
TYPE Mini Review
PUBLISHED 20 March 2025
DOI 10.3389/frobt.2025.1518965

OPEN ACCESS

EDITED BY

Mario Molinara,
University of Cassino, Italy

REVIEWED BY

José Antonio Becerra Permuy,
University of A Coruña, Spain

*CORRESPONDENCE

Ruihao Li,
liruihao2008@gmail.com

Wei Yi,
yi_wei_cs@163.com

RECEIVED 29 October 2024
ACCEPTED 25 February 2025
PUBLISHED 20 March 2025

CITATION

Liu D, Zhu Y, Liu Z, Liu Y, Han C, Tian J, Li R
and Yi W (2025) A survey of model
compression techniques: past, present, and
future.
Front. Robot. AI 12:1518965.
doi: 10.3389/frobt.2025.1518965

COPYRIGHT

© 2025 Liu, Zhu, Liu, Liu, Han, Tian, Li and Yi.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

A survey of model compression
techniques: past, present, and
future

Defu Liu, Yixiao Zhu, Zhe Liu, Yi Liu, Changlin Han, Jinkai Tian,
Ruihao Li* and Wei Yi*

Intelligent Game and Decision Lab (IGDL), Beijing, China

The exceptional performance of general-purpose large models has driven
various industries to focus on developing domain-specific models. However,
large models are not only time-consuming and labor-intensive during the
training phase but also have very high hardware requirements during the
inference phase, such as large memory and high computational power. These
requirements pose considerable challenges for the practical deployment of
large models. As these challenges intensify, model compression has become
a vital research focus to address these limitations. This paper presents a
comprehensive review of the evolution of model compression techniques, from
their inception to future directions. To meet the urgent demand for efficient
deployment, we delve into several compressionmethods—such as quantization,
pruning, low-rank decomposition, and knowledge distillation—emphasizing
their fundamental principles, recent advancements, and innovative strategies. By
offering insights into the latest developments and their implications for practical
applications, this review serves as a valuable technical resource for researchers
and practitioners, providing a range of strategies for model deployment and
laying the groundwork for future advancements in model compression.

KEYWORDS

model compression, deep neural networks, large language model, pruning,
quantization, low-rank decomposition, knowledge distillation

1 Introduction

Deep learning has rapidly developed since 2012, demonstrating strong capabilities in
representation learning and achieving remarkable success across various fields. Notably,
the accomplishments of deep networks on the ImageNet benchmark Jia et al. (2009) have
significantly propelled research on deep networks and their applications.The effectiveness of
deep learning lies in its ability to transform rawdata into abstract representations, facilitating
the discovery, learning, and automatic representation of data features. By employing a
hierarchical structure, deep learning models learn feature representations at different levels,
allowing them to progressively capture both simple concepts and complex abstract features.
Research indicates that in deep neural networks, layers near the input learn lower-level
features, while layers closer to the output capturemore complex concepts (Yann et al., 2015).
This phenomenon is likely due to the deeper layers having a larger receptive field.

The success of deep learningmodels can be attributed to the availability of large datasets,
increased computational power, and advancements inmodel architecture.With thematurity
of internet applications, various fields have accumulated substantial amounts of data,
while rapid advancements in chip technology have significantly enhanced computational

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1518965
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1518965&domain=pdf&date_stamp=2025-03-17
mailto:liruihao2008@gmail.com
mailto:liruihao2008@gmail.com
mailto:yi_wei_cs@163.com
mailto:yi_wei_cs@163.com
https://doi.org/10.3389/frobt.2025.1518965
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1518965/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1518965/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1518965/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Liu et al. 10.3389/frobt.2025.1518965

capabilities. Deep learningmodels have become the preferred choice
across numerous applications due to their superior performance.
Research suggests that increasing the depth of neural networks
generally improves model performance (Li et al., 2020). However,
deeper models also require significantly more computational
resources and memory. For example, AlexNet, introduced with
a parameter count of 240 MB, was soon followed by VGG-Net,
which required over 500 MB of parameters. The limited memory
and computational power of many edge devices severely constrain
the deployment of deep models in edge computing environments
(Wu et al., 2016; Han et al., 2016). Despite their large number of
learnable parameters, thesemodels exhibit considerable redundancy
Denton et al. (2014), resulting in high computational costs and
substantial storage demands. For instance, the VGG-16 model
requires over 30 billion floating-point operations (FLOPs) to classify
a single image (Zhou et al., 2017). Therefore, optimizing models to
reduce computational and storage requirements, while maintaining
performance, is crucial for expanding the applicability of deep
learningmodels tomobile devices, embedded systems, and real-time
applications (Zhou et al., 2017).

The success of the GPT-3 model has significantly advanced
the application of large models across various fields, particularly
propelling the development of models in specific vertical domains.
However, large models have reached an unprecedented scale with
hundreds of millions of parameters, making the training of such
models a task that only a few teams worldwide can accomplish.
Even deploying these models requires extremely high hardware
support. For instance, the Llama2 model, which has 130 billion
parameters (Touvron et al., 2023), requires 260 GB of memory even
when using half-precision float16 (2 bytes per parameter). The
successful application of large models has significantly increased
the tension between algorithmic demands and low-power hardware,
underscoring the urgent need for more efficient model compression
algorithms to address the limitations of computational power and
memory capacity in hardware.

In summary, although over-parameterized models typically
achieve strong performance, deploying them directly on edge
devices presents considerable challenges due to their substantial
hardware demands. These models often have a large number of
parameters, leading to high memory usage, significant inference
latency, and increased computational power consumption.
Consequently, these factors greatly limit the feasibility of deploying
deep models on edge devices.

To address the above challenges, model compression techniques
have become a popular research direction for deploying large/deep
models on edge devices with limited computational power, aiming
to minimize performance loss while efficiently deploying “large”
models (with high parameter counts) onto “small” devices (with low
computational resources).

1.1 Motivation and contributions

Recent research indicates that both fully connected
and convolutional neural networks possess a significant
number of redundant parameters when trained on limited
datasets (Frankle and Carbin, 2019; Frankle et al., 2020;
Chen et al., 2020; Da Cunha et al., 2022). Although the large number

of redundant parameters in models significantly contributes to their
learning and generalization capabilities, they also present two major
challenges during deployment: the limited computational power and
memory capacity of edge devices. Constrained by size and power
consumption, edge devices have limitedmemory and computational
resources. Running inference with the original model not only
consumes a large amount of memory but also results in high power
consumption, long inference times, and slow response speeds. Even
when disregarding power consumption and inference speed, the
memory limitations alone can make it challenging to deploy many
deep learning models directly on edge devices. To facilitate the
deployment of deep models on edge devices, increase inference
speed, and reduce power consumption, it is essential to compress
the models by eliminating redundant parameters and reducing
their overall size.This compression decreasesmemory requirements
and computational load during inference, thereby achieving faster
inference speeds.

This paper conducts an extensive literature review on
model compression techniques, focusing on providing a deeper
explanation of different types of compressionmethods.The research
categorizes these techniques into four domains: model pruning,
model distillation, low-rank decomposition, and quantization.
It emphasizes the compression methods and their underlying
theories, offering a detailed analysis of the performance of various
compression approaches. Furthermore, it explores several promising
future directions, such as pruning algorithms that do not require
fine-tuning and fully quantized model compression techniques.
Ultimately, this paper aims to present a broad overview of model
compression technologies and provide valuable insights for selecting
appropriate techniques for compressing deep models.

2 Related literature

This paper broadly classifies model compression techniques into
three stages: the period prior to the emergence of deep models is
referred to as the era of shallow networks; the period following the
advent of deep learning but before the emergence of large models is
identified as the era of deep models; and the period after the rise of
largemodels is termed the era of largemodels. Due to constraints on
the scope of this section, we provide an overview of representative
works from these three stages.

2.1 Shallow network era (before 2012)

The initial model compression techniques can be traced back
to the early 1980s. At that time, compression primarily aimed
to reduce computational complexity by eliminating non-essential
network parameters, a technique known as pruning. Conceptualized
during the early 1980s and 1990s, pruning was applicable to
any part of a deep neural network (Mozer and Smolensky, 1988;
Hanson and Pratt, 1988; Romaniuk, 1993; Weigend et al., 1991a;
Weigend et al., 1991b; Hassibi and Stork, 1992; Reed, 1993).
The pioneering works of LeCun et al. (1989), who proposed
Optimal Brain Damage (OBD), and Hassibi and Stork (1992),
who introduced Optimal Brain Surgeon (OBS), demonstrated that
unimportant weights could be removed from trained networks

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2025.1518965
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Liu et al. 10.3389/frobt.2025.1518965

without significantly affecting performance. Later, to identify the
minimal network enabling a robot to perform a specific behavior
without predefining the required sensors, Becerra et al. (2002)
proposed Gaussian Synapse Networks. This structure proved highly
efficient for developing behavior-based controllers by utilizing
evolutionary techniques to prune the network rather than retraining
it—a particularly insightful approach given the computational
resource limitations at the time. These methods laid the foundation
for model compression and profoundly influenced subsequent
developments. However, since both techniques rely on calculating
and ranking second-order derivatives to identify and remove
unimportant weights in an iterative process, they are more suited
to shallow networks (typically with fewer than three layers). For
modern deep models, known for their complexity, the retraining
costs are too high for direct application. Nevertheless, the principles
behind pruning and optimization continue to influence model
compression today. For example, modern quantization methods,
such as AdaRound Nagel et al. (2020), incorporate second-order
derivative information to optimize quantization functions.

In summary, the primary goal of pruning algorithms is to
extract a sub-networkwith fewer parameters without compromising
accuracy. The pruned network, as a smaller version of the original,
can represent the model with reduced size or parameter count
(Denil et al., 2013). Over-parameterized networks can thus be
effectively compressed while maintaining strong generalization
performance (Frankle andCarbin, 2019; Sun et al., 2022; Arora et al.,
2018). Therefore, a key direction in pruning research focuses on
designing methods that reduce computational costs or increase
compression rates, while selecting optimal network structures
without significantly degrading prediction accuracy.

2.2 Deep model era (2012–2022)

Early pruning work laid the groundwork for modern
compression techniques, with subsequent research extending these
ideas and developing advanced compression methods suited to
deep models.

