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Introduction: Continuum robots are studied and applied in neurosurgery due
to their high flexibility and adaptability. The basic performance of continuum
is mainly evaluated by stiffness, but there is no systematic and universal
evaluation system.

Methods: In this paper, a general experimental platform for continuum robots
is designed, based on which the fundamental performance of the notched
continuum robot used in neurosurgery is evaluated. The continuum stiffness
evaluation method based on energy method and Castigliano’s second theorem
is proposed. By solving the internal force and energy of the notched continuum
in sections, the stiffness model of single-segment and double-segment
series continuum is established. The relationship between the stiffness of the
continuum and the bending angle is obtained.

Results: The simulation and experimental results show that under the condition
of small deformation angle, the spatial stiffness model obtained by strain energy
basically conforms to the actual model, which verifies the correctness and
rationality of the stiffness calculation method proposed in this paper.

Discussion: This paper is of significant importance to promote the performance
evaluation and optimization of continuum.

KEYWORDS

neurosurgery, notched continuum robots, stiffness, energy method, castigliano’s
second theorem

1 Introduction

Continuum robots are characterized by elastic structures and infinite degrees of
freedom, lacking discrete joints and rigid links typical of traditional rigid robots
(Webster III and Jones, 2010). They exhibit a high degree of dexterity not found
in traditional robots, coupled with strong adaptability to workspace constraints.
Consequently, they find extensive applications in specialized fields such as medical
devices, search and rescue, demonstrating exceptional performance (He et al., 2018).
Continuum robots have shown great potential in neurosurgery, such as cerebral
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hemorrhage aspiration (Burgner et al., 2013), transnasal
skull base tumor resection (Zhang et al., 2022), and other
operations. Currently, continuum robot designs include hinge-
based, segmented, concentric tube, and notched configurations
among others (Li and Du, 2013).

Hinge-based continuum robots connect their joints through
ball sockets or hinges. Professor Zheng Li from The Chinese
University of Hong Kong has developed corresponding kinematic
and workspace models based on the assumption that joint
curvatures along the continuum bending curve are equal (Li et al.,
2016). While these robots exhibit out-standing flexibility, friction
between ball sockets can cause noticeable hysteresis and uneven
bending during motion. Segmented continuum robots, powered
by drive cables with central elastic rods providing compensatory
force, approximate constant curvature behavior during bending but
may occlude the central channel. In 2006, researchers in-cluding
Nabil Simaan from Columbia University and Kai Xu from Shanghai
Jiao Tong University proposed using Nitinol alloy tubes instead
of drive cables to increase robot stiffness (Xu and Simaan, 2006;
Xu and Simaan, 2008; Simaan et al., 2009). Similarly, researchers
such as Bin He from Tongji University utilized superelastic Nitinol
alloys to design a three-backbone continuum robot, establishing
kinematic and dynamic models (He et al., 2013). Concentric tube
continuum robots, introduced by Robert James Webster III from
Vanderbilt University, achieve bending motion through pre-curved
elastic sheaths and inner tube feeding, applied in medical fields
for complex surgical operations. However, inherent elastic forces
between the inner and outer tubes contribute to significant errors
in the robot’s kinematic model, challenging precise end-effector
control (Webster et al., 2008). Notched continuum robots, initially
proposed by Johns Hopkins University (Badescu and Mavroidis,
2004), use linear drive mechanisms to form joints at incisions,
compensating for uneven bending in the continuum, providing
improved stiffness. Researchers fromHarbin Institute of Technology
(Wilkening et al., 2017; Gao et al., 2016a) investigated triangular
and square notched continuumrobots, establishing theirmechanical
and kinematic models. Zhang et al. (2024b), Zhang et al. (2024a)
propose to mix the rectangular cut continuum with the concentric
tube continuum and establish the kinematic models.

In current research, the focus on continuum robots
primarily centers around structural innovations, precise control,
and performance evaluation. Due to their unique operating
environment, continuum robots are required not only high
flexibility but also a certain degree of rigidity, as they must balance
their load capacity and motion precision while ensuring adequate
adaptability and safety (Gu and Ren, 2023; Lin et al., 2024).

Stiffness analysis is a crucial aspect of the design and
control of continuum robots, determining the relationship between
deformation and forces in these systems. Numerous experts have
conducted in-depth studies on stiffness metrics. Selig and Ding
utilized screw theory (Dai, 2012) to analyze the flexibility and
stiffness matrices of beams. Pei et al. (2009a) investigated the
flexibility of wheel flexible joints. Ding and Dai (Pei et al.,
2009b) explored the spatial continuum flexibility of serial and
parallel mechanisms based on screw theory and Lie group theory,
employing eigenvectors and eigenvalues to identify principal screws
within mechanisms. Awtar and Sen (2010) proposed a generalized
constraint model for analyzing the flexural flexibility and stiffness

of 2D beams. Tunay introduced the concept of equivalent bending
stiffness. Gao et al. (2016b) developed a mathematical model to
predict the load postures of single cross-section continuum robotic
arms. Qi et al. (2015) analyzed the flexibility characteristics of
a novel planar spring continuum robot. Gravagne et al. (2003)
discussed the dynamics of planar continuum backbone sections
using a large deflection dynamic model. Trivedi et al. (2007)
introduced a novel modeling approach for flexible robotic arms
that incorporates material nonlinearity and the effects of distributed
weight and payload. Camarillo et al. (2008) proposed a new
linear model for converting desired beam configurations to tendon
displacements and vice versa. Fraś et al. (2014) described the
design and implementation of a static model used for position
estimation of modular medical robotic arms equipped with fiber
optic sensors. Sadati et al. (2017) presented a series solution method
for static and Lagrangian dynamic analysis of a new variable
curvature Cosserat rod. However, a comprehensive and universally
applicable evaluation framework is currently lacking.

