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An analysis of the role of
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For smooth human–robot cooperation, it is crucial that robots understand
social cues from humans and respond accordingly. Contextual information
provides the human partner with real-time insights into how the robot interprets
social cues and what action decisions it makes as a result. We propose and
implement a novel design for a human–robot cooperation framework that
uses augmented reality and user gaze to enable bidirectional communication.
Through this framework, the robot can recognize the objects in the scene
that the human is looking at and infer the human’s intentions within the
context of the cooperative task. We proposed three levels of exchange of
explicit information designs, each providing increasingly more information.
These designs enable the robot to offer contextual information about what
user actions it has identified and how it intends to respond, which is in line
with the goal of cooperation. We report a user study (n = 24) in which we
analyzed the performance and user experience with the three different levels
of exchange of explicit information. Results indicate that users preferred an
intermediate level of exchange of information, in which users knew how the
robot was interpreting their intentions, but where the robot was autonomous to
take unsupervised action in response to gaze input from the user, needing a less
informative action from the human’s side.

KEYWORDS

human–robot collaboration, bidirectional communication, situation awareness, social
signal processing, user experience, user study

1 Introduction

In Industry 4.0, themanufacturing sector has advanced in developing smarter andmore
adaptable systems (Fechter et al., 2016; Michalos et al., 2010), which have fueled increased
adoption of cobots, in spaces shared with humans (Grau et al., 2020). The adaptability
of a robot to the needs of its human peer is key for obtaining an effective collaboration
between humans and robots (Nikolaidis et al., 2017; Buerkle et al., 2022). The robot’s ability
to understand, interpret, and respond to the diverse requirements and preferences of the
user is important to ensure seamless interaction and cooperation. By adapting to the users’
needs, robots can personalize their responses, actions, and behaviors, thereby enhancing
communication and productivity. A robot that adapts to the user fosters a collaborative
environment where both humans and machines work synergistically, thus optimizing
efficiency and achieving mutual goals while accommodating the unique needs of each user.
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To provide robots with the capability to adapt to user
needs, social cues play an important role (Fiorini et al., 2023;
Kansizoglou et al., 2022), facilitating effective communication,
comprehension, and cooperation between humans and machines.
Communication between people is characterized by the use
of a range of different nonverbal cues (Argyle, 1972; Mandal,
2014). These cues encompass a wide array of nonverbal signals,
including facial expressions, gestures, body language, tone of
voice, and contextual cues (Burgoon et al., 2011). Enabling these
same communication channels between humans and robots or
other interactive agents provides the opportunity for humans to
obtain more natural, inviting, and accessible interactive experiences
(Alves et al., 2022; Terzioğlu et al., 2020; Romat et al., 2016). As
an example, being able to track the gaze of the human can be
a powerful tool for it to understand and identify user intentions
in human–robot interactions (HRIs) (He et al., 2018; Singh et al.,
2020; Admoni and Scassellati, 2017). By tracking and analyzing a
user’s eye movements and gaze direction, robots can infer valuable
insights about the user’s intentions, interests, and focus.This enables
robots to adjust their behavior, orient themselves toward the user’s
gaze, and even anticipate the user’s needs, thereby enhancing
the overall interaction and collaboration between humans and
machines (Kompatsiari et al., 2017; Saran et al., 2018).

While social cues can enhance interactions during collaboration
with robots, ensuring a good user experience (UX) involves
considering various other factors, among which situation awareness
(SA) holds an important role (van de Merwe et al., 2022;
Ososky et al., 2012). Situation awareness refers to the user’s
understanding of the ongoing situation or context. In human–robot
collaboration, it is important to provide the user with contextual
information so that they can understand what is happening while
they are collaborating with robots. According to Endsley (1995), SA
is a hierarchical construct consisting of three levels:

Level 1: this level involves recognizing and identifying key
elements in the environment that are crucial to the task at
hand. In human–robot cooperation (HRC), this may include
perceiving the robot’s actions, its current state, or the status of the
shared task.

Level 2: In this level, the user integrates and interprets
the perceived information to form a coherent understanding
of the current state. For instance, the user might
understand how the robot’s actions contribute to the
collaborative goal.

Level 3: The final level involves using the current understanding
to anticipate what will happen next. In HRC, this could
mean predicting the robot’s next steps or the evolution of the
collaborative task.

All these levels of SA ensure that users do not only perceive
relevant information but also understand its importance and
anticipate future steps. This hierarchy highlights the dynamic and
evolving nature of SA. However, it is important to recognize
that in interactions between agents, users do not need to
understand the surrounding with absolute accuracy. Instead,
successful interactions rely on humans’ ability to make and
continuously update assumptions and attributions about the
robot’s intentions based on key evidence (Thellman et al., 2022;
Thellaman et al., 2017). Hence, providing users with enough
information to identify the robot’s intentions, aligned with the

goals of the interaction, is enough for effective collaboration.
Enhancing contextual information in this way directly contributes
to the user’s cognitive understanding and task success (Riley et al.,
2012). In this context, the use of mixed reality (MR) techniques
in HRI has increased, showing promising results in delivering
better information (Bagchi and Marvel, 2018; Green et al., 2007;
Pan et al., 2012; Rowen et al., 2019).

Adding to this line of research, the main contributions of this
paper are as follows:

(i) Development of a bidirectional communication framework
using eye-tracking on HoloLens: we report all the steps
to be followed and technology needed to obtain a
bidirectional communication in HoloLens for HRC tasks in
industry.

(ii) Design and implementation of different explicit information
levels: we introduce and implement three levels of exchange
of explicit information MR displays to evaluate the impact of
the extent of contextual information provided to users in HRC
scenarios.

(iii) Empirical evaluation of the information displays: this work
analyzes the impact of the three different MR displays
on UX and performance by reporting a user study (n
= 24), where users performed a cooperative task with
a robot. The cooperative task required the robot and
the human to understand each other to cooperatively
construct a building using blocks from a building set,
with some of the blocks placed on the human side and
others on the robot’s side.

The rest of the paper is structured as follows.We first analyze the
current state of the art in gaze tracking, non-verbal communication,
and the use of MR in HRI to enhance contextual information and
hence UX. After the related work, we describe and discuss how the
robot tracks the user’s gaze in order to identify which object in the
scene does the user want. Then, we describe the three different MR
displays developed, in which a different level of exchange of explicit
information is used. We also report an experimental user study (n
= 24) that compares the performance and subjective experience
obtained from each display developed, while completing a task in
collaboration with a robot in a space that is shared with a moving
physical robot. Finally, we analyze the results obtained and draw
conclusions from them.

2 Related work

In recent years, with Industry 4.0 as the background, a strand
of the research conducted in HRI has focused on investigating how
robots can best adapt to the needs of users, shifting focus from robots
toward humans (Longo et al., 2022; Jakl et al., 2018; Brauner et al.,
2022). Robots must understand humans to some extent if they
are expected to adapt to them and provide the means for a good
exchange of information. To that end, it is essential to know how
humans understand each other.

