncertainty) to refer to the
previous results once we post-process them using the uncertainty
estimated by the model. The approach by Lottes et al. (2016)
confusesmore cropswithweeds since it naively assigns all vegetation
components that are not on the main crop row to the weed
class. Hence, Lottes et al. (2016) introduce inconsistent labels in the
model’s training data. Thus, training the ERFNet on Lottes’ labels
does not yield uncertainty estimations that are useful for improving
the predictions during post-processing. Additionally, this leads to
smaller performance improvements after training on their labels
than after training on our labels. Using our generated labels to train
the ERFNet substantially improves the weed and crop predictions
over directly using our generated labels. We further improve mIoU
and weed predictions by exploiting the estimated uncertainties in
Ours (uncertainty) for post-processing. Most importantly, Ours
(uncertainty) noticeably closes the performance gap between fully
supervised and state-of-the-art unsupervised approaches. However,
the ERFNet trained on human-labeled training images still predicts
weeds more accurately. As the fully supervised model predicts

TABLE 4 Performance of ERFNet trained on the labels generated by ours
and the approach by Lottes et al.

Approach IoU [%] mIoU

Soil Crop Weed

Lottes et al. (learned) 99.1 54.6 11.2 55.0

Lottes et al. (+uncertainty) 99.1 27.2 8.1 44.8

Ours (learned) 99.1 88.8 21.0 69.6

Ours (+uncertainty) 99.1 88.6 22.7 70.1

Ours (PhenoBench test) 99.5 87.9 24.6 70.7

ERFNet (fully supervised) 98.0 83.4 33.5 71.6

We also report the results when we use the uncertainty to post process the semantic
predictions. The bottom line shows a fully supervised approach trained on manual labels as
upper bound of the performance. Best results per column in bold.

more weeds, it also confuses weeds with crops more often. Hence,
our approach performs better on both the crop and soil classes.
This experiment confirms that our method’s conservative approach
to labeling, ignoring vegetation components likely to introduce
labeling errors combined with evidential deep learning, is a viable
solution to largely reduce the need for manually annotated images.

4.4 Generalization capability

In the third experiment, we show that our approach enhances
the performance of networks trained in a fully supervised fashion
by fine-tuning on unseen fields using our automatically generated
labels. We do not use our evidential network but train an ERFNet
using the standard cross-entropy loss to seamlessly fine-tune
existing networks pre-trained in a fully supervised fashion.We train
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TABLE 5 Performance of fully supervised models trained on manually annotated data, and in brackets the difference with respect to the model after
fine-tuning.

Train Test IoU [%] mIoU

Soil Crop Weed

PhenoBench (+ Sugar Beets)

PhenoBench 98.0 (−0.4) 83.4 (−11.0) 33.5 (−11.7) 71.6 (−7.7)

Sugar Beets 93.5 (+0.2) 7.3 (+44.4) 16.8 (+8.2) 39.2 (+17.6)

Carrots 89.0 (−2.5) 11.1 (+14.9) 47.1 (−11.7) 49.1 (+0.2)

Onions 82.4 (+5.3) 0.5 (+5.0) 11.3 (−4.4) 31.4 (+2.0)

Sugar Beets (+PhenoBench)

PhenoBench 97.6 (−0.1) 67.0 (+9.8) 11.7 (+4.7) 60.2 (+3.4)

Sugar Beets 98.3 (−4.2) 72.4 (−10.9) 59.2 (−20.5) 76.6 (−11.8)

Carrots 87.6 (+1.0) 36.1 (+2.1) 24.3 (+10.0) 49.0 (+4.7)

Onions 86.3 (+1.0) 0.2 (+12.1) 13.2 (+0.7) 33.2 (+4.6)

In red if the fine-tuned model performs worse, in blue if it performs better. The gray cells show the performance on the same dataset.

two ERFNets, one on each of the human-labeled training sets of
PhenoBench and Sugar Beets. We deploy the two models on all four
datasets without fine-tuning. Then, we fine-tune the two models
leveraging our automatically generated labels for the Sugar Beets and
PhenoBench datasets. Each model is fine-tuned on the dataset that
it was not trained on.