This paper designs a universal continuum experimental
platform, which can realize the driving of multiple segments of
cable-driven continuum of different sizes. Based on the energy
method and Castigliano’s second theorem, the stiffness of the
notched continuum introduced above ismodeled.The contributions
of this paper as follows:

• This paper designs a universal continuum platform, based
on which the stiffness model of the double-segment notched
continuum is verified and the stiffness of the serial continuum
under different driving strategies is tested.

• Utilizing energymethods andCastigliano’s second theorem, the
internal forces and energies of incision-type continuum bodies
are sequentially resolved, establishing stiffness models for both
single-section and dual-section series-connected continua.The
relationship between continuum stiffness and bending angle
is derived.

• Simulation and experimental results indicate that, under small
deformation conditions, the spatial stiffness models derived
from strain energy align closely with practical models. The
stiffness relationships of dual-section series-connected notched
under varying numbers of driving cables are established as
follows: External 4 + Internal 4 > External 2 + Internal 4 >
External 4 + Internal 2 > External 2 + Internal 2.

The remaining parts of this paper are as follows: Section 2
describes the structure of the universal experimental platform
for continuum robot. Section 3 establishes stiffness models
for single-section and dual-section series-connected notched
continuum. Section 4 conducts simulations of the proposed
stiffness analysis models and validates their effectiveness
through experimentation. Section 5 provides a summary of
the entire paper.

2 The structure of the universal
platform

To realize the driving and testing of continuum of various sizes
and different numbers of drive cables, this paper designs a universal
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FIGURE 1
The structure of the universal platform. (A) The universal continuum experimental platform. The platform consists of three parts: continuum structure,
external continuum drive mechanism and internal continuum drive mechanism. (B) The specific structure of the dual-segment notched
continuum robot.

TABLE 1 The parameters of the external and internal continuum.

External
continuum

Internal
continuum

Diameter of the drive
cable

0.8 mm 0.8 mm

Total length 42 mm 82 mm

Distribution diameter
of drive cable

9 mm 4 mm

Height of notches 2 mm 2 mm

Outer diameter 11.2 mm 6.8 mm

Inner diameter 6.9 mm 3 mm

Number of notched 10 mm 20 mm

Length of beam 2 mm 1.9 mm

Width of beam 2 mm 2.8 mm

continuum experimental plat-form, as shown in Figure 1A. The
overall structure of the continuum experimental platform can be
divided into two parts, namely, the main driving mechanism and
the linear module. The main driving mechanism consists of 4 sets
of lead screw slider mechanisms, a front base, a rear base and a
front wire guide mechanism. The pressure sensor is installed on
the slide. One end of the pressure sensor is installed together with
the slide, and the other end is installed with a V-groove guide
wheel to transmit the drive cable and measure the pressure of the
drive cables. The structure of the double-segment series continuum
is shown in Figure 1B.

The structure of the double-segment series continuum is shown
in Figure 1B.The structure of the double-segment series continuum
is shown in Figure 1B. The parameters of the external and internal
continuum are shown in Table 1.

3 Stiffness evaluation in
series-connected continuum

This section models the stiffness of the notched continuum
based on the energy method (Straughan, 2013) and the Castigliano’s
second theorem (Eastwood et al., 2016). Additionally, the
relationship between the spatial stiffness of serial continuum and
bending angles is obtained. Finally, the stiffness of serial continuum
under four different driving strategies are compared.

3.1 Energy method and stiffness

When calculating the end displacement of the continuum, this
chapter adopts the energy method. Assuming the elastic body has
no rigid displacements under the constraints of the supports, and is
subjected to n external forces, the strain energy stored in the system
due to these external forces is denoted as Vε. If an incremental force
ΔFi is applied to one of these forces Fi, the total strain energy of the
system becomesVε +ΔVε. Altering the sequence of force application
involves first applying ΔFi to the elastic body before applying the
external force. Applying ΔFi results in a displacement Δ(ΔFi) in
the direction of this increment. Therefore, the work done by ΔFi is
represented asW.

Vε + ΔVε = Vε +ΔFiΔi +
1
2
ΔFi ⋅Δ(Δi) (1)

Neglecting higher-order terms, it can be obtained that

Δi =
ΔVε

ΔFi
(2)

From the Equation 1 and Equation 2, it can be seen that the
partial derivative of strain energy with respect to any load Fi equals
the displacement of the point of action of Fi in the direction
of Fi. This is known as Castigliano’s second theorem, applicable
exclusively to linear elastic structures. Additionally, formulas are
provided below for the incremental strain energy ΔVε induced by
forces of various natures. The incremental strain energy induced by
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FIGURE 2
Force conditions at the end of the continuum joint.

the normal support force FN is shown in Equation 3.

ΔVε
FN =

FN
2

2EA
ds (3)

The incremental strain energy induced by the shear force Fs
is shown in Equation 4.