Deep learning, synonymous with deep neural networks
(typically more than three layers), integrates feature learning and
representation into a single framework through deep architectures.
These models have achieved exceptional performance in various
tasks, particularly convolutional networks, which excel in machine
vision tasks such as image recognition, object detection, and
semantic segmentation. In 2012, AlexNet Krizhevsky et al.
(2012) reduced the error rate in the ImageNet image recognition
competition by approximately 10 percentage points, winning
the championship and demonstrating the powerful capabilities
of deep models for the first time. It is considered the first
convolutional network to achieve a breakthrough in large-scale
image recognition. At that time, the model size was 240 MB,
which far exceeded the memory capacity of many on-chip systems,
posing new challenges for deployment. During this period, the
prevailing belief was that the deeper the network, the better its
generalization performance. In Simonyan and Zisserman (2015),
the authors introduced VGGNet, a classic example of deep
convolutional networks. By this time, the parameters of VGG16
had grown to 528 MB, presenting an even greater challenge for

hardware. As a result, reducing the size of deep models without
significantly sacrificing accuracy became one of the major research
focuses.

In response to the growing size of deep models, researchers
achieved several landmark breakthroughs in model compression.
For instance, inHan et al. (2016), the authors introduced the concept
of deep compression, combining pruning, quantization during
training, and Huffman coding, significantly reducing memory
usage in deep neural networks without substantial performance
loss. The core innovation, training quantization, groups weight
parameters into clusters, each sharing a floating-point value, thus
dramatically reducing memory overhead. This concept paved the
way for subsequent quantizationmethods. Zhou et al. (2017) further
refined this approach by allowing a portion of the weights to
retain full precision while quantizing others, reducing quantization
errors. In their study Krishnamoorthi, 2018), the authors found
that applying conventional quantization methods to MobileNetV2
(Sandler et al., 2019) led to a drastic performance drop from
70.9% to 0.1% on ImageNet (Jia et al., 2009). Building on this
finding, in Nagel et al. (2019), the authors observed that many
of the model’s channels were quantized to zero, obscuring the
differences between channels. In response, they proposed a data-
free quantizationmethod for deep neural networks that balances the
weight range based on the scale-invariance property of activation
functions. This approach eliminates the need for fine-tuning or
hyperparameter selection, achieving performance comparable to
the original model across common computer vision architectures
and tasks.

In academia, some researchers pursue extreme compression
rates, focusing on theoretical rigor and achieving the lowest possible
bit widths. In Hubara et al. (2016), the authors proposed binary
neural networks, a radical compression method that uses only +1
and −1 to represent all values, including weights and activations,
achieving fully quantized inference. Without degrading accuracy,
this drastically reduced parameter size and increased inference
speed. Simultaneously, in Courbariaux et al. (2015), the authors
introduced BinaryConnect, which trains binary weights (1 or −1)
during forward and backward propagation, compressing parameters
to an extreme 1-bit format while retaining gradient accuracy. Like
dropout solutions, BinaryConnect acts as a regularizer, achieving
near state-of-the-art results on datasets like MNIST, CIFAR-10, and
SVHN. Improved methods such as XNOR-Net (Rastegari et al.,
2016), DoReFa-Net (Zhou S. et al., 2016), and Ternary Weight
Networks Li et al. (2016) followed, building on this extreme
quantization concept. In Zhao et al. (2021), the authors propose a
novel Bayesian Optimized compact 1-bit CNNs (BONNs) model,
leveraging the advantages of Bayesian learning to significantly
enhance the performance of 1-bit CNNs. BONNs integrate the prior
distributions of full-precision kernels, features, and filters into a
Bayesian framework to construct 1-bit CNNs in a comprehensive
end-to-end manner. The proposed Bayesian learning algorithms are
well-structured, optimizing the network across different kernels,
features, and filters, thereby improving both the compactness and
capacity of 1-bit CNNs. Additionally, they introduce a Bayesian
learning-based pruning method, which significantly boosts model
efficiency while maintaining competitive performance. This makes
the method highly applicable across various practical scenarios.
Extensive experiments on datasets such as ImageNet, CIFAR, and

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2025.1518965
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Liu et al. 10.3389/frobt.2025.1518965

TABLE 1 Post-training static quantization results across different models.

Model Domain Approach Example Accuracy

INT8 FP32 Ratio

ResNet50 v1.0 Image Recognition Post-Training Static Quantization pb 74.11% 74.27% −0.22%

ResNet50 v1.5 Image Recognition Post-Training Static Quantization pb/keras 76.25% 76.46% −0.28%

MobileNet V3 Image Recognition Post-Training Static Quantization pb 76.72% 76.75% −0.03%

Inception ResNet V2 Image Recognition Post-Training Static Quantization pb/keras 80.25% 80.40% −0.18%

ViT Image Recognition Post-Training Static Quantization pb 81.39% 81.92% −0.64%

DenseNet161 Image Recognition Post-Training Static Quantization pb 76.29% 76.29% 0.00%

BERT large SQuAD (Model Zoo) Natural Language Processing Post-Training Static Quantization pb 92.36% 92.98% −0.67%

BERT large SQuAD Natural Language Processing Post-Training Static Quantization pb 92.44% 92.99% −0.58%

Transformer LT Natural Language Processing Post-Training Static Quantization pb 25.82% 25.86% −0.15%

Transformer LT MLPerf Natural Language Processing Post-Training Static Quantization pb 27.13% 27.17% −0.13%

Mask R-CNN Inception V2 Object Detection Post-Training Static Quantization pb/ckpt 28.46% 28.73% −0.91%

YOLOv3 Object Detection Post-Training Static Quantization pb 83.28% 82.35% 1.12%

LFW demonstrate that BONNs outperform a variety of state-of-the-
art 1-bit CNN models in classification tasks, while also exhibiting
strong generalization performance in object detection.

However, industry applications demand solutions that can be
practicallydeployedonhardwarewhilemaintainingaccuracy.Current
2-bitor3-bitquantizationmethodsoftenrequire specializedhardware,
limiting their widespread deployment. In response, companies like
Google proposed a more general quantization standard (Jacob et al.,
2018),whichhasbeenimplementedinframeworkssuchasTensorFlow
Lite (TFLite), PyTorch, and ONNX. Additionally, the neural-
compressor, an open-source Python library released by Google,
supports various popular model compression techniques. In this
context, 8-bit quantization has become crucial for efficient inference
on modern hardware, offering a balance between performance and
compatibility. Many trained FP32 models can be quantized to INT8
with minimal loss in accuracy. Some of the post-training static
quantization results are listed in Table 1.

These landmark studies have played a critical role in model
compression, significantly reducing the size and computational
complexity of deep neural networks and inspiring further
development of efficient architectures and compression techniques.

2.3 Large model era (2022-now)

With the introduction of BERT (Devlin et al., 2018) and GPT-
1/2 (Radford and Narasimhan, 2018; Radford et al., 2019), and
especially the success of large models like GPT-3/4 (Brown, 2020;
OpenAI et al., 2024), ChatGPT, and Claude (Caruccio et al., 2024),
model compression faces new challenges: large models prioritize
generalization and versatility over performance on specific tasks.

Besides, due to their massive size, even inference for large, highly-
accurate LLMs may require multiple performant GPUs, which
limits the usability of such models. While there is emerging
work on relieving this pressure via model compression, the
applicability and performance of existing compression techniques
is limited by the scale and complexity of LLMs. Research on
compression techniques for large language models (LLMs) has
expanded significantly to address the growing demands for efficient
deployment on various hardware platforms. These techniques aim
to reduce the computational cost and memory footprint of LLMs
while retaining their performance. In this situation, some of the
milestone methods have been proposed for LLMs compression. In
Kurtic et al. (2022), the authors tackle the challenge of sparsifying
BERT models, a fundamental component in natural language
processing.They introduce the Optimal BERT Surgeon (oBERT), an
efficient and precise pruningmethod based on approximate second-
order information, which achieves state-of-the-art compression
results in both pre-training and fine-tuning stages of language
tasks. Specifically, oBERT enhances existing second-order pruning
techniques by enabling the pruning of weight blocks and is the first
approach of its kind scalable to BERT-sized models. Furthermore,
the authors explore compounding compression techniques to create
highly compressed yet accurate models suitable for deployment on
edge devices. These models set new benchmarks in sparse BERT
model performance across various metrics, including model size,
inference speed, and task accuracy. For example, compared to
the base dense BERT model, oBERT achieves a 10x reduction in
model size with less than 1% accuracy drop, a 10x CPU-inference
speedup with under 2% accuracy drop, and a 29x CPU-inference
speedup with less than 7.5% accuracy drop. In Frantar et al. (2023),

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2025.1518965
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Liu et al. 10.3389/frobt.2025.1518965

the authors propose OPTQ, a novel one-shot weight quantization
method based on approximate second-order information that is
both highly accurate and efficient. Specifically, OPTQ can quantize
GPTmodelswith 175 billion parameters in roughly fourGPUhours,
reducing the bitwidth to 3 or 4 bits perweightwithminimal accuracy
loss relative to the uncompressed baseline. This method represents
the first successful execution of a 175 billion-parameter model on a
single GPU for generative inference. Moreover, the method achieves
reasonable accuracy even under extreme quantization conditions,
such as 2-bit or ternary quantization. Experimental results show
that these improvements can lead to significant end-to-end inference
speedups over FP16, achieving approximately 3.25x acceleration
when using high-end GPUs, like the A100. In Cheng et al. (2023),
the authors introduce TEQ, a trainable equivalent transformation
designed to maintain FP32 precision in model outputs while
leveraging the benefits of low-precision quantization, particularly
3 and 4-bit weight-only quantization. The training process is
efficient, requiring just 1 K steps and less than 0.1% of the original
model’s trainable parameters. Additionally, the transformation
introduces no computational overhead during inference. The results
are comparable to state-of-the-art (SOTA) methods on standard
large language models (LLMs). Moreover, this approach can be
combinedwith other techniques to achieve even better performance.
In Lin et al. (2024), the authors observed that not all weight
parameters are equally important. Based on this insight, AWQ
uses activation values from calibration data to select the top 1%
of important parameters, which retain full precision, while the
remaining parameters are quantized to 4-bit, achieving nearly
8x compression without compromising large model performance.
Moreover, in Xu et al. (2024a), the authors further pushed the
boundaries by using shared parameters to achieve extreme 1-
bit quantization, where parameter tensors consist solely of 1, −1.
During inference, the original weights are reconstructed through dot
products of shared parameter vectors, reducing memory usage by
90% without significantly degrading performance.