Humans are able to identify the other person’s state by decoding
information transmitted through non-verbal communication
channels, reducing the need for verbal communication and,
hence, significantly minimizing delays in state understanding
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(Harrison, 1989; Tracy et al., 2015). For a robot to understand
a human, it must evaluate the internal states of users, primarily
focusing on their intended objectives and, to some degree, their
motivations and emotions (Breazeal et al., 2005; Romat et al.,
2016; Weidemann and Rußwinkel, 2021). Among humans, this
understanding is established through an ongoing exchange of
implicit signals conveyed through behavior. Examples of these
signals are facial expressions (Rawal and Stock-Homburg, 2022;
Hu et al., 2024; Deng et al., 2019) and body language (Romeo et al.,
2021; Martinez et al., 2016), both of which can convey valuable
information about the user’s status, and eye gaze (Frischen et al.,
2007; Bader et al., 2009), which can also provide information about
the focus and intention of users. Focusing on the importance of eye
gaze, some researchers have carried out exploration by utilizing this
information to enhance collaboration between humans and robots.
Shi et al. (2021) proposed a new algorithm, which improved the
accuracy of the identification of the objects that the user wants for a
human–robot collaboration scenario. In this line, Yang et al. (2023)
proposed a new method to more accurately identify the object that
the user wanted to improve the intention recognition of users with
the aim of obtaining a more natural grasp intention in an HRI
environment. Similarly, Fuchs and Belardinelli (2021) analyzed how
eye gaze could be used to predict intention while tele-operating a
robotic gripper during a simulation. This approach investigated
eye–hand coordination and developed an intention estimation
model for real-world shared autonomy. Additionally, Zheng et al.
(2021) also analyzed how eye gaze information could be used to
identify the user’s motion, which is a critical aspect to be considered
in assistive robotics.

However, having a robot that can adapt to the user’s needs
is not enough to obtain a good UX. This can be overwhelming
and annoying to users because they may feel a lack of control
(Norman, 1994; Maier et al., 2006). In recent years, MR techniques
have been proven to be useful to address this issue as they are
able to provide good contextual information and, hence, reducing
anxiety and improving performance while collaborating with robots
(Brending et al., 2016). Szafir (2019) explored the integration of
virtual, augmented, and MR with robotics. They analyzed that
such technologies improve mediation between humans and robots,
enhancing interaction. Their pioneering use of modern virtual,
augmented, and MR hardware showed improvements in both
objective performance and UX, where they aimed to augment
shared environments, robots, and user interfaces—an invitation to
unite diverse fields. Chen et al. (2023) showed how using augmented
reality (AR) in human–robot collaboration for construction waste
sorting can lead to safe and productive environments and improve
the accuracy in by 10%–15%. De Franco et al. (2019) presented
an AR interface used in HRC tasks, which enabled real-time
communication between the user and the robot, introducing
performance benefits. Their results showed the effectiveness of their
AR interface and suggested that the subjects were satisfied with
the task carried out with the AR feedback. Lastly, San Martin et al.
(2023) examined the role of audio, visual, and audio-visual displays
in a safety context, particularly in shared-space human–robot
collaboration scenarios. They concluded that all types of displays
were suitable for safe human–robot collaboration scenarios.
However, qualitative differences were observed, indicating that each

type of display could contribute differently to users’ perception
and experience.

Nevertheless, these techniques do not analyze the effect of
adding bidirectional communication and the benefits it can
provide in collaborative scenarios. In this line, Chadalavada et al.
(2020) examined how human eye gaze could convey navigation
intent to robots, recommending the use of eye-tracking glasses in
industrial settings to improve human-to-robot communication and
predictability and combining it with AR to provide information
of the trajectory of the mobile robot. In a similar way, Lee et al.
(2023) introduced a novel approach for controlling a mobile
robot using a head-mounted device (HMD). This method
leverages the HMD to display the robot controller and capture
human eye-gaze within an AR environment, enabling hands-free
control for enhanced multitasking and efficiency in human–robot
collaboration. Comparative experiments with joystick control
indicated that hands-free control using the HMD provided precise
and effective robotic operation, presenting a viable alternative
to traditional joystick-based approaches. Following the hand-
free controlling idea, Park et al. (2021) introduced a hands-
free HRI method in MR using eye gazing and head gestures
with deep learning for intuitive robot control. This approach,
including object-based indirect manipulation and a digital twin
for simulation, was shown to be more efficient and effective than
traditional direct interaction methods. In contrast to the hand-free
control area, Weber et al. (2022) presented a method for flexible
HRI in different environments using AR and eye tracking. The
approach enabled fast, user-friendly calibration of robot sensors for
3D detection and localization of unknown objects without pre-
training. By integrating the HMD, the method provided visual
feedback in AR, thus facilitating intuitive interactions and actions
such as object grasping.

Although advancements in MR technologies have increased
their usage in human–robot collaboration applications, showing
their potential to provide good information, it must still be analyzed
as to how important is the role of the amount of information
exchanged between humans and robots.The proposedMR solutions
for human–robot collaboration and cooperation often analyze
the effects of providing or not providing information or even the
computation between different technologies; however, they do not
analyze the effects of using different levels of exchange of explicit
information. Our application is based on the development of three
different levels of contextual information, combining both audio
and visual information, while users are working together with
a robot. Depending on the level used, the application will vary
on the amount of information displayed and on the information
required from users. The system always provides cues for the user
to check whether the system is performing item identifications
correctly. In the highest level of information, it even explicitly
informs if the users want the robot to start moving, requiring
from users more information than in other levels. Concurrently,
our work aims to evaluate and assess the effectiveness and UX
experienced in each different level and analyze how the performance
and personal experience are affected depending on the amount of
information exchanged between the robot and human user. This
contributes to developing an understanding on how the amount
of information exchanged, through multimodal bidirectional
communication, can either improve or worsen HRC scenarios.
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FIGURE 1
This image shows a view of the cooperative scenario where users and
a robot worked together to construct a building using building blocks.
One of the buildings created by a user is displayed in the image. The
user was seated in front of the table, from where the image was taken.
There was set of pillar (rectangle) building blocks on this table. Bridges
and triangular blocks were located on the robot’s table, where the
robot was positioned. When the user needed any of these pieces, the
robot would move closer to them. For bidirectional communication,
users used the HoloLens.

3 Developing a bidirectional
communication

Identifying user intents or desires will be a key in the
development of bidirectional communication with the robot. Eye
gaze can offer insights into what the user is focusing on, thereby
making it possible to identify what the user wants within the context
of the interaction. However, a two-way communication is required
for good collaboration. The user should also be able to interpret
the robot’s “mind” and thus be aware of the situation with respect
to the robot in the context of the collaboration. With that goal in
mind, we propose displaying information to the user regarding the
cooperation with the robot.

In the scope of this paper, the HRC scenario involves a worker
sharing space with an LBR iiwa 14 robot, where both the robot
and human cooperate to complete a task. Specifically, the robot and
the human have to understand each other in order to construct a
building together using blocks from a building set.

The user will have pillars that can be directly used for the
construction. The robot owns the bridges and triangles, which the
users will have to request from the robot in order to use them in the
building process. Figure 1 shows an example of one of the buildings
built by a user in cooperation with the robot.

The user will wear a HoloLens 2 HMD device for eye tracking,
visualization of different levels of explicit information, and for
interacting with the robot. The communication between both sides
(user and robot) is fulfilled through the use of ROS-TCP and ROS
services through the use of two computers (one server and the
robot’s computer).

For the implementation, we used Unity (v.2020.3.11f1) and the
Unity Robotics Hub (V.0.7.0) with ROS-TCP Connector (v.0.7.0)
in order to connect with the Robot Operating System (ROS). Two

Dell computers with an Intel CPU i7 and 32 GB RAM were used.
The first computer (server computer) established the connection
with HoloLens using WebRTC (v.2.0.2)1. Yolo v52 NN was also
running in this computer in order to identify objects in the image
coming from the HoloLens, and it would also connect to the second
computer, built in the robot, by the use of ROS. In the second
computer, MoveIt3, was used in order to make the robot move to
any desired target position.