ΔVε
Fs =

kFs
2

2GA
ds (4)

The incremental strain energy induced by the bending moment
M is shown in Equation 5.

ΔVε
M = M

2

2EI
ds (5)

The incremental strain energy induced by the torque T
is shown in Equation 6.

ΔVε
T = T2

2GIP
ds (6)

where E is the modulus of elasticity, A is the cross-sectional area of
the continuum, K is the shear shape coefficient, I is the moment of
inertia, G is the shear modulus of elasticity, Ip is the polar moment
of inertia.

Due to the typical bending state of continua in operational
conditions, this section is based on the assumption of constant
curvature for analyzing the stiffness of continuum under bending.
The continuum is typically subjected to three types of end forces:
axial force Fa, principal normal force Fn, and deputy normal force
Fb, as shown in Figure 2. These forces exert varying effects on
continuum, necessitating distinct analytical approaches.

3.2 Continuum robot stiffness model

The continuum can be envisioned as a smooth circular tube.
As shown in Figure 3, consider the overall bending angle Θ of the
continuum robot, with a total length L. To analyze a small segment
of the continuum robot near its end, with a bending angle θ and
length s. We note the following forces: axial force Fa, normal force
FN, shear force Fs, and bending moment M acting on this segment
of the continuum under stress.

As shown in Figure 3A, according to the force balance, the
following equation can be obtained:

{{{{
{{{{
{

FN = Fa cos θ

Fs = Fa sin θ

M = Fal (1− cos θ)/Θ

(7)

According to Castigliano’s second theorem, the deformation at
the end is related to the strain energy. Let the deformation variable
at the end be dx, then it satisfies

dx =

∂(
l

∫
0

FN
2

2EA
ds+

l

∫
0

kFs
2

2GA
ds+

l

∫
0

M2

2EI
ds)

∂Fa
(8)

Substituting Equation 7 into Equation 8 yields Equation 9:

dx =
Θ

∫
0

Falcos
2 θ

EAΘ
dθ+

Θ

∫
0

kFal sin
2 θ

GAΘ
dθ+

Θ

∫
0

Fa(1− cos θ)
2

EI
l3

Θ3 dθ

=
Fal
EAΘ

2Θ+ sin 2Θ
4
+

kFal
GAΘ

2Θ− sin 2Θ
4
+
Fa
EI

l3

Θ3
6Θ− 8 sinΘ+ sin 2Θ

4

(9)

In the above equation, the first to third terms on the right-
hand side represent the deformations at the end caused by axial
force, shear force, and bending moment, respectively. E and G are
constants obtainable through experimentation. Axial stiffness is
defined as the ratio of axial force to deformation, thus Ka can be
described in Equation 10.

Ka = (
l

EAΘ
2Θ+ sin 2Θ

4
+ kl
GAΘ

2Θ− sin 2Θ
4
+ 1
EI

l3

Θ3
6Θ− 8 sinΘ+ sin 2Θ

4
)
−1

(10)

Furthermore, since the continuum is a slender rod with a
large length-to-diameter ratio, shear strain is significantly smaller
compared to other strain energies.Therefore, it can be neglected, and
Ka can be simplified to Equation 11.

Ka = (
l

EAΘ
2Θ+ sin 2Θ

4
+ 1
EI

l3

Θ3
6Θ− 8 sinΘ+ sin 2Θ

4
)
−1

(11)

Similarly, as shown in Figure 3B, the following can be
derived in Equation 12.

Kn = (
l

EAΘ
2Θ− sin 2Θ

4
+ 1
EI

l3

Θ3
2Θ− sin 2Θ

4
)
−1

(12)

When the tangential direction is subjected to an external force
Fb, not only shear force and bendingmoment occur, but also torsion
is generated, as shown in Figure 3C.

T = Fb
l
Θ
(1− cos θ) (13)

Similarly, the expression of dx and Kb are as follows.

{{{{{{{{
{{{{{{{{
{

dx =

∂(
l

∫
0

T2

2GIP
ds+

l

∫
0

kFs
2

2GA
ds+

l

∫
0

M2

2EI
ds)

∂Fb

Kb = (
1
GIP

l3

Θ3
6Θ− 8 sinΘ+ sin 2Θ

4
+ 2
EI

l3

Θ3 (Θ− sinΘ))
−1

(14)
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FIGURE 3
The force on the continuum. (A) Axial force situation of continuum element. (B) Principal normal force situation of element. (C) Tangential normal
force situation of element.

The stiffness of the continuum in three different directions
is compared under different lengths l and outer diameters R,
as shown in Figures 4A–F. The distribution of stiffness Ka, Kn and
Kb across different orientations shows that within the bending range
of (0, 1.5) radians, the stiffness in the principal normal direction
significantly exceeds that in the axial and tangential directions.
However, at extremely small bending angles, the tangential direction
stiffness can surpass the axial direction stiffness.

Analyzing themore generalized spatial stiffnessmodel, as shown
in Figure 2, where the continuum subjected to a load F at its end
experiences a total deformation dx. The force F can be decomposed
into components Fa, Fn and Fb. Given that the plane containing
F makes an angle β with the plane defined by directions a and
b, and within that plane, F forms an angle φ with direction b.
Therefore, the magnitudes of the individual force components
are shown in Equation 15.