3 Model compression methods

The goal of model compression is to significantly reduce
the number of parameters, improve inference speed, and lower
response latency, all while maintaining the model’s generalization
performance. One intuitive approach is to reduce the number
of parameters in deep models, which can be done in two ways:
First, redundant parameters in the network can be eliminated, a
method known as pruning. Second, large parameter tensors can be
decomposed into smaller tensors with fewer parameters, a technique
called low-rank decomposition. Another strategy involves reducing
the memory footprint of each parameter without decreasing
the total number of parameters, referred to as quantization.
Furthermore, from a knowledge transfer perspective, knowledge
distillation is also applied in model compression. Specifically, a
smaller network is trained to learn from the original model,
aiming to replicate its performance; this technique is known
as model distillation. As described above, the key compression
methods—quantization, pruning, low-rank decomposition, and
knowledge distillation—are illustrated in Figure 1. This paper
classifiesmodel compression techniques into four general categories:

pruning, low-rank decomposition, quantization, and distillation.
Each method is discussed in detail in the following sections.

3.1 Quantization methods

Quantizationinvolvesreducingtheprecisionofmodelweightsand
activations fromhigh-precision formats (e.g., FP32) to lower-precision
formats (e.g., INT8 or lower), which reduces memory usage and
accelerates inference. Mathematically, quantization maps continuous
floating-point numbers to discrete fixed-point numbers. For instance,
model parameters can be converted from 32-bit floating-point (FP32)
to 8-bit integer (INT8), or even to extremely low-bit formats like
2-bit or 3-bit fixed-point data types. Some approaches have even
employed 1-bit quantization to achieve maximal compression. A
float32 value requires 4 bytes of memory, while INT8 only needs 1
byte, and INT4 just half a byte.This form of quantization significantly
reduces themodel’smemoryfootprint,helpingmitigate theconstraints
on deep model deployment in edge devices, particularly for large
models. Moreover, since fixed-point operations can be performed
via bit-shifting, converting floating-point values to fixed-point not
only acceleratesmemory access by several times but alsomakes fixed-
pointoperationsmoreamenable tohardwareacceleration.This further
reduces the computational demands on hardware and accelerates the
deployment of deep models on edge devices.

3.1.1 Quantization theory
Quantization is essentially a mapping from floating-point

numbers to fixed-point numbers, while dequantization reverses this
by mapping fixed-point numbers back to floating-point numbers.
For example, during image preprocessing, it is common to scale
an image with unsigned 8-bit integer values ranging from 0 to 255
into a tensor with 32-bit floating-point values ranging from 0.0
to 1.0; this process is called dequantization. Similarly, converting
model parameters from a range of 0.0–1.0 into unsigned 8-bit
integers with values between 0 and 255 is known as quantization.
As shown in Figure 2, the core principle of model quantization is to
represent model parameters using fewer bits. While dequantization
generally does not cause information loss, quantization often leads
to a reduction in precision. This occurs because float32 has a
wider range and greater precision than uint8, meaning many values
cannot be exactly represented in uint8 and must be rounded. The
difference between a quantized model and a full-precision model
arises from rounding and clipping during the quantization process.
Essentially, quantization converts floating-point numbers into fixed-
point numbers, discretizing the parameter values.

The simplest form of quantization divides a continuous range of
real values into a finite number of intervals (e.g., d-bit integers create
2d intervals), and all real values within the same interval are mapped
to the same integer. This process can be described by the following
Equation 1:

q = round(r
S
+Z) (1)

where r represents the floating-point value, S is the scaling factor
that defines the ratio between real numbers and integers, and Z is
the zero point, corresponding to the integer representation of zero
in the real number range. The rounding function round(⋅) adjusts

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2025.1518965
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Liu et al. 10.3389/frobt.2025.1518965

FIGURE 1
A taxonomy of model compression based on the focus of each method.

FIGURE 2
The process of model quantization.

the values to the nearest integer. The scaling factor S and zero point
Z are calculated as shown in Equations 2, 3:

S =
rmax − rmin

qmax − qmin
(2)

Z = round(qmax −
rmax

S
) (3)

where rmax and rmin are the maximum and minimum real values,
and qmax and qmin are the maximum and minimum values in the
quantized range. It is important to note that the zero pointZ in fixed-
point representation corresponds exactly to zero in the real number
range without any loss of precision after quantization.

In quantized models, two key concepts are the value range and
clipping. In uniform quantization, an important factor is defining

the value range [α,β], where values below α are clipped to α, and
values above β are clipped to β. This value range directly impacts the
scaling factor S in uniform quantization.

S =
β− α

2b − 1
(4)

In general, a wider value range reduces the likelihood of outliers
in the input data being clipped. However, this comes at the cost of
more data points beingmapped to the same fixed-point value, which
can result in significant information loss and a rapid degradation in
the performance of the quantized model. As shown in Equation 4,
this is the trade-off associated with using a larger scaling factor.

To optimize quantization performance, the value range
typically needs to be calibrated based on the training data.

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2025.1518965
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Liu et al. 10.3389/frobt.2025.1518965

This calibration is not a fine-tuning or retraining of the model,
but rather a selection process to determine the appropriate
weight range. Common calibration methods include using the
maximum and minimum values, the absolute maximum value,
and minimizing the quantization error between floating-point and
integer representations (KL-divergence).

3.1.2 Overview of quantization methods
Here, we briefly introduce some concepts related to

quantization methods. Although quantization fundamentally
involves mapping model parameters from floating-point to integer
values, quantization methods can be categorized in various ways
depending on the specific approach. As shown in Figure 3,
quantization methods can be classified according to factors such
as the partitioning of quantization intervals, the granularity
of quantization, whether retraining is required, the target of
quantization, and the type of operations executed during inference.
Below, the main quantization methods are defined and explained.

1. Symmetric and Asymmetric Quantization: Quantization can
be classified into symmetric and asymmetric quantization
based on whether the quantization interval is symmetric.
In symmetric quantization, the condition α+ β = 0 holds,
whereas if this condition is not satisfied, it is referred to as
asymmetric quantization.

2. Quantization Granularity: Based on the granularity of
application, quantization methods are divided into layer-wise,
channel-wise, and group-wise quantization. Typically, finer
granularity leads to better quantization results but requires
more storage for parameters (e.g., scaling factors) and increases
computational cost. Therefore, many methods balance the
model’s performance and computational overhead by adjusting
the granularity of quantization.

3. Post-Training Quantization (PTQ) and Quantization-Aware
Training (QAT): Depending on whether the model requires
retraining after quantization, methods are divided into PTQ
and QAT. QAT involves retraining or fine-tuning the model
after quantization to reduce quantization errors, while PTQ
applies quantization without retraining, though it requires a
calibration set to correct deviations caused by quantization.

Given the limited range of fixed-point numbers, quantization
inevitably introduces quantization errors, which can cause the
model to deviate from the optimal point achieved with floating-
point precision. To mitigate this, QAT simulates the quantization
process during retraining or fine-tunes themodel to help it converge
to a better point. However, since QAT requires retraining, it can be
prohibitively expensive for large models with billions of parameters
(LLMs). To reduce the cost of retraining, PTQ uses non-training
methods (e.g., data calibration) to achieve similar performance to
the original model without additional computation. Since PTQ
does not involve retraining, it is generally less effective than QAT,
which fine-tunes the model by adjusting quantization parameters
during retraining. Notably, PTQ can still achieve nearly the same
performance as the original model when quantizing weights to 4
bits, as seen in methods like DFQ (Nagel et al., 2019), GPTQ/OPTQ
(Frantar et al., 2023), and AWQ (Lin et al., 2024).

4. Weight-only Quantization and Weight and Activation
Quantization: These methods differ based on whether only

the weights or both weights and activations are quantized.
Weight-only quantization reduces the precision of the weight
parameters without affecting the activations (neuron outputs),
thus preserving the original precision of the network outputs
while compressing the model using fewer bits, leading to lower
memory requirements.

Weight and activation quantization methods reduce both
the weight parameters and activations, significantly lowering
memory and computational demands. However, compressing
activations can result in a greater loss of feature information,
increasing quantization error and potentially degrading the model’s
generalization performance (Wei et al., 2022; Xiao et al., 2023).
Moreover, with the advancement of hardware, the speed of model
inference has significantly improved, alleviating computational
bottlenecks. As a result, the main challenge in quantizing large
language models (LLMs) has shifted toward memory limitations.

5. SimulatedQuantization and Integer-onlyQuantization:These
methods differ based on whether dequantization is required
during inference. Simulated quantization, also known as fake
quantization, quantizes only the weight parameters, using low-
precision types (e.g., INT4) and dequantizing back to high-
precision types (e.g., FP16)during inference. In contrast, integer-
only quantization performs all inference calculations using
integer operations, benefiting from hardware acceleration for
low-bit operations. Weight-only quantization is classified as
simulated quantization, while weight + activation quantization
is classified as integer-only quantization.

While quantization methods can be categorized in detail,
many approaches often overlap across multiple classifications.
For example, the AWQ method falls under PTQ, channel-
wise quantization, and symmetric quantization simultaneously.
Therefore, in conclusion, although various quantization methods
exist, PTQ and QAT remain the most prevalent approaches for
model quantization. This paper primarily focuses on the application
of PTQ and QAT techniques for large-scale models.

3.1.3 Post-training quantization
With the rapid advancementof large languagemodels, researchon

post-trainingquantization (PTQ)methodshas significantly increased.
This rise in interest is primarily due to PTQ methods not requiring
the resource-intensive retraining process of large models, making
them a feasible research direction for most researchers. Post-training
quantization methods can be categorized based on the target of
quantization into two types: weight-only quantization and weight
and activation quantization. Below, we will introduce post-training
quantizationmethodsaccordingtothesedifferentquantizationtargets.