3.1 How to identify what the user wants

In gaze-based HRI, fixation is often used as an indication of
the visual intention of a human. Tracking the user’s gaze involves
analyzing pupil images and mapping them onto the scene image,
thus providing insights into a person’s visual intent. Various eye
movements characterize gaze, with fixation and saccade being
among the most prevalent types. Fixation is characterized by a
stable gaze within a confined area, while saccade denotes swift eye
movements (Holmqvist et al., 2011). Fixation can be from as short
as 50 ms to several seconds in duration (Velichkovsky et al., 2019;
Liu, 2014). In the context of HRC, fixation timemust be carefully set
up since an inappropriate short value can lead to accidentally wrong
selections, and large values can eventually produce eye fatigue and
inefficiencies. The HoloLens 2 device is capable of gathering gaze
data at 30 fps4, and this means that we have information of the gaze
position every 33 ms. However, since gaze data were sent to themain
computer for object identification, this could introduce delays in the
whole process. After measuring and analyzing, we deduced a mean
response time of 235 ms. Additionally, we conducted several tests
to identify the time required for the system to consistently identify
the same piece, ensuring it reflected that the user wanted the piece
and not just glancing over. We identified that 600 ms fixation time
worked well for our approach, corresponding to three consecutive
gaze data points on the same object. To send the gaze data to the
server, the eye gaze data were transformed from the 3D world to 2D
screen position (pixel value). Streaming of images and data of the eye
gaze relied onWebReal-TimeCommunication (WebRTC) protocol,
using MixedReality-WebRTC library, as reported by Barz et al.
(2021). With each gaze update, the frame and gaze data were
streamed to the server, which would identify and return the object
that the user was looking at, if any.

3.2 Identifying the desired object and
identifying the object placed

When the gaze data and image arrived at the server, the next
step was identifying if the user was looking at any object. For this
step, we decided using You Only Look Once v5 (YOLO v5) neural
network (NN), which has been widely used for object detection

1 https://github.com/microsoft/MixedReality-WebRTC

2 https://github.com/ultralytics/yolov5

3 https://moveit.ros.org

4 https://learn.microsoft.com/en-us/windows/mixed-reality/design/eye-

tracking
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tasks (Kim et al., 2022; Sirisha et al., 2023; Yu et al., 2022). To adapt
the NN to our scenario, in order to detect the objects of interest
(pillars, bridges, and triangles), we recorded videos performing the
task with HoloLens 2 used in the study. We recorded videos of
a total duration of 1 h 17 min, from where we labeled a total of
1,540 images, which were augmented up to three times, with tools
provided by Roboflow5. Roboflow was also used for the labeling
of the data, where 75% of the data were used for training, 17%
were used for validation, and the remaining 8% for the testing.
We first used the –evolve parameter to identify the optimal set of
hyperparameters for training. We used 300 iterations to identify the
best-performing hyperparameters, whichwere then used to train the
model with a batch-size value of 8 and 400 epochs.

To evaluate the model’s performance, we analyzed two metrics
obtained from the training of the model: F1 score and mean
average precision (mAP), specifically mAP@0.5:0.95. The F1 score
was used to evaluate the performance of the model. The F1
score evaluates model performance by balancing precision (correct
positive predictions out of all predicted positives) and recall (correct
positive predictions out of all actual positives). It combines both
precision and recall into a single value in a range [0–1], where 1
indicates perfect precision and recall. The mAP metric is commonly
used in object detection tasks. It provides a detailed evaluation of
object detection performance across a range of Intersection over
Union (IoU) thresholds, offering insights into both localization
accuracy and detection confidence. IoU quantifies the extent of
overlap between the predicted bounding boxes and the actual
ground truth bounding boxes. Within the mAP metric, average
precision is computed across a range of IoU thresholds spanning
from 0.5 to 0.95. This approach offers a holistic assessment,
encompassing not only localization accuracy but also the model’s
confidence in detecting objects. From the model trained, we
obtained an F1 score of 0.7209 and an mAP@0.5:0.95 of 0.69667.

Once the model was trained and validated, it was used in the
first computer (the server) to identify objects in the frames. Every
time new data arrived at the server, it would process the image and
identify all the objects in the image by creating bounding boxes
around them. We also created a script to identify whether the gaze
coordinates fell within any bounding box. If they did, the name
of the object was sent back to the HoloLens. In HoloLens, it was
analyzed if the user had been staring at the same object for more
than the stipulated time (600 ms, see Section 3.1). If this happened,
in all cases, a sound was played (see Figure 2 (I)) to make users
aware that the object had been identified and they could proceed
to pick the piece up and place it in the desired free space. Free spaces
were represented as holographic blue cylinders with red spheres
(see Figure 2). In C2 and C3, not only was a sound played but the
corresponding hologram was also displayed (see Figure 2 (I)). It has
to be noted that the system was capable of identifying changes in the
user’s desired object.When the user shifted their attention to another
object, the system would update this information by again playing
the sound and in the corresponding case, displaying the identified
new hologram.

The identification of objects was also used when an object was
placed. Users could place an object by looking at the red sphere of

5 https://app.roboflow.com

the desired place for 2 s. The system would then identify if the gaze
was colliding with the sphere andwhether during the same period of
time, the gaze lied inside the object identified. When the space was
locked, the system would no longer identify this object, even when
the user looked at it, since the system identified it as a placed object.
To achieve this, we added a cylindrical collider in the same place
of the blocked space so that if the gaze collided with it, the system
would skip identifying the object.

3.3 Designing the three different levels of
exchange of explicit information

For the user to obtain good information aligned with the goal
of the task, we focused on the following three aspects of the
information presented to users: what, how much, and how the
information is presented to users.

Regarding the information provided to users (what), as
suggested by Thellman et al. (2017) and Thellman et al. (2022), users
do not need whole-context information to have a good interaction
with robots; instead, they need proper information to be able to
continuously update the robot’s intentions. Hence, we provide users
with updates about the robot’s state and intentions. Concerning
how much information we provided, we designed three different
levels of exchange of explicit information, where the amount of
information provided to users varied based on the chosen level.
Finally, regarding the manner (how) in which information was
presented, as presented by San Martin et al. (2023), audio displays
are effective in capturing users’ attention, while visual displays
provide understandable information about the system.Therefore, we
used both types of displays to provide information to the users.

Having these aspects in mind, we designed interactions
with three incremental levels of amounts of explicit information
exchanged between the robot and the human:

3.3.1 Low level of exchange of explicit
information (C1)

In this level, the smallest amount of explicit information was
exchanged between the robot and user. Robots only received gaze
information from users, and users were provided with theminimum
information they needed to be sure that the robotwas understanding
and working. When the system identified that a user wanted an
object, a confirmation sound was played, which indicated that the
robot had identified the object. Once identified, the user could pick
up the piece and place it in any of the free spaces shown by theHMD,
which were displayed to the users with blue cylindrical holograms
(see Figure 2 (I)). If the object identified was any of the objects
placed on the robot’s side, then the robot pushed the object closer
to the user (see Figure 2 (I), a1)).