{{{{
{{{{
{

Fn = F sin ϕ sin β

Fa = F sin ϕ cos β

Fb = F cos ϕ

(15)

Similarly, the deformation of F at the end can be
represented as Equation 16.

d⃗x = d⃗xa + d⃗xn + d⃗xb (16)

If the loads F act individually in three directions, resulting
in deformations dxFa , dxFn and dxFb respectively at the ends, the
relationship can be expressed as

dx = dxFa cos2φa + dxFn cos2φn + dxFb cos2φb (17)

The angles φa, φn and φb represent the angles between the spatial
force F and the directions of the three component forces. Further
derivation yields:

1
K
= dx

F
=
cos2φa

Ka
+
cos2φn

Kn
+
cos2φb

Kb
(18)

3.3 Single-section notched continuum
stiffness model

The skeleton diagram of the notched continuum is shown in
Figure 5. The constant curvature assumption is adopted to describe
the bending of the continuum for computational convenience.
The bending angle θi at section i of the continuum is assumed
to be uniform. The total bending angle θ of the continuum
satisfies the Equation 19.

Θ =
i

∑
0
θi (19)

The cross-section of the continuum consists of two symmetric
annular structures. The cross-section is simplified into two
symmetrically distributed rectangles. Each rectangle has the
length a, width b, and the distance from the rectangle’s
center to the centroid c. Therefore, the moments of inertia
of the continuum skeleton section about the x and y-
axes, as well as the polar moment of inertia, are given by
Equation 20.

Ix =
ab3

6
, Iy =

ba3

6
+ 2abc, Ip1 =

ab3

6
+ ba

3

6
+ 2abc (20)

The continuum drive cable studied in this paper is made of
nickel-titanium alloy and can be approximated to obey Hooke’s
law. Its loading conditions are treated as equivalent to a slender
rod. When the drive cable is fully tensioned, friction between the
cable and the continuum skeleton is neglected. For computational
convenience, this study considers four cables as a unified whole
for analysis, with each cable having a cross-section of a uniformly
distributed circle.

Therefore, the moments of inertia of the drive wires
around the x/y-axis and the equivalent polar moment of inertia
are shown in Equation 21.

I2 =
πd4

16
+ πd

2e2

2
, Ip2 =

πd4

8
+ πd2e2 (21)

To calculate the axial stiffness, strain energy possessed by
the continuum should be determined. The upper and lower
annular discs of a joint can be regarded as rigid body, hence
they possess no strain energy. The strain energy of the joint is
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FIGURE 4
Comparison of stiffness in different directions. (A) R = 5mm, l = 40mm. (B) R = 5mm, l = 60mm. (C) R = 5mm, l = 80mm. (D) R = 3mm, l = 60mm. (E) R =
3mm, l = 60mm. (F) R = 8mm, l = 60mm.

FIGURE 5
The bending condition of three consecutive joints of the notched continuum robot.

concentrated in the elastic rod, as shown in Figure 6, which shows
a schematic of joint i near the end of the continuum. Fa represents
the axial load.

Similar to axial stiffness, the force equilibrium within the
internal elemental units of the continuum can be inferred from the
previous section. The force distribution at the base of each unit
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FIGURE 6
Three consecutive joint bending situations. (A) Bending condition of joint i. (B) Bending condition of joint i-1. (C) Bending condition of joint i-2.

resembles that of the principal normal stiffness. Hence, the strain
energy within this joint is shown in Equation 22.

Vε
i =

l

∫
0

(FdNi)2

2E1A
ds+

l

∫
0

k(Fdsi)
2

2G1A
ds+

l

∫
0

(Md
i)2

2E1Ix
ds (22)

Considering the case of the i-1 joint. As shown in Figure 6A,
based on its geometric features, the equations of static equilibrium
can be formulated in Equation 23.

{{{{
{{{{
{

Fs
i−1 = Fs

i cos θ+ FN
i sin θ

FN
i−1 = Fsi sin θ− FNi cos θ

Mi −Mi−1 = Fsi−1 l sin θ/θi−1 + FNi−1l (1− cos θ)/θi−1

(23)

The strain energy within the i-1 joint shown in Equation 24.

Vε
i−1 =

l

∫
0

(FdNi−1)2

2E1A
ds+

l

∫
0

k(Fdsi−1)
2

2G1A
ds+

l

∫
0

(Md
i−1)2

2E1Iy
ds (24)

The strain energy within the i-2 joint is computed similarly to
that within the i-1 joint. Following this method, for any joint n
(where n= 1, 2…i), the total strain energy of the continuum skeleton
can be expressed, then the total strain energy of the continuum
skeleton can be expressed as Equation 25.

Vε =
i

∑
n=1

Vε
n (25)

To express the axial stiffness of the notched continuum
further in Equation 26.

{{{
{{{
{

dx =
∂(Vε)
∂Fa

Ka =
Fa
dx

(26)

To determine the principal normal stiffness, considering the
i-1st joint scenario, the input force at this joint is influenced

by the end force at the first joint. As shown in Figure 7, based
on geometric characteristics, the static equilibrium equations
can be derived.

{{{{
{{{{
{

Fs
i−1 = Fsi cos θ− FNi sin θ

FN
i−1 = Fs

i sin θ+ FN
i cos θ

Mi −Mi−1 = Fsi−1l sin θ/θi−1 + FNi−1l (1− cos θ)/θi−1

(27)

Through the above equation, the forces at the bottom of the
second joint and subsequently determine the strain energy within
the second joint can be solved. The strain energy of the i-2nd joint
aligns with Equation 27. Similarly, can be derived (n = 1, 2…i), thus
obtaining the total strain energy of the continuum. This enables the
stiffness of the notched continuum in the principal normal direction
can be expressed.