3.1.3.1 Weight-only quantization
Early PTQ methods focused on minimizing the error between

the original model’s weight matrix W and the quantized weight
matrix Q(W), formulated as (Equation 5):

argmin
Q
‖W−Q (W)‖ (5)

Some studies adapted rounding techniques with minor
modifications to directly apply them to quantizing large models

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2025.1518965
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Liu et al. 10.3389/frobt.2025.1518965

FIGURE 3
A taxonomy of quantization based on the focus of each method.

(Nagel et al., 2020; Yao et al., 2023; Zeng et al., 2023; Yao et al., 2022;
Kim et al., 2023). In Nagel et al. (2019), the authors proposed a data-
free quantization (DFQ) method for deep neural networks, which
eliminates the need for fine-tuning or hyperparameter selection.
This method achieved near-original performance across standard
computer vision architectures and tasks. The use of 8-bit fixed-
point quantization is critical for efficient inference on modern deep
learning hardware. In Yao et al. (2022), the authors introduced
the ZeroQuant method for the OPT and BLOOM models, which
quantized model parameters to 8-bit using symmetric row-wise
quantization, while preserving the precision of activation values
in FP16 or FP32. This approach enabled parameter compression
without sacrificing model performance. However, when the model
parameters were quantized to 4-bit using this method, a sharp
decline in performance was observed. Subsequently, in Yao et al.
(2023), the authors proposed ZeroQuant-v2, which applied Low-
Rank Compensation (LoRC) to mitigate the quantization error
E between the original weight matrix W and the quantized weight
matrix Ŵ, by using storage-efficient low-rankmatrices.This allowed
E+ Ŵ to better approximate W. Besides, in Zeng et al. (2023), the
authors found that the GLM-130B model could directly quantize its
parameters to 4-bit without incurring performance loss when using
a row-wise quantization approach. Their analysis further revealed
that the main reason for the success of this quantization in GLM-
130B, as opposed to the OPT and BLOOM models, lies in the more
uniform weight distribution of GLM-130B, which results in fewer
values falling outside the quantization range, thus reducing the
quantization error.

However, due to the highly nonlinear nature of neural networks,
even when the weight space distance is sufficiently small, it does
not necessarily ensure a small error between the outputs of the
original model and the quantized model. Thus, given a small
representative subset C, referred to as a calibration set, one can
optimize the difference between the activations of the original

layer and the quantized layer to reduce the quantization error.
These methods typically optimize the rounding process of the
quantization function by using second-order derivatives of the loss
function to decide whether to round up or down, thereby achieving
more precise quantization. Mathematically, this is represented
as Equation (6):

argmin
Q
‖XW−XQ (W)‖,X ∈ C (6)

For instance, in Nagel et al. (2020), the authors proposed
a post-training weight optimization mechanism, the AdaRound
quantization method, which adapts better to the data and task-
specific losses. This method is both efficient and does not require
network fine-tuning, relying only on a small amount of unlabelled
data for calibration.The authors theoretically analyzed the rounding
problem in quantizing trained neural networks. By approximating
the target loss using a series expansion (likely the Taylor expansion)
of the original value, they transformed the rounding of floating-
point data matrices during quantization into a smooth quadratic
binary optimization problem. Without fine-tuning, AdaRound
successfully quantized the weights of the ResNet18 and ResNet50
networks to 4-bit with only a 1% accuracy loss. Later, Frantar et al.
(2023) introduced OPTQ, a one-shot weight quantization method
that utilizes second-order information to achieve high accuracy
while improving inference efficiency. Specifically, OPTQ was able
to quantize the GPT model, containing 175 billion parameters,
reducing the precision of each parameter to 3 or 4 bits with minimal
accuracy loss compared to the uncompressed original model. In
general, OPTQ more than doubled the compression efficiency
compared to previous one-shot quantization methods and was the
firstmethod to enable inference of the compressedGPT-175Bmodel
on a single GPU.

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2025.1518965
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Liu et al. 10.3389/frobt.2025.1518965

3.1.3.2 Weight + activation quantization
Similar to weight-only quantization methods, joint weight and

activation quantization can also employ basic uniform quantization
techniques (Yao et al., 2022; Dettmers et al., 2022; Yuan et al.,
2023), though it requires particular consideration of outliers in
activations. Dettmers et al. (2022) noted that as large language
models (LLMs) grow in size, extreme outliers in activations become
more prevalent and exhibit consistent, systematic patterns. Building
on this observation, the authors proposed the LLM.int8 pseudo-
quantization algorithm for the feedforward and attention projection
layers of transformer models. This approach reduces the memory
requirements by half while preserving near-original accuracy.
Specifically, the method begins by applying a form of corrected
quantization, where each inner product within matrix activations
undergoes individual normalization, accompanied by parametric
quantization and sparsification. To manage outliers, a novel mixed-
precision decomposition scheme is introduced, isolating the outlier
dimensions into a 16-bit matrix, while over 99.90% of values are
handled using 8-bit corrected quantization. The LLM.int8 method
enables quantization of models with 175 billion parameters from
16/32-bit down to Int8, without compromising performance. This
makes it feasible to deploy models like OPT-175B and BLOOM on a
single server equipped with consumer-grade GPUs.

RPTQ Yuan et al. (2023) extends this approach by further
isolating outliers into an additional matrix and reorganizing
activation dimensions X ∈ ℝN×Din based on their minimum and
maximum values. The key idea is to cluster dimensions with
significant outliers into the same group and reorder them layer
by layer. It is noteworthy that the statistical characteristics of
each activation dimension are measured using a calibration
set, allowing the reordering of outlier dimensions to be pre-
determined before inference. To minimize latency, RPTQ integrates
the reordering process with other operations: 1) it combines the
reordering with the LayerNorm operation, eliminating unnecessary
data movement and adjustments, and 2) it reorders the weight
matrix columns to achieve uniform dimension alignment in the
model’s output.

Recently, low-bit formats (such as FP4 and FP8) have emerged
as leading alternatives for LLM quantization (Zhang et al., 2024;
Wu et al., 2023). The FP8 format, supported by prominent hardware
vendors like NVIDIA, offers a wider data range and greater
precision, though it incurs higher hardware costs. Intuitively, low-
bit floating-point formats can be seen as a special case of non-
uniform quantization, providing an extended range and finer
granularity. These properties help mitigate the issue of outliers
in activations. Both kernel-based mixed-precision quantization
[Mixture-of-Formats Quantization, MoFQ (Zhang et al., 2024)]
and ZeroQuant-FP (Wu et al., 2023) have demonstrated that for
activation quantization, FP8 consistently outperforms INT8.

3.1.4 Quantization-aware training
Quantization-Aware Training (QAT) is a technique used to

mitigate the performance degradation caused by quantization by
retraining a quantized model. As noted in earlier sections, QAT has
seen significant success in models preceding large language models
(LLMs). However, this approach typically requires retraining the full
set of model parameters, which is prohibitively expensive for LLMs.
As a result, there have been efforts to combine quantization with

parameter-efficient trainingmethods to substantially reduce the cost
of applying QAT to LLMs.

In the context of LLMs, QAT can be applied by retraining
models on smaller datasets without compromising their emergent
capabilities. LLM-QAT (Dettmers et al., 2024) directly applies the
basic QAT framework (Zhou et al., 2017) for model quantization.
To address the challenges of this approach, LLM-QAT introduces a
data-free distillation technique, where the original model generates
data and the quantized LLM is trained on this generated data to align
its output distribution with the original model. Additionally, LLM-
QAT incorporates key-value cache quantization and QAT, which
are memory-intensive during long-sequence generation. To further
reduce the overhead caused by discrepancies in precision between
weights and activations, Wu et al. (2023) proposed a layer-wise
knowledge distillation approach called the ZeroQuant-FP method,
which progressively quantizes the weights of the original LLM using
it as a teacher model.

QLoRADettmers et al. (2024) reduces LLMweight precision to a
4-bit data type and backpropagates gradients to Low Rank Adapters
(LoRA), achieving 99.3% of the original model’s performance.
Several key innovations in QLoRA enable memory savings without
performance loss: (1) 4-bit NormalFloat (NF4), a novel data type
optimized for normally distributedweights; (2) double quantization,
which compresses the model further by quantizing the quantization
parameters, albeit with some trade-offs in computation speed; and
(3) the use of a Page Optimizer to manage memory. By leveraging
these techniques, QLoRA is able to fine-tune LLMs with up to 65
billion parameters efficiently on a GPU with just 30 GB of memory.

Building on QLoRA, QA-LoRA Xu et al. (2024b) introduces
grouped quantization. The authors argue that the number of
quantized parameters in QLoRA is significantly smaller than that of
LoRAparameters, leading to an imbalance between the quantization
process and low-rank adaptation. Grouped operations help address
this by increasing the number of quantized parameters and reducing
the adaptive parameters. Additionally, LoftQ Li et al. (2024)
identifies that the zero initialization of LoRA matrices in QLoRA
is ineffective for downstream tasks. To improve this, LoftQ proposes
initializing LoRA matrices using the singular value decomposition
(SVD) of the difference between the original and quantized weights,
alternating between quantization and SVD to better approximate the
original weights.

3.2 Pruning methods

Model pruning and compression methods involve the removal
of non-essential components fromover-parameterized deepmodels.
Pruning techniques are primarily categorized into weight pruning
and unit pruning, depending on the level of pruning applied.Weight
pruning, also referred to as unstructured pruning, compresses the
network by eliminating insignificant neural connections, while unit
pruning, also known as structured pruning, reduces the model
size by removing neurons or convolutional filters. The central
concept of neural network pruning is to eliminate parts deemed
unimportant, redundant, or unnecessary based on their significance,
thus simplifying the model without causing significant degradation
in performance. As shown in Figure 4, unstructured weight pruning
removes unnecessary, low-weight connections between layers in the

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2025.1518965
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Liu et al. 10.3389/frobt.2025.1518965

FIGURE 4
The structure of a neural network after pruning.

neural network, while structured unit pruning eliminates all weight
connections associated with specific neurons.

