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This paper presents a mini-review of the current state of research in mobile
manipulators with variable levels of autonomy, emphasizing their associated
challenges and application environments. The need for mobile manipulators in
different environments, especially hazardous ones such as decommissioning
and search and rescue, is evident due to the unique challenges and risks
each presents. Many systems deployed in these environments are not fully
autonomous, requiring human-robot teaming to ensure safe and reliable
operations under uncertainties. Through this analysis, we identify gaps and
challenges in the literature on Variable Autonomy, including cognitive workload
and communication delays, and propose future directions, including whole-
body Variable Autonomy formobilemanipulators, virtual reality frameworks, and
large language models to reduce operators’ complexity and cognitive load in
some challenging and uncertain scenarios.
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1 Introduction

Robots are deployed in different environments to aid and complement humans
in tasks, including manufacturing (Rajendran et al., 2021), healthcare (Lin et al.,
2020), and agriculture (Chen et al., 2022), where the benefits of automation are
observable. Robots have also been used in more challenging scenarios. For example,
mobile robots and mobile manipulators deployed in disaster zones (Chen and
Cho, 2019) or in other extreme environments such as nuclear disaster response or
decommissioning (Nagatani et al., 2013; Chiou et al., 2022; Cragg and Hu, 2003)
excel because of their mobility and manipulation capabilities. However, despite their
potential, uncertainties prevent these systems from being fully autonomous. Human
intervention remains essential due to a lack of trust and the limitations of current
autonomous systems.

The deployment of autonomous robots across environments shows that no single
solution fits all needs. Autonomous systems are limited by their prior knowledge
and adaptive capabilities, with training being difficult and time-consuming. Learning
from demonstration approaches (Moridian et al., 2018) are often confined to
their training environments and require human intervention for decisions beyond
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their training. Improvements in path planning for mobile
bases and manipulators (Rajendran et al., 2021; Hargas et al.,
2015; Chen et al., 2022) also face limitations needing
human intelligence. Manual operation requires significant
training and concentration, with cognitive demands varying
between operators. These cognitive challenges make manual
systems more error-prone than semi-autonomous or
fully autonomous systems (Rastegarpanah et al., 2024;
Chiou et al., 2015).

Robots deployed in complex environments increase operator
demands for alertness (Chiou, 2017), adaptability to new
information (Rastegarpanah et al., 2024), and concentration due
to unexpected delays and drops in connection (Cragg and Hu,
2003). These burdens can cause physical fatigue and monotony.
Some challenges can be alleviated by balancing teleoperation and
autonomy, as proposed by field exercises (Chiou et al., 2022),
and reinforced by our anecdotal interactions with operators in
Japan preparing for a teleoperated deployment at Fukushima
Daiichi Nuclear Power Plant. The operators noted that these
three factors are needed due to environmental uncertainties and
issues with repetitiveness and communication delays. Automating
simple, repetitive processes can address some issues, while other
conditions require manual control. Given the challenges for
fully autonomous and manual systems, developing systems that
can switch between human control and autonomy is logical.
Mobile bases give the freedom to explore environments, while
manipulators enable interaction with objects within them,
making mobile manipulators a system worth studying within
this context.

Previous reviews on Variable Autonomy (VA) have focused
on cognitive aspects, methodologies, and applications but not
specifically on mobile manipulators. For instance, Tabrez et al.
(2020) examined mental models and their traits like fluency,
adaptability, and effective communication. Villani et al. (2018)
discuss cognitive and physical aspects of programming collaborative
and shared control robots in industrial settings, emphasizing safe
interaction and intuitive interfaces. Bengtson et al. (2020) focused
on computer vision for semi-autonomous control of assistive robots,
while Moniruzzaman et al. (2022) focus on the teleoperation of
mobile robots. On the other hand, reviews on mobile manipulators
have focused on motion planning (Sandakalum and Ang, 2022) and
the decision-making process of planning algorithms (Thakar et al.,
2023) with limited coverage of human-robot interaction, and
Variable Autonomy.

Our previous work has addressed varying levels of autonomy
in disaster and rescue scenarios, focusing on cognitive and robotic
challenges within this scope, limited to mobile robots (Chiou, 2017;
Chiou et al., 2021; Panagopoulos et al., 2022; Ramesh et al., 2023).
However, there is a need to expand this understanding to other
environments where human-robot teams are deployed and mobile
manipulators are used. Mobile manipulators can function as single-
entity systems, where locomotion and manipulation are coupled, or
as dual-entity systems, treating the base and manipulator separately.
With this mini-review, we aim to 1) present the current state of
research, 2) identify some challenges, insights, and gaps from the
current literature, and 3) propose future research directions with
a focus on mobile manipulators, their control within human-robot
teams, and Variable Autonomy.

1.1 Methodology

For the review, we performed a Google Scholar search,
with the specifics of our search criteria found in Table 1. We
define mobile manipulators as robots with locomotion decoupled
from manipulation, moving primarily on the ground. This
definition includes humanoid robots, quadruped robots, wheeled
manipulators, and robots on tracks. For the manipulation system,
we consider any robot capable of performing tasks typically done by
a hand, such as throwing, pushing, grasping, cutting, etc.The system
does not necessarily need to perform any manipulation or mobile
base task, but must be physically capable to do so.

This definition excludes robots with integrated or inseparable
locomotion and manipulation systems, such as snake, octopus-
inspired, and soft robots. It also excludes aerial and underwater
robots and stationary robotic arms without a mobile base.

Based on the number of search results, most research is centred
around shared autonomy rather thanmixed initiative or other forms
of Variable Autonomy. After applying the exclusion and contextual
criteria, 38 papers were included in the review.