To solve for the deputy normal stiffness of the notched
continuum, as shown in Figure 7A, when subjected to an external
force Fb, a torque is generated. The force situation is illustrated
in Figure 7C. Similar to the static analysis of the i-2nd joint
and Equations 13, 14, the strain energy of the continuum joints
can be determined. In the i-1st joint, the condition satisfied
is shown in Equation 28.

{{{{{
{{{{{
{

Fs
i = Fs

i−1

Mi−1 =Mi − 2Fs
i l
θi−1

sin θ
2

Ti−1 = Ti + Fsi−1l (1− cos θ)/θi−1

(28)

By analogously applying the static equilibrium relationships
in the i-2nd joint, we can similarly derive (n = 1, two
…i) the total strain energy of the continuum. The stiffness
of the notched continuum in the transverse direction can
be expressed.

Analyzing the axial stiffness of the drive cable, when the axial
load Fa is applied to the end of the continuum, as indicated
by earlier discussions and considering static equilibrium and
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FIGURE 7
Three consecutive joint bending situations. (A) Bending condition of joint i. (B) Bending condition of joint i-1. (C) Bending condition of joint i-2.

FIGURE 8
The continuum drive cable’s coupled model.

deformation coordination relationships, dx and Ka can be shown in
Equation 29 and Equation 30.

dx =
Θ

∫
0

Falcos2 θ
E2AΘ

dθ+
Θ

∫
0

kFal sin2 θ
G2AΘ

dθ+
Θ

∫
0

Fa(1− cos θ)2

E2I2
l3

Θ3 dθ

=
Fal

E2AΘ
2Θ+ sin 2Θ

4
+

kFal
G2AΘ

2Θ− sin 2Θ
4

+
Fa
E2I2

l3

Θ3
6Θ− 8 sinΘ+ sin 2Θ

4
(29)

Ka = (
l

E2AΘ
2Θ+ sin 2Θ

4
+ kl
G2AΘ

2Θ− sin 2Θ
4
+ 1
E2I2

l3

Θ3
6Θ− 8 sinΘ+ sin 2Θ

4
)
−1

(30)

When analyzing the primary normal stiffness of the driving
cable, and considering that the end of the continuum is subjected
to a load Fn in the primary normal direction, as previously
discussed. Thus dx and Kn can be described in Equation 31 and
Equation 32.

dx =
Θ

∫
0

Fnl sin2 θ
E2AΘ

dθ+
Θ

∫
0

kFnlcos2 θ
G2AΘ

dθ+
Θ

∫
0

Fn sin2 θ
E2I2

l3

Θ3 dθ

=
Fnl

E2AΘ
2Θ− sin 2Θ

4
+

kFnl
G2AΘ

2Θ+ sin 2Θ
4
+

Fn
E2I2

l3

Θ3
2Θ− sin 2Θ

4
(31)

Kn = (
l

E2AΘ
2Θ− sin 2Θ

4
+ kl
G2AΘ

2Θ+ sin 2Θ
4
+ 1
E2I2

l3

Θ3
2Θ− sin 2Θ

4
)
−1

(32)

When analyzing the secondary normal stiffness, upon the
continuum’s end being subjected to a load Fb in the deputy normal
direction, resulting in reactions and moments at the end of the
cable. Thus dx and Kb can be described in Equation 35 and
Equation 34.

dx =
Θ

∫
0

Fb(1− cos θ)2

G2IP
l3

Θ3 dθ+
Θ

∫
0

kFbl
G2AΘ

dθ+
Θ

∫
0

4Fb sin
2 θ
2

E2I2
l3

Θ3 dθ

=
Fb

G2IP2
l3

Θ3
6Θ− 8 sinΘ+ sin 2Θ

4
+
kFbl
G2A
+

2Fb
E2I2

l3

Θ3 (Θ− sinΘ)

(33)

Kb = (
1

G2IP2
l3

Θ3
6Θ− 8 sinΘ+ sin 2Θ

4
+ kl
G2A
+ 2
E2I2

l3

Θ3 (Θ− sinΘ))
−1

(34)

Comparing the coupled stiffness between the continuum
and the cables in different directions, the expressions for their
stiffness along the axial have been derived, principal normal,
and deputy normal directions in preceding sections. Thus, the
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FIGURE 9
Schematic diagram of establishing the coordinate system of a dual-segment notched continuum robot.

FIGURE 10
Variation of stiffness with angle. (A) Axial stiffness distribution of the continuum. (B) Principal normal stiffness distribution of the continuum. (C)
Secondary normal stiffness distribution of the continuum.

combined stiffness in these three orientations can be determined,
as outlined in Hong et al. (2022).

{{{{
{{{{
{

Ka = Ka−C +Ka−L

Kn = Kn−C +Kn−L

Kb = Kb−C +Kb−L

(35)

In this context, subscript C denotes the continuum, while
subscript L represents the drive cable. The iterative computations
are performed on the directional stiffness of the notched continuum
and drive cable coupled model using MATLAB. The parameter
definitions and values used for modeling are detailed in Table 1,
outside the continuum section.