3.2.1 Unstructured pruning
Researchers have proposed several weight-based pruning

methods to remove unimportant weights. Han et al. (2015)
introduced a pruning approach that eliminates weights whose
absolute values fall below a predefined threshold, calculated as
the product of a prime number and the standard deviation of the
weights in a given layer. To enhance the accuracy of the pruned
model, the network is reinitialized using the pre-pruning parameters
and retrained. While the framework of Han et al. (2015) garnered
significant early attention as a canonical pruning method (Liu et al.,
2019), its irregular network structure requires specialized software
or hardware accelerators, making it incompatible with standard
libraries.

In Mocanu et al. (2018), the authors inspired by the sparsity of
biological neural networks, argued that artificial neural networks
should not be fully connected. They proposed replacing fully
connected layers with a sparse topological structure, specifically
an Erdos-Renyi random graph, which significantly reduces the
number of training parameters without compromising predictive
accuracy. During training, the smallest absolute weight connections
are proportionally removed while new connections are added in
equal measure. This approach identifies a sparse network structure
but increases training costs. Additionally, the random connectivity
of the unstructured sparse model leads to poor cache locality
and inefficient memory access, which severely limits inference
acceleration (Wen et al., 2016).

Pruning large portions of a model’s parameters at once
often causes sharp performance degradation, so pruning is
generally performed iteratively. In Frankle and Carbin (2019), the
authors found that over-parameterized networks contain a sparse
subnetwork, which they termed the “winning ticket” in their Lottery
Ticket Hypothesis. After the model converges (i.e., the training
accuracy plateaus), connections with the smallest absolute values are
pruned, and the remaining network is reinitialized using the original
parameters, followed by retraining until convergence. This process

is repeated until either the desired compression ratio is achieved or
performance significantly drops. Since each pruning step requires
retraining the model from scratch, this method is computationally
expensive. Frankle et al. (2020) later discovered that pruning based
on convergence using the initial parameters fails to perform well
in deeper networks. They also noted that the model stabilizes into
a sparse structure early in the training process when exposed to
data augmentation. Thus, they proposed resetting pruned model
parameters to the weights obtained during early training, which
shortens convergence time. Various extensions of the Lottery Ticket
Hypothesis have since been proposed to explore its generalizability
to different network architectures (Chen et al., 2020; Chen et al.,
2021; Girish et al., 2021; Da Cunha et al., 2022; Bai et al., 2022).

In Liu et al. (2019), the authors argued that the network’s
connectivity structure is more important than the inherited
weights. They found that even when a pruned model is randomly
reinitialized, it can still achieve comparable accuracy if trained for a
similar amount of time. Furthermore, they demonstrated that using
the original model’s initialization values for retraining the pruned
network, as proposed by Frankle et al. (2020), offers no substantial
benefits over random initialization, given optimal learning rates.

To address the limitations of unstructured pruning, researchers
have investigated group-based sparsity strategies. Wen et al. (2016)
introduced Structured Sparsity Learning (SSL), which applies group
sparsity regularization to CNNs, leveraging the sparsity across
different layers to compress the model. Lebedev and Lempitsky
(2016) used group sparsity regularization to drive parameters toward
zero, effectively eliminating connections associated with zeroed
parameters. Zhou H. et al. (2016) imposed sparsity constraints on
weights during training to construct sparse deep neural networks.
While these structured sparsity methods have proven successful,
they remove connections irregularly, meaning that specialized
libraries or sparse matrix operations are still required for efficient
inference in practice.

Weight-based pruning methods face practical limitations,
mainly due to the unstructured connections they create. Current
acceleration libraries do not support efficient inference on

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2025.1518965
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Liu et al. 10.3389/frobt.2025.1518965

unstructured networks, requiring custom solutions to achieve
inference speedups.

3.2.2 Structured pruning
Structured pruning refers to the removal of a neuron along with

all its input and output connections. Unlike unstructured pruning,
structured pruning does not create sparse matrices. However, since
structured pruning eliminates all connections to a neuron, the
performance of the pruned network is often inferior to that achieved
by weight-based pruning methods.

In He et al. (2014), the authors proposed a simple neuron-based
pruning strategy that evaluates neuron importance by summing
their output weights, pruning those deemed unimportant. They also
introduced an entropy-based pruning approach, using a predefined
threshold to assess the activation distribution of each neuron. As the
accuracy of the pruned network decreases, fine-tuning is required
to restore performance. Alqahtani et al. (2021) proposed a voting-
based method, comparing neuron activations and assigning a score
to evaluate their importance, thereby simplifying the model by
removing less influential neurons. This approach identifies and
removes unnecessary neurons during training, eliminating the need
for pretraining or fine-tuning. Srinivas and Babu (2015) proposed
pruning neurons by analyzing the similarity of weights within a
layer; neurons with similar weights are pruned. Mariet and Sra
(2016) introduced the DivNet model, which defines a probability
measure over subsets of neurons and merges similar neurons based
on their activation patterns. Aswith other pruning approaches, these
methods lack ready-made libraries for implementation and require
custom accelerators.

In convolutional networks, kernel-level pruning has also been
extensively studied. These methods aim to assess the importance of
intermediate convolutional kernels and prune those with the lowest
importance scores. Li et al. (2017) proposed a simple method that
ranks convolutional kernels by the sum of the absolute values of
their weights and removes thosewith the smallest sums.Data-driven
pruning methods have also been used to eliminate unimportant
kernels. For instance, Polyak and Wolf (2015) designed a pruning
method based on channel variance, using feature map activation
variance to evaluate important filters and pruning unimportant
kernels. Luo andWu (2017) introduced amethod that evaluates filter
importance based on the entropy of their output channels, removing
filters with the lowest entropy. Hu et al. (2016) proposed a pruning
method that assesses filter importance by the average percentage
of zero activations (APoZ) in output feature maps. They iteratively
retrain the network using pre-pruning weights as initialization
to achieve compression. Luo et al. (2019) developed the ThiNet
method, which uses a greedy algorithm to select input channels that
minimize reconstruction error, pruning channels that contribute
more to the error. Liu et al. (2021) proposed an automatic channel-
group pruning algorithm based on Fisher information, providing a
unified metric to evaluate the importance of both individual and
coupled channels.

Although Neuron-based pruning methods require specific
support libraries, they generate structured weight matrices, which
are more compatible with hardware accelerators for efficient
performance. However, structured pruning generally performs
worse than unstructured pruning, as it removes all the connections
of a unit or cell, whereas unstructured pruning allows for the

selective removal of individual connections across cells. This finer
granularity often enables unstructured pruning to achieve better
performance.

3.3 Low-rank decomposition

Low-rank decomposition involves using matrix or tensor
decomposition to identify key parameters in the model. A weight
matrix is decomposed into the product of two smaller matrices,
which perform functions similar to those of the original weight
matrix. As shown in Figure 5, increasing the depth of the network
and reducing the computational cost of individual convolutions can
lead to a more lightweight model architecture while maintaining
similar functionality.

In deep convolutional networks, convolution operations are
the most computationally expensive, so compressing convolutional
layers can significantly enhance both the acceleration ratio and the
compression rate. A convolutional layer can be viewed as a 4D
tensor (height, width, depth, and number of filters), but due to the
significant redundancy within this structure, tensor decomposition
has been applied as a model compression technique to reduce
parameter redundancy.

Low-rank decomposition is used for model compression and
acceleration, providing further speedup and resulting in smaller
CNN models. Perona (1995) demonstrated that any convolutional
kernel with rank R can be represented as a linear combination
of R separable convolutional kernels. Building on this result,
Rigamonti et al. (2013) proposed replacing high-dimensional
convolutional kernels with a set of 1D kernels, using linear
combinations to separate the original kernels, which achieves
both compression and acceleration. This method approximates
the original convolutional kernel with a combination of low-
dimensional kernels and finds the optimal low-dimensional kernels
by optimizing the distances between them. Jaderberg et al. (2014)
extended this approach by replacing the original kernels with
multiple low-rank convolutional kernels, compressing parameters
and accelerating the model. Specifically, their method substitutes a
single high-dimensional kernel with two layers of low-dimensional
kernels, reducing computational costs through increased depth. For
example, a 7× 7 kernel is replaced by two kernels of 7× 1 and 1× 7,
reducing the parameter count from 49 to 14, achieving significant
compression. Notably, while Rigamonti et al. (2013) optimized the
distance between kernels to find the optimal solution, Jaderberg et al.
(2014) focused on optimizing the feature maps generated by the
kernels. Although both methods share common goals, the approach
of Rigamonti et al. (2013) does not require data correction, while
the method of Jaderberg et al. (2014) does.

Denil et al. (2013) investigated the redundancy in deep neural
network parameters, hypothesizing that trained parameters can
be predicted from a subset of other parameters. They introduced
a compression technique that stores only a portion of the
parameters and reconstructs the rest using a linear predictionmodel.
Sainath et al. (2013) found that most of the parameters reside in the
final fully connected layer, and low-rank decomposition of this layer
can significantly reduce the number of parameters. Lu et al. (2017)
proposed an automated method for designing compact multitask
deep learning architectures. This method starts with a shallow

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2025.1518965
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Liu et al. 10.3389/frobt.2025.1518965

FIGURE 5
The core concept of low-rank decomposition.

network and expands it progressively during training, iterating
to generate a tree-like deep network structure. This approach
reduces a large number of redundant parameters, achieving effective
compression of deep models.

Low-rank decomposition methods are indeed powerful, but
they are not more widely applied due to a few key limitations.
These methods often require a high computational cost during the
decomposition process, which can be prohibitive for large models.
Additionally, while they can reduce the parameter count, they may
not always provide the same level of performance improvement as
other methods, especially when applied to models with complex
or highly nonlinear structures. Furthermore, low-rank methods
can struggle with maintaining model accuracy after compression,
particularly when fine-tuning is not sufficiently handled.

3.4 Knowledge distillation

Knowledge Distillation (KD) Hinton et al. (2015) is a
valuable machine learning technique designed to enhance model
performance and generalization. It works by distilling knowledge
from a more complex model (called the teacher model) into
a simpler model (called the student model). The fundamental
concept behind KD is to transform the comprehensive knowledge
of the teacher model into a more concise and efficient form,
enabling the student model to replicate as much of the teacher
model’s representational capacity as possible.As shown in Figure 6,
distillation methods can be categorized into two types: black-box
distillation and white-box distillation. In black-box distillation,
only the predictions of the teacher model are accessible, while its
parameters remain unavailable. In contrast, white-box distillation
allows access to both the teacher model’s predictions and its
parameters.