2 Literature review

Variable Autonomy systems enable flexible control by humans
and machines across different levels of operation. Although
various definitions exist for Variable Autonomy in the literature
(Reinmund et al., 2024; Methnani et al., 2024), we classify these
systems into two primary categories.The first is autonomy-changing
systems, where autonomy levels can be modified during task
execution: Full VA or Mixed-Initiative systems allow humans and
machines to adjust these levels. Only humans can make autonomy
changes in human-initiative (HI) or adjustable autonomy systems,
whereas AI-initiative (AI-I) or sliding autonomy systems permit
machines to do them. The second category is autonomy-sharing
systems, often called Shared Control systems. In these systems,
humans and robots work together on tasks. Shared Control can
be either supervisory, where humans provide high-level directives,
or assistive, where humans directly control the robot with system
support, such as visual feedback or trajectory guidance.

2.1 Environments

The first focus of this paper was on robotic deployment
environments, analyzing works detailing their application
methodologies.This condition identified seven primary environments:
hazardous materials and environments handling, disaster response,
industrial manufacturing, Research and Development (R&D) in
laboratories, healthcare and medical applications, agriculture or
farming,anddomestic/householdenvironments.Table 2 lists thepapers
by environment and briefly describes their applications.

2.2 Tasks that variable autonomy tackles

After categorizing the papers by environment, the next step is to
categorize them by the tasks to which Variable Autonomy is applied.
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TABLE 1 Search and Exclusion Criteria for the mini-review on Mobile Manipulators with Variable Autonomy.

Search criteria

Search terms Results

“Mobile manipulator” and “variable autonomy” 24

“Mobile manipulator” and “autonomy levels” 41

“Mobile manipulator” and “shared autonomy” 235

Period January 2018 – June 2024

Search engines Google scholar

Publication type Peer-reviewed papers, academic papers, conference papers, journal articles, theses

Exclusion criteria

Language Non-English

Contextual Studies involving robots which are not contained in the mobile manipulators (e.g., aerial vehicles, underwater robots, soft
robots)

Scope Excluded papers not addressing or utilizing advancements in Variable Autonomy (e.g., mixed initiative, shared control,
etc.)

This categorization means focusing on how Variable Autonomy and
human-robot interaction are utilized as tools to accomplish various
tasks. In otherwords, while somepapers includeVariableAutonomy,
they do so to aid in completing other tasks and not necessarily
researching ways to change the autonomy levels.

2.2.1 Human mapping movement
Humanoid robots often take inspiration from human

capabilities (Lin et al., 2020; Baek et al., 2022; Pohl et al., 2024). Some
of these systems use motion mapping based on human posture or
control (Rastegarpanah et al., 2016). For instance, Baek et al. (2022)
utilize human leaning to control velocity while avoiding obstacles.
In this approach, the robot provides a force feedback based on
proximity to obstacles, allowing users to adjust their input. The
robot can also alter its own velocity and path. Similarly, Lin et al.
(2020) map human movements to specific humanoid movements to
simplify a pick-and-place task. In their system, humans only need
to make physical movements and signs that show a decision, and
robots autonomously complete the task.

2.2.2 Manipulation
Research in manipulation includes grasping, autonomous

manipulation, and load balancing. This type of research is
characterized by robots performing tasks with some level of
autonomy. Papers that involve manipulation research in any form
include (Lin et al., 2020; Chen et al., 2022; Hargas et al., 2015;
Frese et al., 2022; Roennau et al., 2022; Rastegarpanah et al.,
2021; Schuster et al., 2020; Wedler et al., 2021; Merkt et al., 2019;
Stibinger et al., 2021; Cheong et al., 2021; Fozilov et al., 2021; Kapusta
and Kemp, 2019; Sanchez and Smart, 2021; 2022; Mirjalili et al.,
2024; Park et al., 2020; Pohl et al., 2024; Rakita et al., 2019). Unlike
teleoperation research, in this area, the robot completes most of

the manipulation tasks by itself. For example, Frese et al. (2022)
use a giant excavator that plans how to dig soil, understands its
properties, and balances the load. The system allows it to ask for the
help of an operator if there is a low probability of success. Another
example is Cheong et al. (2021), who allows the operator to select
the object he wants to manipulate, with the robot autonomously
extracting key points and finding grasp candidates.

2.2.3 Transportation
This area includes path planning that considers the geometry

and physical properties of the objects being moved, as well as
obstacles in the path of the robot or object (Woock et al., 2022;
Sirintuna et al., 2024; Benzi et al., 2022; Abubakar et al., 2020).
For example, ARNA, from Abubakar et al. (2020), can transport
an object while assisting a patient walking through a scene. In
this case, the patient only controls the direction, while the robot
independentlymanipulates and transports the object. Sirintuna et al.
(2024) proposed a collaborative approach where the robot
provides haptic feedback through a belt worn by a human in an
occluded environment. Assisting them in transporting an object
collaboratively with the robot by feeling a force when obstacles get
closer.Thehuman commands the direction,while the robot provides
environmental information and transports the vehicle with a fixed
end-effector position relative to the base.

2.3 Challenges and techniques VA aids with

This subsection explores areas where VA has provided critical
support, including collision avoidance, communication handling,
semantic understanding, and intent recognition.
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TABLE 2 Summary of papers, environments, and key findings.