Taking the total bending angle as a variable, the computed results
are depicted in Figure 8. It is evident that the trends align closely
with those of an ideal continuum; as the bending angle increases,

Ka gradually decreases, Kn exhibits increased fluctuations, and Kb
demonstrates the U shaped trend, albeit with minimal magnitude of
variation.

Analyzing the stiffness model of the continuum and
the cables, as concluded earlier, the deformation can be
expressed as Equation 17. The stiffness model of the continuous
system’s end under spatial loads can be represented by
Equation 18.

3.4 Dual-section notched continuum robot
stiffness model

As shown in Figure 9, the dual-segment configuration studied
in this paper consists of nested outer and inner continuum
with different diameters and lengths. Both inner and outer
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FIGURE 11
The stiffness in different angles. (A) Spatial stiffness distribution under different Θ1 conditions. (B) Spatial stiffness distribution under various Θ2

conditions.

continuum are purely sectional. The geometric parameters of
the single-segment continuous body are provided in Section 3.2.
In this section, to distinguish between the inner and outer
continuum, the inner tube is designated as Tube 2 and the
outer tube as Tube 1. The following analysis considers the
combined stiffness when both tubes are bent in arbitrary
configurations. It is assumed that the bending planes of the two
segments do not overlap, and the angle between these bending
planes, denoted as γ, is between Y1−bottom and Y2−end.

Before proceeding with the subsequent derivations, this paper
makes several assumptions to simplify the calculations regarding
the model: 1). Frictional effects between the drive cable and the
continuum are neglected. 2). The notches at the coupling interfaces
of the two segments of the continuum overlap and have identical
shapes. 3). The internal forces within both Segment two and
Segment one at their junction interface are assumed to be exactly
equal. 4). It is assumed that the bending directions of the two
segments of the continuum lie within the same plane, and rotational
effects of the continuum are disregarded. When the two segments
of the continuum are coupling, the overall axial stiffness is the
sum of the overall stiffness of the wire and the overall stiffness
of the continuum.

K = KC +KL (36)

In the setup, continuum 2 comprises a total of i segments
of joints, while Continuum 1 comprises a total of 2i segments
of joints. Aside from differences in length, diameter, and cross-
sectional dimensions, all other parameters between Continuum 1
and Continuum 2 are identical. The overall bending angles at the
coupled part of the continuum are represented as Θ1, and the overall
bending angles where the continuum is not involved in the coupling
are denoted as Θ2. Econtinuum and Ecable refer to the elastic moduli

of the continuum and the cable respectively, while GC and GL
denote the shear moduli of the continuum and the driving cables.
IXC21, IXC22, IXC1, IYC21, IYC22 and IYC1 respectively represent
the moments of inertia of continuum two in the uncoupled part,
continuum two in the coupled part, and continuum 1 in the X and
Y directions.

After concatenation, the total energy of the continuum
equals the sum of the total strain energies of continuum 1 and
continuum 2.

Vε−C =
n

∑
m=1

Vε
m +

i

∑
m=1

Vε
m (37)

The total strain energy in the continuum section:

Vε−C =
i
∑
1
Vn
ε−C2 +

i
∑
1
Vn
ε−C1

=
i
∑
n=j
(

l

∫
0

(FNn)2
2ECA2

ds+
l

∫
0

k(Fsn)
2

2GCA2
ds+

l

∫
0

(Mn)2
2ECIC21

ds)

+
j
∑
n=1
(

l

∫
0

(FNn)2
2ECA2

ds+
l

∫
0

k(Fsn)
2

2GCA2
ds+

l

∫
0

(Mn)2
2ECIC22

ds)

+
m
∑
n=1
(

l

∫
0

(FNn)2
2ECA1

ds+
l

∫
0

k(Fsn)
2

2GCA1
ds+

l

∫
0

(Mn)2
2ECIC1

ds)

(38)

where FNn, FSn, and Mn are the stress conditions at the bottom of
the nth joint of the continuum, with stress values derived recursively
from the preceding section. I is the moment of inertia, and the
expressions for different joints are distinct.

The strain energy of the cable is the sum of the total strain
energy of the two segments of cable2 and the strain energy of
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FIGURE 12
The spatial stiffness distribution for different numbers of driving strategies. (A) The spatial stiffness distribution under different Θ1 conditions. (B) The
spatial stiffness distribution under various Θ1 conditions. (C) The spatial stiffness distribution under different Θ2 conditions. (D) The spatial stiffness
distribution under various Θ2 conditions.

cable1, namely,:

Vε−L =
2
∑
1
Vn
ε−L2 +Vε−L1

= (
l1

∫
0

(FNn)2
2ELA

ds+
l1

∫
0

(kFsn)
2

2GLA
ds+

l1

∫
0

(Mn)2
2ELIL21

ds)

+(
l2

∫
l1

(FNn)2
2ELA

ds+
l2

∫
l1

(kFsn)
2

2GLA
ds+

l2

∫
l1

(Mn)2
2ELIL22

ds)

+(
l2

∫
0

(FN
n)2

2ELA
ds+

l2

∫
0

(kFsn)
2

2GLA
ds+

l2

∫
0

(Mn)2
2ELIL1

ds)

(39)

Given the known bending and deflection angles of the two-
segment continuum, the stiffness of the end under axial force Fa

can be computed using the aforementioned method. Similarly, the
total strain energy in the principal and secondary directions of the
two-segment notched continuum can be calculated. Drawing an
analogy to Equations 35–39, the stiffness models for the principal
and secondary directions can be derived.