The white-box distillation method enables the student model to
gain deeper insights into the teacher model’s internal structure and
knowledge representation, often resulting in greater performance
improvements. For example, Gu et al. (2024) proposed a knowledge
distillation method to distill large language models (LLMs) into
smaller models. They replaced the standard KD method’s forward
Kullback-Leibler divergence (KLD) objective with a reverse KLD

objective to prevent the student model from overestimating low-
probability regions of the teacher’s distribution.They also developed
an efficient optimization method to train this objective. These
student models, named MINILLM, showed in experiments that
they generated more accurate responses, improved overall quality,
exhibited less bias, had better calibration, and outperformed
baseline methods in long-text generation within an instruction-
following setting.

However, existing KD methods for autoregressive sequence
models face a distribution mismatch between the output sequences
seen during training and those generated by the student model
during inference. To resolve this, Agarwal et al. (2024) introduced
Generalized Knowledge Distillation (GKD). GKD does not depend
solely on a fixed set of output sequences but instead trains
the student model by incorporating feedback from the teacher
model on the student-generated sequences. Unlike traditional
supervised KD methods, GKD also allows the flexibility to use
alternative loss functions when the student model fails to replicate
the teacher model’s distribution. Additionally, GKD facilitates the
seamless integration of distillation with reinforcement learning
(RL) fine-tuning for language models. Experiments confirmed
the effectiveness of GKD in distilling autoregressive T5 models,
including task-specific distillation for summarization, translation,
and inference tasks, as well as task-agnostic distillation for
instruction tuning.

As large language models (LLMs) continue to grow in size,
there is a need for compression methods to reduce model size while
maintaining their generalization ability and zero-shot prompting
capabilities. To achieve task-agnostic, zero-shot distillation of LLMs
without task-specific fine-tuning data, Jha et al. (2024) proposed
initializing a truncated model using a subset of layers extracted
from a larger model and then training it on pre-training data using
a language modeling objective. Experimental results demonstrated
that a simple layer-wise pruning method, combined with continued
language model pretraining, can match or even surpass three
existing state-of-the-art baselines, while improving computational
efficiency by 1.5 times.

While distillation can indeed save time by speeding up inference,
there are several other challenges to consider. One significant
issue is the time-intensive nature of the process, particularly when

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2025.1518965
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Liu et al. 10.3389/frobt.2025.1518965

FIGURE 6
The process of model distillation.

working with large-scale teacher models, which require substantial
computational resources. Additionally, the performance of the
distilled student model is heavily dependent on the quality of the
teacher model; an inadequate or suboptimal teacher can hinder
the student’s learning. Another challenge is the potential loss of
fine-grained knowledge during distillation, which may degrade the
student model’s performance on specialized tasks. Furthermore,
if the teacher and student models operate in different domains
or are trained on distinct datasets, the distillation process may
struggle to capture domain-specific nuances, limiting the student’s
effectiveness.These factors emphasize the need for thoughtful design
to address these difficulties.

4 Future research directions

Model compression technology, as one of the mainstream
techniques for deploying models with large parameter counts to
resource-constrained devices, has rapidly advanced in response
to the increasing demands of various industries. However, there
remains substantial potential for improvement in the practical

deployment of current model compression methods. For instance,
unstructured pruning still requires the development of specialized
libraries for hardware support to enable acceleration. Based on the
prior discussion of compressionmethods, this paper outlines several
key research areas that warrant further attention and exploration.

4.1 Data-free compression methods

Current model compression techniques often rely on retraining
or calibration to restore model accuracy to varying degrees. For
example, pruning methods are highly dependent on retraining to
recover accuracy, which requires significant GPU time. Even post-
training quantization typically demands a calibration dataset to
maintain accuracy. However, in scenarios where data privacy is
critical, obtaining labeled calibration datasets can be challenging,
and retraining or calibration lengthens the training process. Data-
free compression methods, which compress models by analyzing
the distribution of model weight parameters after training without
requiring additional data for calibration, offer broader practical

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2025.1518965
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Liu et al. 10.3389/frobt.2025.1518965

relevance. As such, research into data-free compression techniques
represents a key future research direction.

4.2 Adaptive model compression methods

Neural architecture search (NAS) technology seeks to optimize
model structure via feedback-driven processes, effectively using
computational power to replace human effort in hyperparameter
tuning. This approach allows for more precise model architectures
and parameter settings. NAS has alsomade significant contributions
to model compression. For instance, Cai et al. (2019) proposed
ProxylessNAS, which not only reduces the floating-point operations
ofmodels but also lowers inference latency.However, research in this
area remains limited, making adaptive model compression methods
a promising avenue for future exploration.

4.3 Software-hardware co-design

The deep integration of multiple compression techniques
to reduce model parameters is a dominant trend in model
compression development. In particular, model pruning and
parameter quantization have become standard in industry. In
parameter quantization,mixed-precisionmethods—which combine
floating-point and integer representations—have shown great
success in retaining model capacity. However, while unstructured
pruning enables finer compression, it is less suitable for hardware
acceleration and requires the development of dedicated operator
libraries. Similarly, mixed-precision quantization, though providing
higher compression rates, also faces hardware acceleration
challenges. Therefore, software-hardware co-design, which
integrates both to optimize model acceleration, will be a critical
research focus in the future.

5 Conclusion

Over-parameterized network models typically exhibit stronger
learning capabilities and have shown outstanding performance
across various domains. However, these models face significant
challenges when deployed on edge devices due to the limited
computational resources, which greatly hinders their practical
application. Reducing the computational load of these models,
without substantially sacrificing performance, is thus a key solution
for enabling deployment on edge devices. This paper presents
a comprehensive overview of model compression techniques,
providing a detailed technical reference for deploying large-
parametermodels on edge devices. Finally, it is hoped that this paper

will offer future researchers in deep model compression a thorough
understanding of the field’s development and help address common
challenges.

Author contributions

DL: Writing–original draft, Writing–review and editing.
YZ: Investigation, Methodology, Writing–review and editing.
ZL: Investigation, Methodology, Writing–review and editing.
YL: Investigation, Methodology, Writing–review and editing.
CH: Validation, Visualization, Writing–review and editing. JT:
Investigation, Methodology, Writing–review and editing. RL:
Conceptualization, Formal Analysis, Investigation, Methodology,
Supervision, Writing–review and editing. WY: Conceptualization,
Formal Analysis, Investigation, Methodology, Supervision,
Visualization, Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Agarwal, R., Vieillard, N., Zhou, Y., Stanczyk, P., Garea, S. R., Geist, M., et al. (2024).
“On-policy distillation of language models: learning from self-generated mistakes,” in
The Twelfth International Conference on Learning Representations.

Alqahtani, A., Xie, X., Essa, E., and Jones, M. W. (2021). Neuron-based network
pruning based on majority voting. 2020 25th Int. Conf. Pattern Recognit. (ICPR),
3090–3097. doi:10.1109/icpr48806.2021.9412897

Arora, S., Ge, R., Neyshabur, B., andZhang, Y. (2018). Stronger generalization bounds
for deep nets via a compression approach. Int. Conf. Mach. Learn., 254–263. Available
at: https://proceedings.mlr.press/v80/arora18b.html.

Bai, Y., Wang, H., Tao, Z., Li, K., and Fu, Y. (2022). “Dual lottery ticket hypothesis,”
in International Conference on Learning Representations.

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2025.1518965
https://doi.org/10.1109/icpr48806.2021.9412897
https://proceedings.mlr.press/v80/arora18b.html
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Liu et al. 10.3389/frobt.2025.1518965

Becerra, J. A., Duro, R. J., and Santos, J. (2002). “Self pruning Gaussian synapse
networks for behavior based robots,” in Artificial Neural Networks—ICANN 2002:
International Conference Madrid, Spain, August 28–30, 2002 (Springer), 837–843.

Brown, T. B. (2020). Language models are few-shot learners. arXiv.
Available at: https://proceedings.neurips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Cai, H., Zhu, L., and Han, S. (2019). “ProxylessNAS: direct neural architecture search
on target task and hardware,” in International Conference on Learning Representations.

Caruccio, L., Cirillo, S., Polese, G., Solimando, G., Sundaramurthy, S., and Tortora,
G. (2024). Claude 2.0 large languagemodel: tackling a real-world classification problem
with a new iterative prompt engineering approach. Intelligent Syst. Appl. 21, 200336.
doi:10.1016/j.iswa.2024.200336

Chen, T., Frankle, J., Chang, S., Liu, S., Zhang, Y., Wang, Z., et al. (2020). The lottery
ticket hypothesis for pre-trained bert networks. vol. 33, 15834–15846.

Chen, X., Cheng, Y.,Wang, S., Gan, Z., Liu, J., andWang, Z. (2021).The elastic lottery
ticket hypothesis. arXiv 34, 26609–26621. Available at: https://proceedings.neurips.
cc/paper_files/paper/2021/file/dfccdb8b1cc7e4dab6d33db0fef12b88-Paper.pdf.

Cheng, W., Cai, Y., Lv, K., and Shen, H. (2023). Teq: trainable equivalent
transformation for quantization of llms. arXiv 2310.10944 Available at: https://arxiv.
org/abs/2310.10944.

Courbariaux, M., Bengio, Y., and David, J.-P. (2015). Binaryconnect:
training deep neural networks with binary weights during propagations.
Adv. neural Inf. Process. Syst. 28. Available at: https://proceedings.neurips.
cc/paper_files/paper/2015/file/3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf.

Da Cunha, A., Natale, E., and Viennot, L. (2022). “Proving the lottery ticket
hypothesis for convolutional neural networks,” in International Conference onLearning
Representations.

Denil, M., Shakibi, B., Dinh, L., Ranzato, M., and De Freitas, N.
(2013). Predicting parameters in deep learning. Adv. neural Inf. Process.
Syst. 26. Available at: https://proceedings.neurips.cc/paper_files/paper/2013/file/
7fec306d1e665bc9c748b5d2b99a6e97-Paper.pdf.