Papers Environment Summary

Frese et al. (2022), Roennau et al. (2022), Schuster et al.
(2020), Wedler et al. (2021), Woock et al. (2022)

Hazardous materials handling Discuss the use of mobile manipulators in handling
hazardous materials, examples include digging
contaminated soil or waste (Frese et al., 2022;
Woock et al., 2022), grasping hazardous objects
(Roennau et al., 2022), and taking space soil samples
(Schuster et al., 2020; Wedler et al., 2021)

Chiou et al. (2022), Frering et al. (2022),
Verhagen et al. (2024)

Disaster response Applications examples include the deployment of
mobile manipulators for exploration and mapping of
destroyed nuclear facilities (Chiou et al., 2022) and
scenarios for fire fighting (Frering et al., 2022;
Verhagen et al., 2024)

Merkt et al. (2019), Sirintuna et al. (2024),
Stibinger et al. (2021)

Industrial manufacturing Examine applications in industrial manufacturing,
examples include performing tasks on moving
assembly components (Merkt et al., 2019),
collaborative transportation of large objects
(Sirintuna et al., 2024) and placement of construction
materials (Stibinger et al., 2021)

Moridian et al. (2018), Hargas et al. (2015), Båberg
(2022); Baek et al. (2022), Benzi et al. (2022),
Chen et al. (2018), Cheong et al. (2021), Fozilov et al.
(2021), Gholami et al. (2020), Li et al. (2024),
Palan et al. (2019), Valner et al. (2018), Wong et al.
(2022)

Research and development laboratories Reviews the use of mobile manipulators in R&D labs,
focusing on research and experiments not for a specific
deployment. Examples include works on teleoperation
(Båberg, 2022; Chen et al., 2018; Cheong et al., 2021;
Gholami et al., 2020; Li et al., 2024; Valner et al., 2018),
path planning (Moridian et al., 2018; Baek et al., 2022;
Hargas et al., 2015; Palan et al., 2019), whole-body
control (Benzi et al., 2022; Wong et al., 2022), and
multi-robot coordination (Fozilov et al., 2021)

Lin et al. (2020), Abubakar et al. (2020), Kapusta and
Kemp (2019), Sanchez and Smart, (2021), Sanchez and
Smart, (2022)

Healthcare and medical areas Investigates applications in healthcare, including
nursing, patient care (Abubakar et al., 2020; Kapusta
and Kemp, 2019; Lin et al., 2020) and surface
disinfection (Sanchez and Smart, 2021; 2022)

Chen et al. (2022) Agriculture and farming Studies the use in agricultural settings, in this case, the
example applies to the pruning of a tree (Chen et al.,
2022)

Bhattacharjee et al. (2020), Karim et al. (2023),
Kemp et al. (2022), Kim et al. (2023), Mirjalili et al.
(2024), Park et al. (2020), Pohl et al. (2024),
Rakita et al. (2019)

Domestic and household environments Includes the use of mobile manipulators in the house,
examples include feeding assistance
(Bhattacharjee et al., 2020; Karim et al., 2023;
Park et al., 2020), and general house grasping and
transportation tasks (Kemp et al., 2022; Kim et al.,
2023; Mirjalili et al., 2024; Pohl et al., 2024;
Rakita et al., 2019)

2.3.1 Collision, obstacle avoidance, mapping and
navigation

This area utilizes sensor integration and real-time processing
to enable robots to make decisions and adjust their path to avoid
collisions. Relevant papers include (Hargas et al., 2015; Frese et al.,
2022; Roennau et al., 2022; Woock et al., 2022; Cheong et al.,
2021; Fozilov et al., 2021; Gholami et al., 2020; Valner et al., 2018;
Kapusta and Kemp, 2019). Roennau et al. (2022) describe a system
where an operator selects an object to retrieve, and the robot plans
the path using a 3D SLAM-generated map to avoid collisions.
Another example is Valner et al., 2018 who developed a framework
where the machine autonomously switches sensor feed to another
if one fails. The human operator provides high-level commands,
asking the robot to capture the environment while the system
handles mapping.

2.3.2 Communication and delays
The impact of communication delays is discussed by various

researchers (Frese et al., 2022; Merkt et al., 2019; Båberg, 2022;
Li et al., 2024; Valner et al., 2018). Båberg (2022) have shown
some work in user interfaces that helps an operator assess
network reliability. Frese et al. (2022) depend on hardware
communication speeds with buffer configuration and pre-allocation
of memory. Variable Autonomy can help mitigate delays by
providing autonomous control when high latency is detected,
running directly on the robot’s internal systems, while allowing
long-distance manual control when latency is low.

2.3.3 Semantics and machine learning
This area takes advantage of the computational power for object

recognition (Lin et al., 2020; Woock et al., 2022; Cheong et al., 2021;
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Bhattacharjee et al., 2020; Park et al., 2020; Pohl et al., 2024), task
learning (Wong et al., 2022; Park et al., 2020; Rakita et al., 2019),
and the use of Large Language Models (LLMs) (Kim et al., 2023;
Mirjalili et al., 2024) for developing smarter systems. The primary
focus of this area is helping humans reduce their cognitive load;
smarter systems can allow humans to take a supervisory role in tasks
and only take full control when an object or task not previously
trained for is encountered. As an example, Bhattacharjee et al. (2020)
allow a user to select a food from an interface, limiting its choices to
some fruits detected by a perception algorithm but allowing the user
to take manual control of other feeding processes.

2.3.4 Teleoperation modes, and intent
recognition

Research areas that allow humans to manually control a
robotic system from a distance or share control with the robot
(Schuster et al., 2020; Verhagen et al., 2024; Baek et al., 2022;
Chen et al., 2018; Gholami et al., 2020; Li et al., 2024; Wong et al.,
2022; Bhattacharjee et al., 2020; Kemp et al., 2022). Some researchers
focus on providing high-level commands, enabling the robot to
execute pre-programmed tasks while they explore other methods
to communicate their intentions. Bhattacharjee et al. (2020) employ
voice commands, Wong et al. (2022) try influencing a robot
with physical touch, and Chen et al. (2018) propose utilising
hand gestures. Other researchers use computer assistance for
specific tasks, while manually moving the robots. Li et al. (2024)
manage teleoperation of the mobile base and manipulator arm
independently but use the system to decide when to switch
between devices.