The stiffness model of the drive cable is established in
Equation 40. When the continuum’s end is subjected to axial load
Fa, the stiffness of the drive screw can be calculated in two parts:
uncoupled and coupled.

Ka−L = Ka−LU +Ka−LUU (40)
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FIGURE 13
The prototype system of continuum robot experimental platform.

TABLE 2 Experimental data of stiffness with invariable Θ1.

Θ2/◦ Θ1/◦ Displacement/
mm

Θ2/◦ Θ1/◦ Displacement/
mm

20 10 0.966 40 10 0.386

25 0.337 25 0.239

40 0.274 40 0.132

50 0.261 50 0.191

where U is the coupled part, UU is the uncoupled part. The input
force for the uncoupled part of the drive cable is simply Fa, whereas
for the coupled part, it should be the reaction force exerted on the
lower end of the uncoupled part. Therefore, this study only needs
to refer to Section 3.4 to separately calculate the stiffness of each part,
and then linearly combine them. Similarly, when the continuum’s
end is subjected to loads in the principal normal direction Fn
and secondary normal direction Fb, the stiffness is defined in the
same manner.

Compare the coupled stiffness in various directions between the
continuum and the drive cable. Referring to Section 3.3, iterative
calculations of the coupled stiffness models in each direction for the
notched continuumanddrive cable are conducted inMATLAB,with
parameters provided in Section 2.

Using the total bending angle Θ1 and of the two-segment
continuum as variables, the three-dimensional graph of stiffness
distribution is plot, as shown in Figure 10.

It can be observed that the axial stiffness Fa of the continuum
is greatly influenced by Θ1 and Θ2 from Figure 10A. When both
angles approach zero, the axial stiffness reaches its maximum value,
and the stiffness value sharply decreases as the angles in-crease.
Furthermore, it is noted that for smaller values of θ, the stiffness
curve shows significant variations, closely resembling the axial
stiffness curve of a single-segment continuum. In contrast, for larger
values of θ, the magnitude of stiffness variation diminishes, and the

trend of change also alters., It can be seen that the principal normal
stiffness Kn is significantly influenced by Θ2 from Figure 10B.
Specifically, as Θ1 increases, Kn also increases, while the influence
of Θ1 on is relatively small. When both Θ1 and Θ2 approach zero,
Kn reaches its minimum value, which closely resembles the trend
of the principal normal stiffness of a single-segment continuum. It
can be observed that the secondary normal stiffness Kb is similarly
greatly affected by Θ2 from Figure 10C, As Θ2 increases, Kb initially
increases rapidly, then its rate of in-crease slows down, and finally
it increases rapidly again. Conversely, the impact on Kn is relatively
minor, and as Θ1 increases, Kb initially increases rapidly followed
by a slower rate of increase. Similarly, Kb reaches its minimum
value as Θ1 and Θ2 approach 0. This trend closely aligns with
the behavior of secondary normal stiffness observed in a single
continuum segment.

Establish the spatial stiffness model for the two-segment
continuum. From Section 3.3, let φa, φn, and φb denote the
angles between the spatial load F and the three force directions,
respectively. The stiffness model of the two-segment continuum
under the action of spatial loads can be expressed as Equation 18.
To compare the stiffness under four different driving modes, the
coupled stiffness under different conditions by varying the bending
angles and angles of forces on the continuum are simulated and
calculated in MATLAB. In the calculations, there are a total of
five angle variables, denoted as Θ1, Θ2, φa, φn, and φb. Since this
study only considers the case where the bending angles of the two
continua are in the same plane, φb = 90

◦. The simulation results
are shown in Figure 11.

Comparison of spatial stiffness of the two-segment continuum
under different driving strategies. The drive cable quantity is varied,
thus changing the inertia moment and total cross-sectional area
of the drive cables. Several sets of Θ1 and Θ2 are selected to
compare the spatial stiffness of the continuum. Partial simulation
results are shown in Figure 12, where Figures 12A, B vary with
Θ1, Figures 12C, D varywithΘ2. From the figures, it can be observed
that in practice, the stiffness of the continuum is nearly the same
for the External 4+Internal 4 and External 2+Internal 4 strategies,
and similarly for the External 4+Internal 2 and External 2+Internal
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FIGURE 14
Comparison of theoretical and actual stiffness of the continuum under constant Θ1. (A) Θ2 = 20◦. (B) Θ2 = 40◦.

FIGURE 15
Comparison of theoretical and actual stiffness of the continuum under constant Θ2. (A) Θ1 = 15◦. (B) Θ1 = 35◦.

TABLE 3 Experimental data of stiffness with invariable Θ2.

Θ1/
◦ Θ2/

◦ Displacement/
mm

Θ1/
◦ Θ2/

◦ Displacement/
mm

15 10 0.623 35 10 0.166

25 0.470 25 0.114

40 0.393 40 0.078

50 0.260 50 0.121

2 strategies. Overall, the relationship in magnitude is External
4+Internal 4 > External 2+Internal 4 > External 4+Internal 2 >
External 2+Internal 2.

4 Experiment and result analysis

In this section, the continuum experimental platform is built
and the basic performance is tested. The stiffness model verification
experiment based on the experimental platform is carried out.
Finally, the stiffness of the series continuum under different driving
strategies is compared experimentally.