Denton, E., Zaremba, W., Bruna, J., LeCun, Y., and Fergus, R. (2014). Exploiting
linear structure within convolutional networks for efficient evaluation. Adv.
Neural Inf. Process. Syst. Available at: https://proceedings.neurips.cc/paper_
files/paper/2014/file/2afe4567e1bf64d32a5527244d104cea-Paper.pdf.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L. (2022). GPT3.int8: 8-bit
matrix multiplication for transformers at scale. Adv. Neural Inf. Process. Syst. Available
at: https://openreview.net/forum?id=dXiGWqBoxaD.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L. (2024). Qlora: efficient
finetuning of quantized llms. arXiv 36. Available at: https://openreview.net/forum?id=
OUIFPHEgJU.

Devlin, J., Chang,M.-W., Lee, K., andToutanova, K. (2018). Bert: pre-training of deep
bidirectional transformers for language understanding. arXiv. doi:10.18653/v1/N19-
1423

Frankle, J., and Carbin, M. (2019). “The lottery ticket hypothesis: finding sparse,
trainable neural networks,” in International Conference on Learning Representations.

Frankle, J., Dziugaite, G. K., Roy, D., and Carbin, M. (2020). Linear mode
connectivity and the lottery ticket hypothesis. Int. Conf. Mach. Learn., 3259–3269.
doi:10.5555/3524938.3525243

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. (2023). “OPTQ: accurate
quantization for generative pre-trained transformers,” in The Eleventh International
Conference on Learning Representations.

Girish, S., Maiya, S. R., Gupta, K., Chen, H., Davis, L. S., and Shrivastava,
A. (2021). The lottery ticket hypothesis for object recognition. Proc. IEEE/CVF
Conf. Comput. Vis. pattern Recognit., 762–771. doi:10.1109/cvpr46437.
2021.00082

Gu, Y., Dong, L., Wei, F., and Huang, M. (2024). “MiniLLM: knowledge distillation
of large language models,” in The Twelfth International Conference on Learning
Representations.

Han, S., Mao, H., and Dally, W. J. (2016). “Deep compression: compressing
deep neural networks with pruning, trained quantization and huffman coding,” in
International Conference on Learning Representations.

Han, S., Pool, J., Tran, J., and Dally, W. J. (2015). Learning both weights
and connections for efficient neural networks. Proc. 28th Int. Conf. Neural Inf.
Process. Syst. - 1, 1135–1143. Available at: https://proceedings.neurips.cc/paper_
files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf.

Hanson, S., and Pratt, L. (1988). Comparing biases for minimal
network construction with back-propagation. Adv. neural Inf. Process.
Syst. 1. Available at: https://proceedings.neurips.cc/paper_files/paper/
1988/file/1c9ac0159c94d8d0cbedc973445af2da-Paper.pdf.

Hassibi, B., and Stork,D. (1992). Secondorder derivatives for networkpruning: optimal
brain surgeon. Adv. neural Inf. Process. Syst. 5. Available at: https://proceedings.neurips.
cc/paper_files/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf.

He, T., Fan, Y., Qian, Y., Tan, T., and Yu, K. (2014). “Reshaping deep neural
network for fast decoding by node-pruning,” in 2014 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 245–249.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural
network. arXiv. Available at: https://arxiv.org/abs/1503.02531.

Hu, H., Peng, R., Tai, Y.-W., and Tang, C.-K. (2016). Network trimming: a
data-driven neuron pruning approach towards efficient deep architectures. arXiv.
doi:10.48550/arXiv.1607.03250

Hubara, I., Courbariaux,M., Soudry,D., El-Yaniv, R., andBengio, Y. (2016). Binarized
neural networks. arXiv 29. doi:10.5555/3157382.3157557

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., et al. (2018).
Quantization and training of neural networks for efficient integer-arithmetic-
only inference. Proc. IEEE Conf. Comput. Vis. pattern Recognit., 2704–2713.
doi:10.1109/cvpr.2018.00286

Jaderberg, M., Vedaldi, A., and Zisserman, A. (2014). “Speeding up convolutional
neural networks with low rank expansions,” in BMVC 2014 - Proceedings of the British
Machine Vision Conference 2014, 88.1–88.13. doi:10.5244/c.28.88

Jha, A. H., Sherborne, T., Walsh, E. P., Groeneveld, D., Strubell, E., and Beltagy, I.
(2024). Just chop: embarrassingly simple llm compression. arXiv. Available at: https://
arxiv.org/abs/2305.14864.

Jia, D.,Wei, D., Richard, S., Li, L.-J., Li, K., and Li, F.-F. (2009). Imagenet: a large-scale
hierarchical image database. 2009 IEEE Conf. Comput. Vis. pattern Recognit., 248–255.
doi:10.1109/CVPR.2009.5206848

Kim, Y. J., Henry, R., Fahim, R., and Awadalla, H. H. (2023). Finequant:
unlocking efficiency with fine-grained weight-only quantization for llms. arXiv.
doi:10.48550/arXiv.2308.09723

Krishnamoorthi, R. (2018). Quantizing deep convolutional networks for efficient
inference: a whitepaper. arXiv. Available at: https://arxiv.org/abs/1806.08342.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet
classification with deep convolutional neural networks. Adv. neural Inf.
Process. Syst. 25. Available at: https://proceedings.neurips.cc/paper_files/paper/
2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

Kurtic, E., Campos, D., Nguyen, T., Frantar, E., Kurtz, M., Fineran, B., et al.
(2022). The optimal bert surgeon: scalable and accurate second-order pruning for large
language models. arXiv, 4163–4181. doi:10.18653/v1/2022.emnlp-main.279

Lebedev, V., and Lempitsky, V. (2016). Fast convnets using group-wise brain damage.
Proc. IEEE Conf. Comput. Vis. pattern Recognit., 2554–2564. doi:10.1109/cvpr.2016.280

LeCun, Y., Denker, J., and Solla, S. (1989). Optimal brain damage. Adv.
neural Inf. Process. Syst. 2. Available at: https://proceedings.neurips.cc/paper_
files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf.

Li, F., Liu, B.,Wang, X., Zhang, B., and Yan, J. (2016). Ternary weight networks. arXiv.
Available at: https://arxiv.org/abs/1707.04679.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P. (2017). “Pruning filters
for efficient convnets,” in International Conference on Learning Representations.

Li, J., Socher, R., andHoi, S. C. (2020). “Dividemix: learningwith noisy labels as semi-
supervised learning,” in 2020 International Conference on Learning Representations.

Li, Y., Yu, Y., Liang, C., Karampatziakis, N., He, P., Chen, W., et al. (2024). “Loftq:
LoRA-fine-tuning-aware quantization for large language models,” in The Twelfth
International Conference on Learning Representations.

Lin, J., Tang, J., Tang, H., Yang, S., Chen, W.-M., Wang, W.-C., et al. (2024). Awq:
activation-aware weight quantization for on-device llm compression and acceleration.
Proc. Mach. Learn. Syst. 6, 87–100. Available at: https://proceedings.mlsys.org/paper_
files/paper/2024/file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf.

Liu, L., Zhang, S., Kuang, Z., Zhou,A., Xue, J.-H.,Wang, X., et al. (2021). Group Fisher
pruning for practical network compression. Int. Conf. Mach. Learn., PMLR 7021–7032.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. (2019). “Rethinking the value of
network pruning,” in International Conference on Learning Representations.

Lu, Y., Kumar, A., Zhai, S., Cheng, Y., Javidi, T., and Feris, R. (2017). Fully-
adaptive feature sharing in multi-task networks with applications in person attribute
classification. 2017 IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 1131–1140.
doi:10.1109/cvpr.2017.126

Luo, J.-H., and Wu, J. (2017). An entropy-based pruning method for cnn
compression. arXiv. Available at: https://arxiv.org/abs/1706.05791.

Luo, J.-H., Zhang, H., Zhou, H.-Y., Xie, C.-W., Wu, J., and Lin, W. (2019). Thinet:
pruning cnn filters for a thinner net. IEEE Trans. Pattern Analysis Mach. Intell. 41,
2525–2538. doi:10.1109/tpami.2018.2858232

Mariet, Z., and Sra, S. (2016). “Diversity networks: neural network compression
using determinantal point processes,” in International Conference on Learning
Representations.

Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H., Gibescu, M., and Liotta, A.
(2018). Scalable training of artificial neural networks with adaptive sparse connectivity
inspired by network science. Nat. Commun. 9, 2383. doi:10.1038/s41467-018-04316-3

Frontiers in Robotics and AI 15 frontiersin.org

https://doi.org/10.3389/frobt.2025.1518965
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1016/j.iswa.2024.200336
https://proceedings.neurips.cc/paper_files/paper/2021/file/dfccdb8b1cc7e4dab6d33db0fef12b88-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/dfccdb8b1cc7e4dab6d33db0fef12b88-Paper.pdf
https://arxiv.org/abs/2310.10944
https://arxiv.org/abs/2310.10944
https://proceedings.neurips.cc/paper_files/paper/2015/file/3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/7fec306d1e665bc9c748b5d2b99a6e97-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/7fec306d1e665bc9c748b5d2b99a6e97-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/2afe4567e1bf64d32a5527244d104cea-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/2afe4567e1bf64d32a5527244d104cea-Paper.pdf
https://openreview.net/forum?id=dXiGWqBoxaD
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=OUIFPHEgJU
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.5555/3524938.3525243
https://doi.org/10.1109/cvpr46437.2021.00082
https://doi.org/10.1109/cvpr46437.2021.00082
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1988/file/1c9ac0159c94d8d0cbedc973445af2da-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1988/file/1c9ac0159c94d8d0cbedc973445af2da-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://arxiv.org/abs/1503.02531
https://doi.org/10.48550/arXiv.1607.03250
https://doi.org/10.5555/3157382.3157557
https://doi.org/10.1109/cvpr.2018.00286
https://doi.org/10.5244/c.28.88
https://arxiv.org/abs/2305.14864
https://arxiv.org/abs/2305.14864
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.48550/arXiv.2308.09723
https://arxiv.org/abs/1806.08342
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.18653/v1/2022.emnlp-main.279
https://doi.org/10.1109/cvpr.2016.280
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://arxiv.org/abs/1707.04679
https://proceedings.mlsys.org/paper_files/paper/2024/file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf
https://doi.org/10.1109/cvpr.2017.126
https://arxiv.org/abs/1706.05791
https://doi.org/10.1109/tpami.2018.2858232
https://doi.org/10.1038/s41467-018-04316-3
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Liu et al. 10.3389/frobt.2025.1518965

Mozer, M. C., and Smolensky, P. (1988). Skeletonization: a technique
for trimming the fat from a network via relevance assessment. Adv.
neural Inf. Process. Syst. 1. Available at: https://proceedings.neurips.
cc/paper_files/paper/1988/file/07e1cd7dca89a1678042477183b7ac3f-Paper.pdf.