3 Discussion, insights and challenges

The explored literature on Variable Autonomy for mobile
manipulators is divided into two focuses: 1) high-level control, or
supervisory control, and 2) low-level control or system assistance.
Most implementations involving manipulation, obstacle avoidance,
mapping, transportation, and machine learning research aim for
fully automated tasks. In these cases, the role of the operator is
primarily to decide, choose tasks, or supervise to ensure the robot
is not making mistakes. For known problems, this solution is good,
providing automated solutions that are easy to use. On the other
hand, we have teleoperated scenarios, often with some uncertainty.
In these, humans drive the base or move the arm, with autonomy
serving in an assistive capacity, with the main objective of lowering
human cognitive load or reducing the operation completion time.

Separate Focus on Base and Manipulator - In mobile
manipulators, Variable Autonomy is still primarily focused on
controlling the base or the manipulator separately. Current research
does not consider the joint problem of integrating changes in
autonomy for both. This can be seen in a multitude of papers
including: (Lin et al., 2020; Frese et al., 2022; Woock et al., 2022;
Merkt et al., 2019; Båberg, 2022; Cheong et al., 2021; Fozilov et al.,
2021; Gholami et al., 2020; Palan et al., 2019; Valner et al., 2018;
Sanchez and Smart, 2022; Bhattacharjee et al., 2020; Karim et al.,
2023; Kemp et al., 2022; Kim et al., 2023; Mirjalili et al., 2024;
Park et al., 2020; Pohl et al., 2024; Rakita et al., 2019). Researchers

in this area focus on applying varying levels of autonomy to either
of the systems while keeping the rest of the robot static or at the
same autonomy level throughout the task. Even transportation
tasks follow a sequential process of changing between both:
reaching a position with the base, picking the object with the
manipulator, reaching a dropping positionwith the base, and placing
the object with the manipulator. This approach can theoretically
limit the operational workspace of a mobile manipulator. For
example, in Sanchez and Smart (2022), the disinfection area is
limited because the mobile base is not used simultaneously to
increase the reach of the manipulator.

Human Cognitive Load - Refers to the mental effort required
to perform a task and is a term acknowledged and investigated
in multiple papers including, (Chiou, 2017; Sirintuna et al., 2024;
Baek et al., 2022; Lin et al., 2020). However, it is still primarily
studied using subjectivemeasurements, such as theNASATask Load
Index (NASA-TLX). Currently, objectivemetrics and biometric data
from the human operator are not widely used in systems of mobile
manipulators with variable autonomy or involving human-in-the-
loop operations. Implementing objective data from the participants
would enhance our understanding of cognitive load and help design
better support for human operators.

Communication Delays and System Reliability - Although
known to cause issues, they are often ignored or not
measured in implementations of mobile manipulation. There
is a lack of studies addressing this problem in relevant
environments. Moniruzzaman et al. (2022) mention compensation
techniques, such as future pose estimation and point-cloud 3D
reconstruction, that could benefit the area if applied. In addition,
Variable Autonomy could be used by switching from manual
teleoperation to a local compensation algorithm when higher
latency is detected.

Uncertain Environments - Applying varying levels of autonomy
in known environments, where high-level and supervisory control
is feasible, is a popular and researched area. The challenge lies
in extending high-level control strategies to more complex and
unpredictable environments, where robust decision-making and
adaptability matter.

3.1 Future work

In future work, several key directions merit attention to advance
the field further. First, better system integration is essential,
with research focusing on enabling simultaneous control of
both the base and manipulator, whether coupled or decoupled.
Such integration would facilitate switching between different
levels of autonomy for each component. Building on existing
work that allows the autonomous switching of operator control
between the base and manipulator (Li et al., 2024), this approach
could expand the operational range to larger manipulation
workspaces.

Second, Virtual Reality (VR) offers significant potential in this
domain. Current studies already highlight VR’s role in reducing
cognitive load and enhancing environmental awareness (Baek et al.,
2022;Woock et al., 2022; Rastegarpanah et al., 2024). Future research
could delve deeper into its application in more complex mobile
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manipulation problems. Incorporating considerations like world
physics and virtual world design metrics could create a smoother
and more intuitive operator experience.

Another promising avenue lies in employing machine learning
to address delays and errors. Techniques like intent recognition,
already used in task assignment and reward function learning
(Gholami et al., 2020; Palan et al., 2019), could be further
developed to manage tasks typically dropped due to latency. By
integrating onboard autonomous compensation algorithms with
manual teleoperation, long-distance systems could benefit from
reduced errors and delays. Switching between autonomous and
manual modes could offer additional resilience.

Finally, the increasing capability of Large Language Models
(LLMs) presents an exciting opportunity. As these models evolve
to become multimodal, they can serve as versatile general
assistants. Research has shown their potential for contextual
awareness (Kim et al., 2023), which could be leveraged to enhance
task awareness and dynamically adjust autonomy levels based on
previously unconsidered data. This adaptability could enable the
development of on-demand algorithms, significantly improving the
flexibility and efficiency of mobile manipulators.