3.3.2 Middle level of exchange of explicit
information (C2)

In this second case, the robot was again provided with only gaze
information from the user. However, in this level, users received the
essential information explained in C1 along with further explicit
information. In this level, the system displayed, at real-time, the
name of the object the user was looking at, and when the system
identified that the user wanted an object, it not only played a sound
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FIGURE 2
This image provides a schematic view of the cooperative scenario, illustrating (I) the three different designs implemented and (II) explaining what
occurred each time a piece was blocked in a desired space. I. Design of Three Different Levels of Explicit Information. In all three cases, blue cylinders
represent the free spaces where users can place the objects. Figures (a1) and (a2) illustrate the designs implemented for the C1 condition, where only
audio display is utilized to notify the user about the system’s good performance. Figures (b1) and (b2) showcase the type of information designed for
the C2 condition, incorporating both audio and visual elements. Figures (c1) and (c2) depict the design implemented for the C3 condition. In this case,
the design for the pillars remains consistent with C2, but it varies for the pieces held by the robot, where the user is prompted to confirm the
identification. The speaker signal means that a sound is played when an object is identified. II. Design of Free and Blocked Spaces. In all three cases,
blue cylinders represent the free spaces where users can place the objects. Users will look at the red point of the desired free space to block it. Figure
(a) represents the free spaces where users can place objects. Figure (b) shows what happens when a pillar is blocked in a space. Figure (c) shows the
placement of a bridge, and (d) shows placement of a triangle. The speaker signal means that a sound is played when free space is blocked.

but also displayed a hologramof the identified piece in the left corner
of the HoloLens device (see Figure 2 (I), b1) and b2)). As in the
previous case, the user could then place the piece in any free space
or wait until the robot first moved the piece closer to them.

3.3.3 High level of exchange of explicit
information (C3)

The highest amount of explicit information is exchanged in
this case. Robots did not only receive gaze information from users,
but they also received confirmatory information, providing users
with a greater control over the situation. In this case, everything
worked in the same way as in C2 (see Figure 2 (I), c2)), unless
when the user wanted a piece belonging to the robot. In this
case, the HoloLens would not only play a sound and display the
correspondent hologram but would also display an accept or reject
hologram (see Figure 2 (I), c1)), asking the user whether the piece
had been identified correctly, before bringing it to the user.The robot
would not move until the user selected the accept button, by looking
at it for 2 s. In case the reject button was selected, then the robot
would not move.

In all three conditions, the user’s gaze was displayed by the
HMD by showing a green pointer (see the green point in any of
the images of Figure 2).

The placement and free space designs were the same for the
three conditions. Free spaces were displayed by blue holographic
cylinders with a red point in each one (see Figure 2 (II), a)). The
pillars occupied just one place, and they were blocked by looking
at the red point of the desired free space. Once the position was
blocked, the red point disappeared, the cylinder turned green, a
sound was played, and a new free space appeared in the upper side
(see Figure 2 (II), b)). However, the bridges and triangles occupied
two spaces, and the user had to look at the left space in order to block
both spaces (see Figure 2 (II), c) and d)). The process of blocking the
spaces was the same as with pillars, but in this case, the height was
also reduced by half to fit the objects’ height. In the case of a bridge,
two new spaces would appear in the upper side (see Figure 2 (II),
c)). In case of the triangles, no more spaces appeared over it since
we decided that this would be the top piece (see Figure 2 (II), d)). In
the C2 and C3 conditions, when a place was blocked, the hologram
of the identified element also disappeared.
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FIGURE 3
Left image shows the robot moving a piece close to the user when there is no such piece close to the user. In that case, the robot moves the nearest
piece closer to the user so the user can take it. Right image shows the behavior of the robot when there is already a desired piece close to the user. In
this case, the robot will only move down and up next to the piece.

3.4 HoloLens–robot communication

The last aspect in the implementation of the system
corresponded to the robot’s motion. In the C1 and C2 designs,
whenever the system identified a bridge or a triangle, the HoloLens
would directly send information about which object the robot
should move to the server. In the case of C3, this information would
be sent after the user’s acceptance (by looking at the accept button
for 2 s). Once the server identified which object the robot needed
to move, it would be responsible for calling the corresponding ROS
service, together with the name of the piece as an argument.

A script was run on the robot´s computer, facilitating
communicationwith the server computer and controlling the robot’s
movement. This script also tracked how many pieces of each type
were moved. In this way, each time the robot received information
of the piece to move, it would know where to go and move the
piece closer to the user’s reach so that the user can construct a
building, as shown in Figure 3, left. The trajectories were planned
and executed using the MoveIt library. As mentioned earlier, the
system was also capable of identifying when the user changed their
mind and wanted a different piece. For this reason, each time a piece
was placed, this information was sent from HoloLens to the server,
and the server would then call the corresponding ROS service so
that the robot could keep track of the pieces placed. In this way, for
example, if the user initially requested a bridge but then changed
their mind and placed a pillar instead, the robot could track the
already moved piece that was not used. Thus, if the user requested
a bridge again, the robot would not move a new piece, but it would
instead indicate the piece that had already been moved to the user,
as shown in Figure 3, right.

4 User study

We conducted an experimental user study (n = 24), in which
we compared the three interaction designs. To ensure participants’
safety, any sharp or pointy object that could harm the participants

was removed from the scene. The robot was set to move slowly
during the study, with a mean speed of 0.25 m/s, so that users
could react easily to the robot’s movement. At the same time,
the experimental study was performed in an open space where
participants could not get trapped by the robot. In addition, an
observer holding a wireless emergency stop button was present at
all times and responsible for stopping the robot immediately, should
any unforeseen hazardous situation arise.

One objective of the study was to assess the three different
levels of exchange of explicit information display versions in terms
of user performance. This was done by observing the extent to
which the displays enabled users to improve task speed depending
on the display used. Additionally, the study aimed to evaluate
how attractive the display could be in facilitating longer work
durations. Another objective was to assess the subjective experience
that each condition elicited in users during cooperation with a
physical robot. By conducting the study, we aimed to understand
the strengths and weaknesses of each level and determine whether
greater control over the situation, combined with the level perceived
as providing better SA, could lead to an improved UX. As
highlighted by San Martin et al. (2024), providing greater control
during a task is expected to improve both the UX and performance,
particularly in HRC tasks.

For a live demonstration of the designs in a real environment
and the robot’s movements, please refer to the following video6.

4.1 Participants

We decided on using a sample size of 24 participants, relying on
research (Nielsen, 2000; Alroobaea and Mayhew, 2014) indicating
that for a quantitative/qualitative user study, a sample size of
20 participants is sufficient. Based on this value, we selected 24

6 https://drive.google.com/file/d/179_pj3SistuV59--

16dZbhNGxaD4PRGc/view?usp=sharing
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participants to ensure a fully counterbalanced design. We recruited
24 participants (13 men and 11 women) with age ranging from
22 to 51 (M = 29,SD = 5.54) who volunteered to take part in the
study. The study was approved by the Institutional Review Board,
Tekniker Ethics Committee (TEC) (IRB202300001). Twenty users
had previous experience with AR technologies: 11 had previously
tried the HoloLens, while the others had previous experience
using AR-based games, such as Pokémon Go or decorating apps.
The remaining four participants had no prior experience using
AR. Nineteen participants had previous experience working with
industrial collaborative robots: nine participants had experience
programming the robots, six had previously worked with them
in industrial tasks such as assembly tasks, and four had both
programmed and collaborated with them. The remaining five
participants had no prior experience working with robots.

4.2 Experimental task

We designed a three-condition, within-subject repeated-
measures study to compare the performance, UX, and willingness to
work obtained when cooperating with a robot by using each of the
three different levels of exchange of explicit information displays. A
cooperative task was devised to be completed in each condition. The
order in which conditions were presented to the participants was
fully counterbalanced, within-subjects, and in each case, the user
had to communicate with the robot at least three times.

The experimental HRC task was set up in an open space of an
industrial facility, where noise from machinery that was operating
in the same facility could be heard in the background. This choice of
environmentwas representativeof anactual industrial facility inwhich
workers (target users of our solution) and robots typically cooperate
in real production scenarios. An assembly task was selected, which
is representative of tasks commonly found in industrial production
(Colim et al., 2020;Gattullo et al., 2020).More specifically, the selected
task required the robot to move the bridge and triangle pieces close
to the users so that they could construct a building in cooperation
with the robot (see Figure 4). The simplicity of this task mirrors
the breakdown of complex industrial tasks into smaller, manageable
subtasks, as recommended inmanufacturingpractices (Womacket al.,
1990). A real-world example of this approach can be seen in the HRC
task presented by ABB (ABB, 2019).