Nagel, M., Amjad, R. A., Van Baalen, M., Louizos, C., and Blankevoort, T. (2020). Up
or down? adaptive rounding for post-training quantization. Proc. 37th Int. Conf. Mach.
Learn., 7197–7206. doi:10.5555/3524938.3525605

Nagel, M., Baalen, M. V., Blankevoort, T., and Welling, M. (2019). Data-free
quantization through weight equalization and bias correction. Proc. IEEE/CVF Int.
Conf. Comput. Vis., 1325–1334. doi:10.1109/iccv.2019.00141

OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., et al. (2024). Gpt-4
technical report. arXiv. Available at: https://arxiv.org/abs/2303.08774.

Perona, P. (1995). Deformable kernels for early vision. IEEE Trans. Pattern Analysis
Mach. Intell. 17, 488–499. doi:10.1109/34.391394

Polyak, A., and Wolf, L. (2015). Channel-level acceleration of deep face
representations. IEEE Access 3, 2163–2175. doi:10.1109/access.2015.2494536

Radford, A., and Narasimhan, K. (2018). Improving language understanding by
generative pre-training. arXiv.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019).
Language models are unsupervised multitask learners. arXiv 1, 9.

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. (2016). Xnor-net: imagenet
classification using binary convolutional neural networks. Eur. Conf. Comput. Vis.,
525–542. doi:10.1007/978-3-319-46493-0_32

Reed, R. (1993). Pruning algorithms-a survey. IEEE Trans. Neural Netw. 4, 740–747.
doi:10.1109/72.248452

Rigamonti, R., Sironi, A., Lepetit, V., and Fua, P. (2013). Learning separable filters.
2013 IEEE Conf. Comput. Vis. Pattern Recognit., 2754–2761.

Romaniuk, S.G. (1993). Pruning divide and conquer networks.Netw. Comput.Neural
Syst. 4, 481–494. doi:10.1088/0954-898x_4_4_005

Sainath, T. N., Kingsbury, B., Sindhwani, V., Arisoy, E., and Ramabhadran, B.
(2013). Low-rank matrix factorization for deep neural network training with high-
dimensional output targets. 2013 IEEE Int. Conf. Acoust. Speech Signal Process.,
6655–6659.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2019).
Mobilenetv2: inverted residuals and linear bottlenecks. arXiv Prepr. arXiv 1801.04381.
doi:10.1109/CVPR.2018.00474

Simonyan, K., and Zisserman, A. (2015). “Very deep convolutional networks
for large-scale image recognition,” in International Conference on Learning
Representations.

Srinivas, S., and Babu, R. V. (2015). “Data-free parameter pruning for deep neural
networks,” in British Machine Vision Conference, 31.1–31.12. doi:10.5244/c.29.31

Sun, Y., Song, Q., and Liang, F. (2022). Consistent sparse deep learning:
theory and computation. J. Am. Stat. Assoc. 117, 1981–1995. doi:10.1080/01621459.
2021.1895175

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., et al. (2023).
Llama 2: open foundation and fine-tuned chat models. arXiv Prepr. arXiv:2307.09288.
doi:10.48550/arXiv.2307.09288

Wei, X., Zhang, Y., Zhang, X., Gong, R., Zhang, S., Zhang, Q., et al. (2022). Outlier
suppression: pushing the limit of low-bit transformer language models.Adv. Neural Inf.
Process. Syst. 35, 17402–17414. doi:10.5555/3600270.3601535

Weigend, A. S., Rumelhart, D. E., and Huberman, B. A. (1991a). Back-
propagation, weight-elimination and time series prediction. Connect. models,
105–116. doi:10.1016/b978-1-4832-1448-1.50016-0

Weigend, A. S., Rumelhart, D. E., and Huberman, B. A. (1991b). “Generalization
by weight-elimination applied to currency exchange rate prediction,” in 1991 IEEE
International Joint Conference on Neural Networks (IEEE), 2374–2379.

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. (2016). Learning structured sparsity
in deep neural networks. arXiv 29. doi:10.5555/3157096.3157329

Wu, J., Leng, C., Wang, Y., Hu, Q., and Cheng, J. (2016). Quantized convolutional
neural networks for mobile devices. Proc. IEEE Conf. Comput. Vis. pattern Recognit.,
4820–4828. doi:10.1109/cvpr.2016.521

Wu, X., Yao, Z., and He, Y. (2023). Zeroquant-fp: a leap forward in llms post-training
w4a8 quantization using floating-point formats. arXiv. doi:10.5555/3157096.3157329

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han, S. (2023). Smoothquant:
accurate and efficient post-training quantization for large language models. Int. Conf.
Mach. Learn., 38087–38099.

Xu, Y., Han, X., Yang, Z., Wang, S., Zhu, Q., Liu, Z., et al. (2024a). Onebit: towards
extremely low-bit large language models. arXiv Prepr. arXiv:2402.11295. Available at:
https://openreview.net/forum?id=ZwiG9KjfHV.

Xu, Y., Xie, L., Gu, X., Chen, X., Chang, H., Zhang, H., et al. (2024b). “QA-loRA:
quantization-aware low-rank adaptation of large language models,” in The Twelfth
International Conference on Learning Representations.

Yann, L., Yoshua, B., and Geoffrey, H. (2015). Deep learning. nature 521, 436–444.
doi:10.1038/nature14539

Yao, Z., Wu, X., Li, C., Youn, S., and He, Y. (2023). Zeroquant-v2: exploring post-
training quantization in llms from comprehensive study to low rank compensation.
arXiv. Available at: https://arxiv.org/abs/2303.08302.

Yao, Z., Yazdani Aminabadi, R., Zhang, M., Wu, X., Li, C., and He, Y.
(2022). Zeroquant: efficient and affordable post-training quantization for
large-scale transformers. Adv. Neural Inf. Process. Syst. 35, 27168–27183.
doi:10.5555/3600270.3602240

Yuan, Z., Niu, L., Liu, J., Liu,W.,Wang, X., Shang, Y., et al. (2023). Rptq: reorder-based
post-training quantization for large language models. arXiv.

Zeng, A., Liu, X., Du, Z.,Wang, Z., Lai,H., Ding,M., et al. (2023). “Glm-130b: an open
bilingual pre-trained model,” in The Eleventh International Conference on Learning
Representations.

Zhang, Y., Zhao, L., Cao, S., Zhang, S., Wang, W., Cao, T., et al. (2024). “Integer
or floating point? new outlooks for low-bit quantization on large language models,”
in 2024 IEEE International Conference on Multimedia and Expo (ICME), 1–6.
doi:10.1109/icme57554.2024.10688089

Zhao, J., Xu, S., Zhang, B., Gu, J., Doermann, D., and Guo, G. (2021). Towards
compact 1-bit cnns via bayesian learning. Int. J. Comput. Vis. 130, 201–225.
doi:10.1007/s11263-021-01543-y

Zhou, A., Yao, A., Guo, Y., Xu, L., and Chen, Y. (2017). “Incremental network
quantization: towards lossless cnns with low-precision weights,” in International
Conference on Learning Representations.

Zhou, H., Alvarez, J. M., and Porikli, F. (2016a). “Less is more: towards
compact cnns,” in Computer Vision–ECCV 2016, 662–677. doi:10.1007/978-3-319-
46493-0_40

Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., and Zou, Y. (2016b). Dorefa-net: training
low bitwidth convolutional neural networks with low bitwidth gradients. arXiv.

Frontiers in Robotics and AI 16 frontiersin.org

https://doi.org/10.3389/frobt.2025.1518965
https://proceedings.neurips.cc/paper_files/paper/1988/file/07e1cd7dca89a1678042477183b7ac3f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1988/file/07e1cd7dca89a1678042477183b7ac3f-Paper.pdf
https://doi.org/10.5555/3524938.3525605
https://doi.org/10.1109/iccv.2019.00141
https://arxiv.org/abs/2303.08774
https://doi.org/10.1109/34.391394
https://doi.org/10.1109/access.2015.2494536
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1109/72.248452
https://doi.org/10.1088/0954-898x_4_4_005
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.5244/c.29.31
https://doi.org/10.1080/01621459.2021.1895175
https://doi.org/10.1080/01621459.2021.1895175
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.5555/3600270.3601535
https://doi.org/10.1016/b978-1-4832-1448-1.50016-0
https://doi.org/10.5555/3157096.3157329
https://doi.org/10.1109/cvpr.2016.521
https://doi.org/10.5555/3157096.3157329
https://openreview.net/forum?id=ZwiG9KjfHV
https://openreview.net/forum?id=ZwiG9KjfHV
https://doi.org/10.1038/nature14539
https://arxiv.org/abs/2303.08302
https://doi.org/10.5555/3600270.3602240
https://doi.org/10.1109/icme57554.2024.10688089
https://doi.org/10.1007/s11263-021-01543-y
https://doi.org/10.1007/978-3-319-46493-0_40
https://doi.org/10.1007/978-3-319-46493-0_40
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	1.1 Motivation and contributions

	2 Related literature
	2.1 Shallow network era (before 2012)
	2.2 Deep model era (2012–2022)
	2.3 Large model era (2022-now)

	3 Model compression methods
	3.1 Quantization methods
	3.1.1 Quantization theory
	3.1.2 Overview of quantization methods
	3.1.3 Post-training quantization
	3.1.3.1 Weight-only quantization
	3.1.3.2 Weight + activation quantization

	3.1.4 Quantization-aware training

	3.2 Pruning methods
	3.2.1 Unstructured pruning
	3.2.2 Structured pruning

	3.3 Low-rank decomposition
	3.4 Knowledge distillation

	4 Future research directions
	4.1 Data-free compression methods
	4.2 Adaptive model compression methods
	4.3 Software-hardware co-design

	5 Conclusion
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