3.2 Conclusion

This mini-review synthesized current research on mobile
manipulators with Variable Autonomy, revealing gaps and possible
opportunities. The gaps included: First, Variable Autonomy and
control in mobile manipulators often focus separately on the base
and the manipulator. However, some challenges, such as cutting in
large surfaces (Pardi et al., 2020) and cleaning of contaminated areas
(Sanchez and Smart, 2022), require control of both and changes
in both simultaneously. Second, studies on cognitive workload are
heavily based on subjective metrics. However, some tasks with
operators in the loop in hazardous environments would heavily
benefit from real-time objective metrics during robot deployment
(Chiou et al., 2022), as this could aid in better setting the autonomy
levels in the system affected by operator load.Third, communication
delays and reliability issues are acknowledged but not extensively
addressed, which can be a very important factor to consider in
time-critical situations (Moniruzzaman et al., 2022) that search
and rescue or hazardous environments can have. Finally, most
of the research is designed for static and known environments,
lacking implementations in uncertain environments, when most
of the research in this area is needed for situations under heavy
uncertainties (search and rescue,manufacturing, decommissioning)
(Båberg, 2022; Rajendran et al., 2021; Woock et al., 2022). Future
research should aim to develop integrated variable autonomy for
both the base and the manipulator, use VR or other intuitive
interfaces as away to deal withworkload and facilitate shared control
on the robot systems, implement adaptive communication protocols

or change autonomy levels in the robot to handle network instability
and implement real-time general decision-making frameworks
based on LLMs that dynamically adjust autonomy levels based on
situational and contextual demands.

Author contributions

CC: Conceptualization, Data curation, Formal Analysis,
Methodology, Writing–original draft, Writing–review and editing.
AR: Conceptualization, Funding acquisition, Investigation, Project
administration, Resources, Supervision, Writing–review and
editing.MC: Conceptualization, Funding acquisition,Methodology,
Project administration, Resources, Supervision, Writing–original
draft, Writing–review and editing. RS: Conceptualization, Funding
acquisition, Resources, Supervision, Writing–review and editing.

Funding

The author(s) declare that financial support was received for
the research, authorship, and/or publication of this article. This
work was funded by the Nuclear Decommissioning Authority
(NDA) and supported by the United Kingdom National Nuclear
Laboratory (UKNNL). This work was also supported by the project
called “Research and Development of a Highly Automated and Safe
Streamlined Process for Increase Lithium-ion Battery Repurposing
and Recycling” (REBELION) under Grant 101104241.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Abubakar, S., Das, S. K., Robinson, C., Saadatzi, M. N., Logsdon, M. C.,
Mitchell, H., et al. (2020). “Arna, a service robot for nursing assistance:
system overview and user acceptability,” in 2020 IEEE 16th International

Conference on Automation Science and Engineering (CASE), Hong Kong,
China, 20-21 August 2020 (IEEE), 1408–1414. doi:10.1109/CASE48305.2020.
9216845

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2025.1540476
https://doi.org/10.1109/CASE48305.2020.9216845
https://doi.org/10.1109/CASE48305.2020.9216845
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Contreras et al. 10.3389/frobt.2025.1540476

Båberg, F. (2022). “Improving manipulation and control of search and rescue
UGVs operating across autonomy levels,”. Ph.D. thesis (Stockholm: Kungliga Tekniska
högskolan).

Baek, D., Chen, Y., Chang, Y., and Ramos, J. (2022). A study of shared-control
with force feedback for obstacle avoidance in whole-body telelocomotion of a wheeled
humanoid. Dblp Comput. Sci. Bibliogr. doi:10.48550/ARXIV.2209.03994

Bengtson, S. H., Bak, T., Struijk, L. N. S. A., and Moeslund, T. B. (2020).
A review of computer vision for semi-autonomous control of assistive robotic
manipulators (arms). Disabil. Rehabilitation Assistive Technol. 15, 731–745.
doi:10.1080/17483107.2019.1615998

Benzi, F., Mancus, C., and Secchi, C. (2022). Whole-body control of a mobile
manipulator for passive collaborative transportation. IFAC-PapersOnLine 55, 106–112.
doi:10.1016/j.ifacol.2023.01.141

Bhattacharjee, T., Gordon, E. K., Scalise, R., Cabrera, M. E., Caspi, A., Cakmak, M.,
et al. (2020). “Is more autonomy always better?,” in Proceedings of the 2020 ACM/IEEE
International Conference on Human-Robot Interaction (ACM), Cambridge, United
Kingdom, 23-26 March 2020, 181–190. doi:10.1145/3319502.3374818

Chen, J., and Cho, Y. K. (2019). “Detection of damaged infrastructure on
disaster sites using mobile robots,” in 2019 16th International Conference on
Ubiquitous Robots (UR), Jeju, Korea (South), 24-27 June 2019 (IEEE), 648–653.
doi:10.1109/URAI.2019.8768770

Chen, M., Liu, C., and Du, G. (2018). A human–robot interface for mobile
manipulator. Intell. Serv. Robot. 11, 269–278. doi:10.1007/s11370-018-0251-3

Chen, Y., Fu, Y., Zhang, B., Fu,W., and Shen, C. (2022). Path planning of the fruit tree
pruning manipulator based on improved rrt-connect algorithm. Int. J. Agric. Biol. Eng.
15, 177–188. doi:10.25165/j.ijabe.20221502.6249

Cheong, S., Chen, T. P., Acar, C., You, Y., Chen, Y., Sim,W. L., et al. (2021). “Supervised
autonomy for remote teleoperation of hybrid wheel-leggedmobile manipulator robots,”
in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Prague, Czech Republic, 27 September 2021 - 01 October 2021 (IEEE), 3234–3241.
doi:10.1109/IROS51168.2021.9635997

Chiou, E. (2017). “Flexible robotic control via co-operation between an operator and
an ai-based control system,”. Ph.D. thesis (United Kingdom: University of Birmingham
Research Archive E-theses Repository).