In Table 5, we show the performance of the two models.
In brackets, we provide the performance difference after fine-
tuning, where blue and red indicate performance improvements
or degradations, respectively. The gray rows show the models’
performances on the dataset they were trained on. Due to the
domain gap between datasets, the models that were not fine-
tuned have a lower performance when evaluated on unseen
data. Fine-tuning the models makes the performance over the
original training data worse as they aim to learn features that
are common to both datasets. Our results suggest that using our
automatically generated labels helps to close the performance gap on
previously unseen datasets with different crops, soil types, lighting
conditions, and sensor setups. Generally, our fine-tuned models
perform better on all classes and datasets, even on the Onions
and Carrots datasets, the model was not pre-trained nor fine-
tuned on. Only the model that is fine-tuned on the Sugar Beets
dataset does not improve performance on the Carrots dataset.
We hypothesize this is because the PhenoBench dataset is approx.
10× larger than Sugar Beets introducing data imbalance while
automatically generated Sugar Beets labels are of lower quality than
labels generated on PhenoBench. In sum, using our automatically
generated labels helps to fine-tune fully supervisedmodels, enabling
better adaptation to unseen field conditions without any additional
human labeling costs.

5 Discussion

A robust perception system is crucial for the successful
deployment of robotic platforms in arable fields. Most perception
systems rely on data-driven machine learning approaches to train

vision models that automatically interpret the data collected with
onboard sensors, such as RGB cameras. Thus, reliable and accurate
learning-based perception systems are crucial to providing valuable
information to farmers or autonomous robots. Most learning-based
semantic segmentation approaches assume access to large amounts
of human-labeled data required to train the vision model. However,
their performance rapidly decreases in field conditions theywere not
trained on, i.e., different crop species, growth stages, weed pressure,
and lighting conditions.

To address this issue, we proposed an automatic labeling
approach to obtain semantic information from RGB images of
agricultural fields. Our method shows semantic segmentation
performance close to the performance of a model trained on large
amounts of human-labeled data in a fully supervised fashion. This
significantly reduces the need formanually annotated data, reducing
costs and relaxing the need for domain experts. The arable field
dataset works considered in our experimental evaluation report an
average of 2 h per image for labeling the Onions dataset, 3–4 h
per image for the Carrots dataset, and 1–3.5 h per image for the
PhenoBench dataset. All of the datasets went through at least two
labeling rounds, doubling the costs.This highlights the need for new
labeling paradigms beyond fully supervised model training while
maintaining strong prediction performance. Ourmethod is a crucial
step towards closing the performance gap between models trained
in an unsupervised fashion and fully supervised models without
adding additional labeling costs.

In our experiments, we show that the fully supervised approach
has a lower performance in segmenting crops compared to our
unsupervised method, as it is trained on more weed instances.
Nevertheless, the fully supervised method still shows the highest
mIoU. The unsupervised methods are not exposed to enough weed
labels, making them assign the crop class more often. Since the
number of crop pixels is generally higher, these errors have a
smaller impact on the crop than on the weed segmentation. We
also investigate how to use our automatic labeling in combination
with supervised methods to improve the overall performance in
challenging scenarios, i.e., in unseen fields with new crop species
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and different weed pressure. Fine-tuning comes at the cost of
performing worse on the pre-training dataset, as shown in Table 5.
The degradation largely depends on the size and similarity of the
pre-training and automatically labeled dataset used for fine-tuning.
Future work could investigate continuous learning methods to train
on the newly automatically labeled images without catastrophically
forgetting what has already been learned.

The need for posed images can be a limitation of our method
as it cannot be applied to a dataset of unposed images. However,
most of the agricultural datasets are recorded using aerial or
ground vehicles that, by default, provide spatial information while
recording images in the field, often usingGNSS systems such asGPS.
Furthermore, we assume deployment in a managed agricultural
field. If this assumption does not hold and the weeds are larger
than the crops, our crop row detection fails and leads to degraded
results. Our results, as well as those by Lottes et al. (2016), show
that we could make use of a better vegetation mask to improve
unsupervised methods. One possible solution would be to use
NIR images, which are less dependent on the lighting conditions
compared to RGB images. NIR images are already commonly
used for crop segmentation in agriculture (Sahin et al., 2023;
Colorado et al., 2020).Moreover, our approach leverages uncertainty
estimates to post-process semantic predictions. Current state-of-
the-art methods are known to produce partially miscalibrated
uncertainty estimates (Beluch et al., 2018a). Thus, our post-
processing could benefit from improvements in uncertainty-aware
deep learning. Finally, we plan to deploy our approach on a real robot
to perform field trials.

6 Conclusion

In this paper, we presented a novel approach to automatically
generate semantic soil-crop-weed labels of images from agricultural
fields. We evaluated our approach on four datasets recorded
with different robotic platforms and in various fields. Our
approach outperforms previous domain-agnostic and domain-
specific unsupervised labeling approaches. Furthermore, we showed
that our generated labels allow fine-tuning networks trained in a
fully supervised fashion on one dataset to other agricultural fields,
e.g., different species, growth stages, and field conditions. In this way,
our approach increases the semantic segmentation generalization
capabilities of existing networks for soil-weed-crop segmentation
without additional human labeling effort.
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