To evaluate the three different levels of exchange of explicit
information displays, we wanted a task in which the user and
the robot had to occupy the same shared space during the whole
execution of the cooperative task.

For that, we devised a task for participants and the robot to
cooperate in.The task consisted of creating a building in cooperation
with the robot by placing pillars, bridges, and triangles in the free
spaces, depicted with blue cylindrical holograms. The user was
located in front of the robot, where they could observe the free
spaces in the table. The user had to look at the desired piece until the
system identified the user’s desire, which was immediately notified
at least with a sound (see Section 3.3 for design details). Then, the
user could pick up the piece and place it in the desired free space.
To block the free space, they had to look at the sphere of the free
space for 2 s (explained in Section 3.2). To inform the user that the
piece was already blocked in the desired space, the system produced

a sound, the red sphere of the free space disappeared, and the space
was turned green. When users wanted a piece from the robot, they
had to follow the same process: they had to look at the piece and,
when identified, the robot would move the piece closer to the user.
In case of the C3 design, the user would have to confirm the action
before the robot started moving, providing with more information
to the robot and whole control to the users.

The task was the same for the three conditions, but the amount
of information that was exchanged between the robot and user, and
the way in which this affected the flow of the collaboration, changed
depending on the condition, as explained in Section 3.3.

Users had to place at least three pillars, two bridges, and a triangle,
but they were free to place more pieces if desired. In this way, we
could analyze if thewillingness and engagement in the task could vary
depending on the amount of information provided to users.

4.3 Experimental procedure

Each participant read and signed a consent form and filled out
a demographic questionnaire. Then, the users were given the HMD
with the calibrationapp so that the eye-tracking systemfitted theusers’
eyes. After that, the users were given a written description of the task,
followedbyamoredetailedexplanationof the taskandconditionswith
the use of a video. Having received the description of the task, every
participant received a training session, where they had the chance
to execute the task using the different levels of exchange of explicit
information displays. In the training session, users had to place two
pillars, abridgeabove them,and thena triangle.Thiswas repeatedwith
each condition in order to understand how each condition worked.
Users carriedout the training session forat least 10 min andweregiven
the opportunity to ask any clarification questions they needed.

After the training session, the rules of the game were explained
to the users so that all users followed them. In the 0 level (over
the table), it was only possible to place bridges (which occupied
two free spaces) or pillars (one space). Above a bridge, two pillars
could be placed; above two pillars, a bridge could be placed; and
above a pillar, another pillar could be placed. The triangles (two
spaces) could only be placed above a bridge, and nothing else
could be constructed above it. Once the rules were explained, the
scenario was prepared for the study. To do so, first, one of the
facilitators would launch the corresponding condition app. When
it was launched, the calibration yellow sphere would appear in front
of the facilitator, and it was placed in the table in front of the user, as
shown in Figure 4.Then, the next buttonwas pressed; the calibration
yellow sphere disappeared; and the free spaces, blue cylinders,
would then appear in front of the user. Once the spaces appeared,
the glasses were turned back to the user so that they could start
with the task. Figure 5 shows how the users interacted with the robot
and the pieces andwhat they saw trough theHoloLens over the three
different conditions.

4.4 Data collection and analysis

In all conditions, various sets of quantitative data were collected
according to selected metrics. One of those metrics was the time
taken from the placement of a piece to the next piece placement
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FIGURE 4
Scenario of the user study. The first step to set up the scenario is placing the calibration yellow holographic sphere in the table in front of the user, so
the free spaces appear correctly and is reachable for the user. The bridges and triangles are in the robot’s individual workspace (I). Every time users
need any of these pieces, the robot will move it closer to the robot, to the shared space, so users can pick them up (III). The users have next to them
the pillars, so they directly can use them to place in the free spaces (IV). During each condition, the experimenters (II) took notes about how the
participant performed the task.

FIGURE 5
The image shows what the users can see depending on the condition used in each different moment. The first column shows the identification
process, where in C1, only audio is displayed; in C2, audio + visual hologram is displayed; and in C3, the same audio and visual holograms as in C2 are
displayed + accept/decline hologram. In the next two columns, the placement process is depicted, where in C2 and C3, it can be seen that the
identification hologram disappears once the place is blocked.

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2025.1511619
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


San Martin et al. 10.3389/frobt.2025.1511619

(performance metric), which was recorded. Additionally, the time
needed since the piece was predicted until the piece was placed was
also recorded. Finally, the number of pieces placed in each condition
was also gathered.

After each condition, the participants responded to three post-
task questionnaires: a single ease question (SEQ) (Sauro, 2012)
questionnaire, a raw NASA-TLX (RTLX) questionnaire (Hart,
2006), which extended with the category “irritability” (Haas and
Edworthy, 1996), and a 3-item version of the situation awareness
rating technique (Taylor, 2011); this version is often referred to
as 3D SART. After the study, a semi-structured interview was
followed. We aimed to analyze aspects such as the following:
how well did they understand the environment? What type of
information was perceived in each condition? The overall experience
they had in each condition, and any other design improvements they
suggested.The interviewwas enhanced by discussing the participant’s
responses provided in the extended RTLX questionnaire and
answers given in the 3D SART questionnaires regarding how well
the environment was understood.The interviews were recorded and
subsequently transcribed for further analysis. The questionnaires
were also transcribed and analyzed using themethodology of affinity
diagramming, as described by Lucero (2015). For completeness, we
briefly summarize the approach. We first created post-it notes that
were formatted as follows:

• Top left corner: user number.
• Top left right: possible conditions (C1, C2, and C3).
• Middle: user’s comment.
• Bottom right corner: number of the post-it.

Once all of the comments were transcribed onto the post-it
notes, the team read all the post-its individually. Once the first read
was done, the team started to discuss the potential clustering for the
comments found in the post-its. This iterative process was repeated
multiple times, ensuring that all data were correctly interpreted and
clustered.

During discussions, the team worked collaboratively to
categorize the post-it notes into broader classes and subclasses.
The classes were further categorized by specifying whether the
comments were positive or negative. When a comment fit in more
than one class, it was duplicated (duplicating the post-it number)
and placed in all the corresponding categories.

During the execution of the conditions and the post-task
questionnaires, two experimenters were involved. One of them
observed and interacted with users throughout the entire process,
while the other was solely an observer. Both experimenters
participated in the development of the data analysis and the creation
of the affinity diagram.

5 Results

In this section, we present and analyze a comprehensive set
of both quantitative and qualitative data. Our approach involves
synthesizing insights from these two data types to paint a thorough
and nuanced picture of the results obtained. The quantitative data
involve pure quantitative data, while qualitative data are divided into
two subsections: quantifying qualitative data, which involves the data

acquired from the questionnaires, and qualitative data, which are the
data obtained from the semi-structured interview.