Chiou, M., Epsimos, G.-T., Nikolaou, G., Pappas, P., Petousakis, G., Mühl,
S., et al. (2022). “Robot-assisted nuclear disaster response: report and insights
from a field exercise,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Kyoto, Japan, 23-27 October 2022 (IEEE), 4545–4552.
doi:10.1109/IROS47612.2022.9981881

Chiou, M., Hawes, N., and Stolkin, R. (2021). Mixed-initiative variable autonomy
for remotely operated mobile robots. ACM Trans. Human-Robot Interact. 10, 1–34.
doi:10.1145/3472206

Chiou, M., Hawes, N., Stolkin, R., Shapiro, K. L., Kerlin, J. R., and Clouter, A.
(2015). “Towards the principled study of variable autonomy in mobile robots,” in 2015
IEEE International Conference on Systems, Man, and Cybernetics (IEEE), Hong Kong,
China, 09-12 October 2015, 1053–1059. doi:10.1109/SMC.2015.190

Cragg, L., and Hu, H. (2003). “Application of mobile agents to robust teleoperation
of internet robots in nuclear decommissioning,” in IEEE International Conference
on Industrial Technology, 2003 (IEEE), Maribor, Slovenia, 10-12 December 2003,
1214–1219. doi:10.1109/ICIT.2003.1290838

Fozilov, K., Hasegawa, Y., and Sekiyama, K. (2021). “Towards self-autonomy
evaluation using behavior trees,” in 2021 IEEE International Conference on Systems,
Man, and Cybernetics (SMC) (IEEE), Melbourne, Australia, 17-20 October 2021,
988–993. doi:10.1109/SMC52423.2021.9658838

Frering, L., Eder, M., Kubicek, B., Albert, D., Kalkofen, D., Gschwandtner, T., et al.
(2022). Enabling and assessing trust when cooperating with robots in disaster response
(easier). arXiv preprint arXiv:2207.03763.

Frese, C., Zube, A., Woock, P., Emter, T., Heide, N. F., Albrecht, A., et al. (2022). An
autonomous crawler excavator for hazardous environments.A. T. - Autom. 70, 859–876.
doi:10.1515/auto-2022-0068

Gholami, S., Garate, V. R., Momi, E. D., and Ajoudani, A. (2020). “A shared-
autonomy approach to goal detection and navigation control of mobile collaborative
robots,” in 2020 29th IEEE International Conference on Robot and Human Interactive
Communication (RO-MAN),Naples, Italy, 31August 2020 - 04 September 2020 (IEEE),
1026–1032. doi:10.1109/RO-MAN47096.2020.9223583

Hargas, Y., Mokrane, A., Hentout, A., Hachour, O., and Bouzouia, B.
(2015). “Mobile manipulator path planning based on artificial potential field:
application on robuter/ulm,” in 2015 4th International Conference on Electrical
Engineering (ICEE), Boumerdes, Algeria, 13-15 December 2015 (IEEE), 1–6.
doi:10.1109/INTEE.2015.7416774

Kapusta, A., and Kemp, C. C. (2019). Task-centric optimization of configurations for
assistive robots. Aut. Robots 43, 2033–2054. doi:10.1007/s10514-019-09847-2

Karim, R., Nanavati, A., Faulkner, T. A. K., and Srinivasa, S. S. (2023). Investigating
the levels of autonomy for personalization in assistive robotics.

Kemp, C. C., Edsinger, A., Clever, H. M., and Matulevich, B. (2022). “The design of
stretch: a compact, lightweight mobile manipulator for indoor human environments,”

in 2022 International Conference on Robotics and Automation (ICRA) (IEEE),
3150–3157. doi:10.1109/ICRA46639.2022.9811922

Kim, G., Kim, T., Kannan, S. S., Venkatesh, V. L. N., Kim, D., and Min, B.-C. (2023).
Dynacon: dynamic robot planner with contextual awareness via llms.

Li, W., Huang, F., Chen, Z., and Chen, Z. (2024). Automatic-switching-based
teleoperation framework formobilemanipulator with asymmetrical mapping and force
feedback. Mechatronics 99, 103164. doi:10.1016/j.mechatronics.2024.103164

Lin, T.-C., Krishnan, A. U., and Li, Z. (2020). “Shared autonomous interface for
reducing physical effort in robot teleoperation via human motion mapping,” in 2020
IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31
May 2020 - 31 August 2020 (IEEE), 9157–9163. doi:10.1109/ICRA40945.2020.9197220

Merkt, W., Ivan, V., Yang, Y., and Vijayakumar, S. (2019). “Towards shared autonomy
applications using whole-body control formulations of locomanipulation,” in 2019
IEEE 15th International Conference on Automation Science and Engineering
(CASE), Vancouver, BC, Canada, 22-26 August 2019 (IEEE), 1206–1211.
doi:10.1109/COASE.2019.8843153

Methnani, L., Chiou, M., Dignum, V., and Theodorou, A. (2024). Who’s in charge
here? a survey on trustworthy ai in variable autonomy robotic systems. ACM Comput.
Surv. 56, 1–32. doi:10.1145/3645090

Mirjalili, R., Krawez, M., Silenzi, S., Blei, Y., and Burgard, W. (2024). “LAN-
grasp: an effective approach to semantic object grasping using large language
models,” in First workshop on vision-Language Models for navigation and manipulation
at ICRA 2024.