4.1 Experimental platform testing

The serial continuum experimental platform constructed in this
study is depicted as shown in Figure 13. Two segments of continuum
robots are respectively mounted at the front end. Additionally, the
bending angle of the continuum robot is measured using a single
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TABLE 4 Stiffness experimental data with fixed Θ1.

Strategy Displacement/mm Order Strategy Displacement/mm Order

External 4+Internal 4 0.102 1 External 4+Internal 4 0.083 1

External 2+Internal 4 0.110 2 External 2+Internal 4 0.086 2

External 4+Internal 2 0.147 3 External 4+Internal 2 0.101 3

External 2+Internal 2 0.171 4 External 2+Internal 2 0.106 4

electromagnetic tracking sensor installed at the end-effector of the
robot. The sensor provides real-time position and orientation data
of the end-effector. The bending angle θ is calculated based on the
direction vectorD obtained from the sensor and the initial direction
vectorD0. The calculation formula is given by Equation 41.

θ = arccos(
D ⋅D0

‖D‖‖D0‖
) (41)

where D is the direction vector measured by the sensor, and D0 is
the initial direction vector of the robot.

Motion tests on the inner and outer continuumbodies at various
angles are conducted. Due to the material characteristics of the
continuum robot, the bending angle between the two segments to
be less than 60◦ during the experiments are controlled. This setup
is sufficient for small deformation angles. For larger deformations,
the use of an array of sensors may be considered in future work to
enhance measurement accuracy.

4.2 Stiffness model verification

To validate the spatial stiffness model proposed in Section 3.4
a series of experiments are designed in this paper. The continuum
robot is bent to a certain extent, and electromagnetic tracking
sensors are used to detect its initial position. The weight of 20 g is
attached to the end of the continuum robot to provide a constant
force, and the change in end position is monitored simultaneously.
This allowed for the calculation of the overall stiffness of the
continuum robot. Initially, Θ2 is kept constant while gradually
increasing Θ1. Displacement data for two sets of continuum robots
are measured to obtain stiffness curves, as shown in Table 2
and Figure 14. Subsequently, Θ1 is kept constant while gradually
increasing Θ2 and displacement data are collected to derive stiffness
curves, as shown in Figure 15, with corresponding data shown
in Table 3 and Figure 15. To ensure clarity and readability, the
corresponding figures display the average values with error bars
representing the standard deviations.

From Figures 14, 15, it can be seen that under small deformation
angles, the actual stiffness of the continuum follows a trend closely
aligned with the theoretical stiffness curve. This confirms that the
spatial stiffness model proposed in Section 3.4 largely conforms to
the practical model. However, there are still errors. Preliminary
analysis shows that the sources of errors are as follows: (1) The
influence of friction is not considered in the theoretical model. (2)
The constant curvature model is used for continuum modeling,
which has errors. (3) There are systematic errors and accidental

errors in the experiment. (4) There are errors in the selection of
actual material characteristic parameters, such as Young’s modulus,
shear modulus and other parameters.

4.3 Continuum stiffness comparison

The verification work on the stiffness relationships of
serial continuum under different driving strategies proposed in
Section 3.4 is conducted. The experimental setup is identical to the
previous subsection. Due to the conclusion that under the External
4+Internal four and External 2+Internal 4 strategies, the stiffness
of continuum is nearly identical, as is the case under the External
4+Internal two and External 2+Internal 2 strategies, with an overall
hierarchy of External 4+Internal 4 > External 2+Internal 4 >
External 4+Internal 2 > External 2+Internal 2, serial continuum
satisfy this regardless of angle. Thus, experiments are conducted
with randomly assigned angle values for two-stage continuum,
only changing the number of drive cables. The experimental results
are shown in Table 4. Table 4 presents the experimental data for
stiffness comparison under different driving strategies. The input
variables are the driving strategies (e.g., External 4+Internal 4,
External 2+Internal 4), while the output variables are the measured
displacements under these strategies.

It can be observed that the stiffness order under the four driving
strategies is generally consistent with the theoretical results, but
there are numerical errors that may cause the conclusion that under
the External 4+Internal 4 and External 2+Internal 4 strategies, the
stiffness of continuum is nearly identical, as is the case under the
External 4+Internal 2 and External 2+Internal 2 strategies to be
less obvious.

5 Conclusion

Basic performance evaluation of continuum robots is beneficial
to their operation optimization and precise control in neurosurgery.
The basic performance of continua is mainly evaluated by stiffness,
but there is no systematic and universal evaluation system. In
order to realize the driving and testing of continuum with different
configurations and different driving strategies, this paper designs
a universal experimental platform for continuum robot, and the
continuum stiffness evaluationmethod based on the energymethod
and Castigliano’s second theorem is proposed. By solving the
internal force and energy of the cut continuum in sections,
the stiffness model of single-segment and double-segment series
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continuum is established. The relationship between the individual
stiffness and bending angle of the single-segment continuum and
the driving cables in the axial direction, main normal direction,
and secondary normal direction is obtained. The simulation and
experimental results show that under the condition of small
deformation angle, the spatial stiffness model obtained by strain
energy basically conforms to the actual model, which verifies
the correctness and rationality of the stiffness calculation method
proposed in this paper. Future work will explore the incorporation
of nonlinear material properties and geometric nonlinearities to
extend the model’s applicability to larger deformations.
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