For the data analysis, we opt not to rely on null-hypothesis
significance testing (NHST). Instead, we embrace using effect size
(ES) estimation techniques along with 95% confidence intervals
(CI). For the ES evaluation, Cohen’s d (|d|)measure was used as the
sample size was n ≥ 20, and all data met the normality assumption
based on Shapiro andWilk (1965) test (p > 0.05 across all conditions
and variables). Cohen’s d is a standardized measure of ES that
quantifies the difference between two group means in terms of
standard deviations (SD), providing a more informative basis for
evidence accumulation. The interpretation of Cohen’s d follows the
next established thresholds: a |d| value of 0.2 or higher, but smaller
than 0.5 means a small ES, which indicates a fine effect between
groups that may still be of interest; a |d| value of 0.5 or higher and
smaller than 0.8 means a medium ES, indicating a noticeable and
potentially meaningful effect between groups; and a |d| value of 0.8
or greater means a large ES, reflecting a strong effect between the
compared groups. As the value is based on comparing two groups
(e.g., G1 vs. G2), the d value can be positive or negative. A positive
value indicates that G1 has a higher mean value than G2, whereas
a negative value indicates that G2 has a higher mean value than
G1. These conventions, established by Cohen (1988) and Cohen
(1992), are widely used to assess the magnitude of observed effects
in research. Additionally, the use of 95% CI, which provides a range
of values within which the true ES is likely to be contained, offers a
clearer picture of the precision and reliability of the estimated effect.
CIs enhance the interpretation of results by providing a context for
the possible size of the effect. With this analysis, readers can extract
their own critical conclusions, as currently recommended for user
studies in disciplines of HRI (Cumming, 2014; Dragicevic, 2016).

5.1 Observed quantitative results

Figure 6 shows all the quantitative data gathered during the
experiments. The first graph shows the mean number of pieces placed
per condition. As explained before in Section 4.2, the participants
were required to place at least three pillars, two bridges, and a
triangle; however, they could place as many pieces as wanted. If we
take a look at the first (left) graph, it shows that there was almost no
difference in mean values and CIs of the number of pieces placed
between C2 and C3 conditions (C2: 10.875, CI95%[9.62, 12.13], C3:
10.42, CI95%[8.96, 11.86]), where participants were provided with
more information about the situation. This is also confirmed with
the Cohen’s d value (see Table 1), where we can see that the |d|
value was below 0.2, meaning that there is a negligible difference.
However, we can see a medium effect in the C1 condition (9.0,
CI95%[8.125, 9.87]) compared to that in the C2 (d = − 0.693) and
C3 conditions (d = − 0.501), where users were provided with less
information. This means that users noticeably placed less pieces in
C1 compared to other two conditions. In terms of the time elapsed
between the consecutive placement of pieces, as shown in themiddle
graph of Figure 6 and supported by the d values, the mean time (in
seconds) for C2 was clearly lower than in the other two conditions
(11.398 s, CI95%[10.83, 11.92]). In both comparisons, a clear large
ES was observed with both |d| values over 0.8. Additionally, C3 is
higher in this aspect compared to the other two conditions (16.05 s,
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FIGURE 6
This image shows the mean and 95% of CI for each quantitative data gathered. Number of pieces placed: mean number of pieces placed in each
condition. Time from place to place: mean time (seconds) spent from the placement of a piece to the placement of next piece. Time from piece
predicted to be placed: mean time spent since the piece is predicted until the user places it in a free space. C1: lowest level of explicit information
display. C2: middle level of explicit information display. C3: highest level of explicit information display.

TABLE 1 Numerical Cohen’s d values for the data presented in Figure 6.

Condition Number of pieces placed Time from place to place (s) Time from piece predicted to be placed (s)

C1 vs. C2 −0.693 0.938 0.009

C1 vs. C3 −0.501 −0.572 −0.916

C2 vs. C3 0.135 −1.695 −0.876

CI95%[14.6, 17.504]), with a medium ES compared to C1 and large
compared to C2. However, it has to be pointed out that in the
C3 condition, users had to confirm the action of the robot, when
they requested a bridge or triangle, by looking at the accept button
for 2 s (explained in Section 3.3, 3.4). This aspect is reflected in
the last variable gathered: time elapsed since the system identified
which piece the user wanted, until that piece was placed. The mean
time (in seconds) was largely higher with the C3 condition (9.37 s,
CI95%[8.476, 10.277]), with a mean time of 1.77 s higher than in the
other two conditions, which is also reflected with |d| values over 0.8.
This is the period of time when users had to accept/reject the action.

All numerical values related to the quantitative results are
presented in the Supplementary Material.

5.2 Quantifying qualitative results

Figure 7 shows the answers provided by users in the SEQ
questionnaire, rated in a 7-scale Likert scale, on how easy it was
to perform the task in each condition (Sauro, 2012). Although there
was overlap in all CIs, it can be observed that the mean of C2
condition (6.85, CI95%[5.63, 6.54]) was slightly bigger than in the C3
(6.54, CI95%[6.3, 6.77]) and C1 (6.25, CI95%[5.93, 6.56]) conditions.
It is also observable that in C1, the CI was bigger than in other
conditions and that there were more out-bounding points than in
the other two conditions, with almost all of them being in lower
values. Lower values mean that the task was not that easy to perform
with this condition. The advantage of C2 over C1 an C3 is further

FIGURE 7
Responses to the Single Ease Question (SEQ) post-task questionnaire,
presented by condition. Error bars represent 95% confidence intervals.

corroborated by the ES analysis. The comparison between C1 and
C2 gave a medium ES (d = − 0.506), while C2 vs. C3 resulted in a
small effect size (d = 0.417). In both comparisons, C2 was perceived
as making the task easier to perform.

In the raw extended NASA-TLX (RTLX) analysis, the irritability
term was not used to calculate the RTLX index. We added this
category since we added the confirmation prompt, which could
make the user go slower and, hence, we wanted to analyze if there
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FIGURE 8
Results obtained from the extended raw NASA-TLX questionnaire, presented by condition. The irritability category was added as an extension to the
questionnaire, and therefore, it was not used to calculate the RTLX index. The graphs show average values per condition. Error bars represent 95%
confidence intervals.

could be an effect in the experience perceived by the user. As
shown in Figure 8, the differences in mean values observed between
the six categories were small. However, it can be perceived that
in mental demand, temporal demand, frustration, and irritability,
the C2 condition appeared to have the CI in lower ratings than
that in the other two conditions and higher values in performance,
which also resulted in slightly lower ratings in the RTLX. These
differences are further confirmed when taking a look to the ES
evaluation (see Table 2). Small ESs were observed in mental demand,
performance, frustration, irritability, and RTLX. In all these aspects,
the mean value in C2 was slightly smaller than that in the other
conditions, expect for performance, where C2 was slightly higher.
Additionally, in the temporal demand, another small ES was also
observed compared to C1, with C2 being perceived as being slightly
less demanding.

The last questionnaire performed after each condition was the
3D SART, which had the aim of analyzing the situation awareness
obtained in each condition. As can be observed in Figure 9, in the
first two categories regarding the demand and supply of intentional
resources (how much information does the system demand from
the user, and how much attention have the users provided to the
system), there was an overlap in the CIs of the different conditions,
although themean andCIs seemed to be smaller in the C2 condition
(demand: 2.958, CI95%[2.45, 3.465], supply: 4.79, CI95%[4.104,
5.479]) compared to that in the other two conditions. However, in
the understanding of situation category, the C2 condition was clearly
higher in mean value (6.667, CI95%[6.44, 6.89]) compared to the
C1 condition (5.33, CI95%)[4.68, 5.9587])]), obtaining a confident
interval, which did not overlap with the C1 condition. The C3

condition also showed a higher mean value (6.33, CI95%[5.83, 6.83])
compared to the C1 case, where a lower amount of information
was provided to users. The differences observed in both aspects
are further confirmed with the Cohen’s d values (see Table 3). In
the demand and supply of intentional resources, a medium ES was
observed in respect to C1, and small one in respect to C3, perceiving
C2 as less demanding. Additionally, analyzing the understanding
of situation, we can observe that C1 was observed as the worst
condition for understanding the situation, with respect to other two
conditions, with a large effect size compared to C2 and medium
effect size compared to C3.

The numerical values regarding NASA-TLX and 3D SART are
added in the Supplementary Material.