Moniruzzaman, M., Rassau, A., Chai, D., and Islam, S. M. S. (2022). Teleoperation
methods and enhancement techniques for mobile robots: a comprehensive survey.
Robotics Aut. Syst. 150, 103973. doi:10.1016/j.robot.2021.103973

Moridian, B., Kamal, A., and Mahmoudian, N. (2018). “Learning navigation
tasks from demonstration for semi-autonomous remote operation of mobile
robots,” in 2018 IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR), Philadelphia, PA, USA, 06-08 August 2018 (IEEE), 1–8.
doi:10.1109/SSRR.2018.8468640

Nagatani, K., Kiribayashi, S., Okada, Y., Otake, K., Yoshida, K., Tadokoro, S.,
et al. (2013). Emergency response to the nuclear accident at the fukushima daiichi
nuclear power plants using mobile rescue robots. J. Field Robotics 30, 44–63.
doi:10.1002/rob.21439

Palan, M., Landolfi, N. C., Shevchuk, G., and Sadigh, D. (2019). Learning reward
functions by integrating human demonstrations and preferences

Panagopoulos, D., Petousakis, G., Ramesh, A., Ruan, T., Nikolaou, G., Stolkin, R.,
et al. (2022). “A hierarchical variable autonomymixed-initiative framework for human-
robot teaming in mobile robotics,” in 2022 IEEE 3rd International Conference on
Human-Machine Systems (ICHMS), Orlando, FL, USA, 17-19 November 2022 (IEEE),
1–6. doi:10.1109/ICHMS56717.2022.9980686

Pardi, T., Maddali, V., Ortenzi, V., Stolkin, R., and Marturi, N. (2020). “Path
planning for mobile manipulator robots under non-holonomic and task constraints,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Las Vegas, NV, USA, 24 October 2020 - 24 January 2021, 6749–6756.
doi:10.1109/IROS45743.2020.9340760

Park, D., Hoshi, Y., Mahajan, H. P., Kim, H. K., Erickson, Z., Rogers, W.
A., et al. (2020). Active robot-assisted feeding with a general-purpose mobile
manipulator: design, evaluation, and lessons learned. Robotics Aut. Syst. 124, 103344.
doi:10.1016/j.robot.2019.103344

Pohl, C., Reister, F., Peller-Konrad, F., and Asfour, T. (2024). Makeable: memory-
centered and affordance-based task execution framework for transferable mobile
manipulation skills.

Rajendran, P.,Thakar, S., Bhatt, P.M., Kabir, A.M., andGupta, S. K. (2021). Strategies
for speeding up manipulator path planning to find high quality paths in cluttered
environments. J. Comput. Inf. Sci. Eng. 21. doi:10.1115/1.4048619

Rakita, D., Mutlu, B., Gleicher, M., and Hiatt, L. M. (2019). Shared
control–based bimanual robot manipulation. Sci. Robotics 4, eaaw0955.
doi:10.1126/scirobotics.aaw0955

Ramesh,A., Braun,C.A., Ruan, T., Rothfuß, S.,Hohmann, S., Stolkin, R., et al. (2023).
“Experimental evaluation of model predictive mixed-initiative variable autonomy
systems applied to human-robot teams,” in 2023 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), Honolulu, Oahu, HI, USA, 01-04 October 2023
(IEEE), 5291–5298.

Rastegarpanah, A., Contreras, C. A., and Stolkin, R. (2024). Semi-autonomous
robotic disassembly enhanced by mixed reality. RobCE 24 Proc. 2024 4th Int. Conf.
Robotics Control Eng., 7–13. doi:10.1145/3674746.3674748

Rastegarpanah, A., and Saadat, M. (2016). Lower limb rehabilitation using patient
data. Applied Bionics and Biomechanics (1), 2653915.

Rastegarpanah, A., Hathaway, J., and Stolkin, R. (2021). Vision-guided mpc for
robotic path following using learned memory-augmented model. Front. Rob. AI. 8,
688275.

Reinmund, T., Salvini, P., Kunze, L., Jirotka,M., andWinfield, A. F. T. (2024). Variable
autonomy through responsible robotics: design guidelines and research agenda. J.
Hum.-Robot Interact. 13, 1–36. doi:10.1145/3636432

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2025.1540476
https://doi.org/10.48550/ARXIV.2209.03994
https://doi.org/10.1080/17483107.2019.1615998
https://doi.org/10.1016/j.ifacol.2023.01.141
https://doi.org/10.1145/3319502.3374818
https://doi.org/10.1109/URAI.2019.8768770
https://doi.org/10.1007/s11370-018-0251-3
https://doi.org/10.25165/j.ijabe.20221502.6249
https://doi.org/10.1109/IROS51168.2021.9635997
https://doi.org/10.1109/IROS47612.2022.9981881
https://doi.org/10.1145/3472206
https://doi.org/10.1109/SMC.2015.190
https://doi.org/10.1109/ICIT.2003.1290838
https://doi.org/10.1109/SMC52423.2021.9658838
https://doi.org/10.1515/auto-2022-0068
https://doi.org/10.1109/RO-MAN47096.2020.9223583
https://doi.org/10.1109/INTEE.2015.7416774
https://doi.org/10.1007/s10514-019-09847-2
https://doi.org/10.1109/ICRA46639.2022.9811922
https://doi.org/10.1016/j.mechatronics.2024.103164
https://doi.org/10.1109/ICRA40945.2020.9197220
https://doi.org/10.1109/COASE.2019.8843153
https://doi.org/10.1145/3645090
https://doi.org/10.1016/j.robot.2021.103973
https://doi.org/10.1109/SSRR.2018.8468640
https://doi.org/10.1002/rob.21439
https://doi.org/10.1109/ICHMS56717.2022.9980686
https://doi.org/10.1109/IROS45743.2020.9340760
https://doi.org/10.1016/j.robot.2019.103344
https://doi.org/10.1115/1.4048619
https://doi.org/10.1126/scirobotics.aaw0955
https://doi.org/10.1145/3674746.3674748
https://doi.org/10.1145/3636432
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Contreras et al. 10.3389/frobt.2025.1540476