5.3 Qualitative results

Once the affinity diagram was obtained following the steps
explained by Lucero (2015) (see Section 4.4), the affinity diagram
was transcribed digitally using Excel. The data entered in Excel
were transformed into graphs to enhance the readability of the
affinity diagram (see Figures 10, 11). Both graphs comprised
comments and responses from participants to the facilitator’s
questions. The first resulting graph, presented in Figure 10, led
to the categorization of four main groups: task load, information
categories provided, user experience, and design features. These main
groups were further delineated based on various characteristics,
as illustrated in Figure 10. The transcription of all participant
comments produced 139 post-it notes, whichweremost successfully
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TABLE 2 Evaluation of ES of raw NASA-TLX based on Cohen’s d calculation.

Condition Mental demand Physical demand Temporal demand Effort

C1 vs. C2 0.335 0.050 0.263 0.113

C1 vs. C3 0.071 0.025 −0.065 0.0

C2 vs. C3 −0.242 −0.026 −0.143 −0.111

Condition Performance Frustration Irritability RTLX

C1 vs. C2 −0.354 0.402 0.381 0.345

C1 vs. C3 −0.068 −0.106 −0.051 0.011

C2 vs. C3 0.300 −0.491 −0.423 −0.325

FIGURE 9
Results obtained from the 3D SART questionnaire. Error bars represent 95% confidence intervals.

TABLE 3 Evaluation of ES of the 3D SART questionnaire based on Cohen’s d calculation.

Condition Demand on attentional resources Supply of attentional resources Understanding of situation

C1 vs. C2 0.538 0.196 −1.091

C1 vs. C3 0.051 0.026 −0.690

C2 vs. C3 −0.490 −0.179 0.346

organized in the four branch categories just mentioned, which
contained 16 leaf categories in total. The following is an outline of
each leaf, from left to right:

• Easy execution. Comments on how easy it was to perform the
task with the information provided by each condition.

• Workload. The workload perceived in each condition while
executing the task.

• Fast execution. How fast the users perceived that they were
performing the task.

• Frustration. Comments about feeling frustrated during the
execution of the task.

• Understanding of situation. Comments about being able to
correctly understand what was going on in the system.

• Essential information. Comments about conditions providing
at least the essential information to know that the system was
working properly.
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• System status information.Theuser could understand at which
point the system was, if the system has already identified
something, if the robot will move, and so on.

• Complete information. Comments on how complete the
information received was.

• Uncertainty. Experiencing uncertainty of what was happening
while performing the task.

• Trust. Comments about users trusting the system.
• Comfortable. Comments about feeling good and comfortable

while they were performing the task.
• Safety perception. Experiencing the feeling of safety while

cooperating with the robot.
• Reassurance. Comments about feeling reassured that the

system was working properly.
• Clean visual design. The visual design did not clutter or

disturb the task.
• Useful prompt.Comments regardingwhether the confirmation

prompt of C3 was useful for cooperating with the robot.
• Safety measure. Comments about if the prompt of C3 was an

important tool for safety.

During the semi-structured interview, many participants
pointed out that the prompt or confirmation request (accept/decline
button) by the robot in C3 was good as a safety measure. Hence,
we asked some more questions to participants about whether they
thought it could be useful for dangerous situations and how they
would feel using this prompt in such situations. Therefore, we
performed a zoom-in into the safety measure category and obtained
another affinity diagram and, hence, a second graph regarding
how C3 could affect in dangerous scenarios (See Figure 11). As
can be observed, regarding dangerous situations, all comments
were positive.

6 Discussion

The research we present in this paper is exploratory and,
hence, there is scarce research in the literature that we can use as
comparison to our work.

Results obtained in this study show that the amount of
explicit information exchanged provided through an MR interface
do directly affect the UX, task engagement, and performance
during HRC tasks. Specifically, conditions C2 and C3, which offer
progressively more exchange of information to users, outperform
condition C1 in most categories, except for the task load aspect.

6.1 The role of the amount of information
in enhancing performance and task
engagement

One of the key findings is that providing higher levels of explicit
information not only improves task performance, consistent with
previous research (De Franco et al., 2019; Riley et al., 2012), but also
increases users’ engagement.

In conditions with auditory and visual feedback (C2 and C3),
users placed more blocks during the task than with minimal
information (C1). The importance of information is also present

in task performance, where C2 showed the best task rhythm.
However, C3 showed the slowest rhythm, but it is attributed to
the confirmatory step where users lost at least 2 s every time they
asked for one of the pieces of the robot (explained in Section 5.1).
This inconvenience was confirmed by users’ comments such as “The
prompt confirmation slowed me down” (P02). Interestingly, six out of
24 users noted that C1 was perceived as more simple to understand
and hence of easy execution (“This is faster and easier to use” (P19))
and fast execution (“you go faster” (P17)).This suggests that providing
minimal information can sometimes reduce cognitive load, making
the interaction feel lighter. Nevertheless, this perceived simplicity
did not translate into better performance as users performed worse
in C1 than in C2. The quantitative results align with comments from
other users who mentioned the need to adjust their head and eye
gaze to guide the system toward correct identification, potentially
leading to wasted time.

Results indicate that C2 provided an optimal balance between
situational awareness and cognitive load. This is reflected in the
UX, where all comments recorded were positive, and in the NASA-
TLX, where aspects such asmental demand, performance, frustration,
and irritability were rated slightly better (with small ES) compared
to the other two conditions. Additionally, users rated C2 as the
easiest condition to use on the SEQ questionnaire, with a medium
ES compared to C1 and small in respect to C3. The clarity of visual
feedback in C2 allowed users to understand the robot’s actions
without adding excessive workload.

6.2 Building trust through transparency
without decreasing UX

Results suggest that the trust users experienced was tightly
connected to how well they could understand the robot’s
intentions and actions. C2 and C3 received higher and more
positive statements in terms of trust as these conditions offered
greater transparency in the interaction. This transparency is
evident in the information categories provided branch, where
comments regarding C2 and C3 were positive, indicating that
both displays were good tools to understand the situation (18/24
for C2 and 16/24 for C3), provide essential information (16/24
for C2 and 10/24 for C3), and obtain accurate system status
information (19/24 for C2 and 14/24 for C3).

The visual feedback in C2 and C3 conditions not only made
users feel that the system was correct at interpreting their intentions
(making them feel reassured) but also improved their sense of safety
during cooperation. As stated by users: “Feedback allows to check
system’s proper working” (P01), “Hologram information makes me feel
safe and reliable” (P05), and “I need to have visual information to
be sure the system is understanding me and to feel safe” (P18). These
aspects led to a scenario where the feelings of uncertainty were
reduced without cluttering the task environment (“The visual cues
are not cluttering” (P01)).

However, although the additional information provided by users
in C3 was particularly effective in providing complete information,
with statements such as: “The information is complete” (P14) and “It
provides the most complete information” (P21); it also caused some
drawbacks. Nine out of 24 users reported that they felt more mental
effort was required in this condition despite small differences that
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FIGURE 10
This is the affinity diagram obtained from the analysis of subjective statements gathered from participants during semi-structured interviews. Each
branch category in the diagram includes graphs indicating the number of participants who offered positive (up on the scale) or negative (down on the
scale) comments related to that category concerning a specific condition in the study.

were recorded in the NASA-TLX results. Another negative aspect
of the UX related to the comfort aspect was where several users
mentioned not feeling comfortable (“I feel uncomfortable having to
use the prompt” (P02)). These factors, added to the time lost, could
explain why 10 participants felt that the confirmatory prompt was

not necessary for the task at hand as it made the interaction more
cumbersome without adding any perceived value for simpler tasks.