Roennau, A., Mangler, J., Keller, P., Besselmann, M. G., Huegel, N., and Dillmann, R.
(2022). Grasping and retrieving unknownhazardous objects with amobilemanipulator.
Automatisierungstechnik 70, 838–849. doi:10.1515/auto-2022-0061

Sanchez, A. G., and Smart, W. D. (2021). “A shared autonomy surface disinfection
system using a mobile manipulator robot,” in 2021 IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR), New York City, NY, USA, 25-27 October
2021 (IEEE), 176–183. doi:10.1109/SSRR53300.2021.9597678

Sanchez, A. G., and Smart, W. D. (2022). Verifiable surface disinfection
using ultraviolet light with a mobile manipulation robot. Technologies 10, 48.
doi:10.3390/technologies10020048

Sandakalum,T., andAng,M.H. (2022).Motion planning formobilemanipulators—a
systematic review. Machines 10, 97. doi:10.3390/machines10020097

Schuster, M. J., Muller, M. G., Brunner, S. G., Lehner, H., Lehner, P.,
Sakagami, R., et al. (2020). The arches space-analogue demonstration mission:
towards heterogeneous teams of autonomous robots for collaborative scientific
sampling in planetary exploration. IEEE Robotics Automation Lett. 5, 5315–5322.
doi:10.1109/LRA.2020.3007468

Sirintuna, D., Kastritsi, T., Ozdamar, I., Gandarias, J. M., and Ajoudani, A.
(2024). Enhancing human–robot collaborative transportation through obstacle-
aware vibrotactile warning and virtual fixtures. Robotics Aut. Syst. 178, 104725.
doi:10.1016/j.robot.2024.104725

Stibinger, P., Broughton, G., Majer, F., Rozsypalek, Z., Wang, A., Jindal, K.,
et al. (2021). Mobile manipulator for autonomous localization, grasping and precise
placement of construction material in a semi-structured environment. IEEE Robotics
Automation Lett. 6, 2595–2602. doi:10.1109/LRA.2021.3061377

Tabrez, A., Luebbers, M. B., and Hayes, B. (2020). A survey of mental modeling
techniques in human–robot teaming.Curr. Robot. Rep. 1, 259–267. doi:10.1007/s43154-
020-00019-0

Thakar, S., Srinivasan, S., Al-Hussaini, S., Bhatt, P. M., Rajendran, P., Jung Yoon, Y.,
et al. (2023). A survey of wheeled mobile manipulation: a decision-making perspective.
J. Mech. Robotics 15, 020801. doi:10.1115/1.4054611

Valner, R., Vunder, V., Zelenak, A., Pryor, M., Aabloo, A., and Kruusamäe, K. (2018).
“Intuitive ‘human-on-the-loop’interface for tele-operating remote mobile manipulator
robots,” in International symposium on artificial intelligence, robotics, and automation
in space (i-SAIRAS), 1–8.

Verhagen, R. S., Neerincx, M. A., and Tielman, M. L. (2024). Meaningful human
control and variable autonomy in human-robot teams for firefighting. Front. Robotics
AI 11, 1323980. doi:10.3389/frobt.2024.1323980

Villani, V., Pini, F., Leali, F., and Secchi, C. (2018). Survey on human–robot
collaboration in industrial settings: safety, intuitive interfaces and applications.
Mechatronics 55, 248–266. doi:10.1016/j.mechatronics.2018.02.009

Wedler, A., Müller, M. G., Schuster, M., Durner, M., Brunner, S., Lehner, P.,
et al. (2021). “Preliminary results for the multi-robot, multi-partner, multi-mission,
planetary exploration analogue campaign on mount etna,” in Proceedings of the
international astronautical congress, IAC.

Wong, C. Y., Samadi, S., Suleiman, W., and Kheddar, A. (2022). Touch semantics for
intuitive physical manipulation of humanoids. IEEE Trans. Human-Machine Syst. 52,
1111–1121. doi:10.1109/THMS.2022.3207699

Woock, P., Petereit, J., Frey, C., and Beyerer, J. (2022). Robdekon – competence center
for decontamination robotics. A. T. - Autom. 70, 827–837. doi:10.1515/auto-2022-0072

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2025.1540476
https://doi.org/10.1515/auto-2022-0061
https://doi.org/10.1109/SSRR53300.2021.9597678
https://doi.org/10.3390/technologies10020048
https://doi.org/10.3390/machines10020097
https://doi.org/10.1109/LRA.2020.3007468
https://doi.org/10.1016/j.robot.2024.104725
https://doi.org/10.1109/LRA.2021.3061377
https://doi.org/10.1007/s43154-020-00019-0
https://doi.org/10.1007/s43154-020-00019-0
https://doi.org/10.1115/1.4054611
https://doi.org/10.3389/frobt.2024.1323980
https://doi.org/10.1016/j.mechatronics.2018.02.009
https://doi.org/10.1109/THMS.2022.3207699
https://doi.org/10.1515/auto-2022-0072
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	1.1 Methodology

	2 Literature review
	2.1 Environments
	2.2 Tasks that variable autonomy tackles
	2.2.1 Human mapping movement
	2.2.2 Manipulation
	2.2.3 Transportation

	2.3 Challenges and techniques VA aids with
	2.3.1 Collision, obstacle avoidance, mapping and navigation
	2.3.2 Communication and delays
	2.3.3 Semantics and machine learning
	2.3.4 Teleoperation modes, and intent recognition


	3 Discussion, insights and challenges
	3.1 Future work
	3.2 Conclusion

	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