In contrast to the trust-enhancing effects of C2 and C3, the lack
of clarity in C1 regarding what the system was identifying led to a
sense of mistrust among participants (17 out of 24). C1 created a
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FIGURE 11
Affinity diagram obtained from the comments made by users about the possibility of using the confirmation prompt in dangerous situations. In this
case, we only analyze C3 since it was the category providing this functionality.

scenario of uncertainty, where users did not feel safe, resulting in a
lack of trust when cooperating with the robot (“With the auditive
cue only I don’t feel safe, because I do not trust the system” (P14); “I
cannot be sure if the system is working properly” (P23)). This suggests
that in HRC scenarios, users need to have complete information
aboutwhat exactly the robot is identifying, which is not satisfied only
by the use of auditive cues. Comments such as “Without the visual
feedback, you must assume that the system is identifying well” (P01),
“I need more information” (P19), or “With audio only I cannot be sure
if the system is working properly” (P21) reinforce this idea of needing
explicit visual feedback.

6.3 Balancing safety and efficiency:
implications for design in HRC tasks

Although C2 was generally preferred for its balance of
information and efficiency, the explicit information and control
provided in C3 was considered highly valuable in safety scenarios.
Participants believed that having the ability to confirm or reject
actions, and knowing exactly when the robot will start moving,
would be crucial when working with robots in potentially hazardous
environments, turning the perceived inconvenience of slower task
progression into a benefit for safety. Eighteen out of the 24
participants made comments such as: “Although you go slow, you feel
more safe because you have whole control over the situation” (P15).

This led to general positive feedback comments about the use of this
condition as safety measures (see Figure 11).

The difference in UXs and preferences for the type of feedback
(8/24 for C2 “I prefer C2 condition, it gives more information” (P05),
03/24 for C3 “This is the best condition” (P20), and 0/24 for C1 “This is
the worst condition” (P18)) underscore the importance of adaptable
HRC MR systems. Such systems would allow for different levels of
SA and control based on the task’s safety requirements, while always
providing explicit information about the interaction.

7 Design and implementation
limitations

The user study reported here does not provide data to estimate
the performance and acceptance with designs other than the ones
presented and evaluated here. Thus, research groups investigating
related questions might want to explore and evaluate this design
space further. For example, P03 pointed out that as a future step, it
could light-up the possible places where the identified piece could
be placed. P07, P08, P10, P11, and P12 also mentioned that adding
sound when the confirmation prompt is accepted/denied could be
interesting.

Another limitation comes from constraints in the current
technology to recreate an ecologically valid visual field. Although
HoloLens 2 has a wider field of view (54°) than its preceding version
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(34°), it is still much narrower than the field of view of human vision.
However, we used sound that can be heard regardless of where the
user is looking at and a fixed hologram for identification, so users
could observe it, although they were turning the head. The only
things that were not seen from any point were free spaces that were
fixed in the table.

Regarding the performance capacity of the selected HMD,
a few limitations determined the time we set for the object
identification. HoloLens 27 has a Qualcomm Snapdragon 850
Compute Platform CPU with 4-GB LPDDR4x system DRAM of
memory. In terms of software, it already has functionalities built in
for human understanding such as hand tracking, eye tracking, and
voice command recognition. These functions consume processing
resources of the HMD, and we added to it real-time streaming
of data, image included, which was slowing down the system
performance; this is the reason we used a minimum identification
time of 600 ms. In the worst observed scenario, it was prolonged
to 800 ms since, while more places where blocked, new places
appeared, increasing the rendering of theHMDand, hence, delaying
the data exchange.

The resolution of the last two constraints discussed is dependent
on the advancement of the technology used in future HMDdevices.

8 Conclusion and future work

Motivated by the increasing use of cobots, and having in mind
how users communicate and collaborate, we wanted to develop a
technique capable of identifying what users wanted at each stage
in the context of a cooperative task. We developed three different
display designs with which to provide users with three incremental
levels of explicit information exchanged regarding the ongoing
cooperation with the robot.The information displayed was intended
for the human user to be aware of the situation at each point in time
and throughout the entire cooperationwith the robot. In cooperative
scenarios in which both robot and human workers share the same
space, the robot must understand the user and vice-versa. The goal
was tomake the robot able to properly identify the piece that the user
wants and, at the same time, transmit to the user the information
that helps them understand what is happening and what is about to
happen, without adding any unnecessary exchange of information
between both.

Regarding the performance of the participants in the study,
in terms of pace task execution, the C2 condition led to better
results. In conditions C2 and C3, where participants had additional
information about the ongoing situation, they remained more
engaged in the cooperative task. In those conditions, they placed
more pieces in the building they were constructing together with the
robot. In other words, when the information was scarce to permit
staying well-aware of the situation, participants chose not to extend
the cooperation much beyond what was strictly necessary.

The C2 condition, where the robot was allowed to execute
actions without the need for the user to validate each one of
them beforehand, resulted in the most effective condition in terms
of performance and UX, as well as being the preferred one.

7 https://docs.microsoft.com/en-us/hololens/hololens2-hardware

The triangulation of quantitative and qualitative results from the
user study supports the notion that more complete awareness
information conveyed reassurance for a proper bidirectional
communication. Such awareness of the situation allowed users to
identify that the robot was understanding their wishes correctly and
to be aware of the status of the robot at all times. Even though users
were not given the whole control over the robot´s action, this C2
condition has been shown to be the best to improve the UX of users.
In addition, the information provided to users has been shown to
not clutter the task and be a helpful tool, although a minority of
participants preferred the simplicity of single-modality displays.

Changing contextual and environmental conditions in the
cooperative scenario (including lighting and noise) together with
the diversity of profiles of humanworkers (with different preferences
and perceptual capacities) may require the reliance of SA solely on
the information from one of the sensory channels. In that sense, the
study showed that audio-only information was easier to understand
and fast to execute, although it did not give reassurance to users
aboutwhatwas happening exactly. Hence, for amore comprehensive
and descriptive situation, visual information has shown higher
strengths for understanding the ongoing situation.

A last interesting aspect to analyze is the role of the user as
the validator of every action of the robot (condition C3). If we
analyze both quantitative and qualitative data, it can be observed that
some aspects are negatively accepted due to the delay created by the
confirmation step.However, the qualitative results did also show that
this simple step could be really helpful inmore dangerous situations,
where users could feel a higher degree of danger. They believed that,
in such scenarios, the prompt would be really useful and, in such
cases, almost all negative aspects observed in the UX analysis would
disappear.

One of the key aspects of this study is the synergy between
the robot’s cognitive ability to reason and respond and the user’s
enhanced situational awareness. This dual advancement fosters an
environment of seamless and effective human–robot collaboration,
where the robot and user mutually enhance each other’s capabilities.
By creating systems where robots understand users’ needs and
users remain aware of the robot’s actions, this study highlights a
fundamental step toward the future of collaborative systems.

With these conclusions in mind, an interesting step in future
would be to analyze the effect of complete control of the human
over the robot’s actions in scenarios and tasks that users perceived
as hazardous. The design of such a task should be perceived as
dangerous by users, but safety would be maintained throughout the
whole cooperative task.

Finally, future work could explore the integration of other
sensory cues, such as facial expressions or voice recognition, to
create smoother and more personalized interactions. It would
also be interesting to study how these additional cues could
enhance situational awareness across different sensory modalities,
particularly in scenarios in which a single channel might be limiting
due to occlusions resulting from, e.g., changing environmental
conditions.

To wrap up, although an intermediate level of SA is suitable for
most HRC scenarios, careful attention must be paid to factors such
as risk, user preferences, and the need to design a system that ensures
effective bidirectional communication.
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