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Reinforcement learning-based
dynamic field exploration and
reconstruction using multi-robot
systems for environmental
monitoring

Thinh Lu, Divyam Sobti, Deepak Talwar and Wencen Wu*

Computer Engineering Department, San Jose State University, San Jose, CA, United States

In the realm of real-time environmental monitoring and hazard detection, multi-
robot systems present a promising solution for exploring and mapping dynamic
fields, particularly in scenarios where human intervention poses safety risks.
This research introduces a strategy for path planning and control of a group
of mobile sensing robots to efficiently explore and reconstruct a dynamic
field consisting of multiple non-overlapping diffusion sources. Our approach
integrates a reinforcement learning-based path planning algorithm to guide the
multi-robot formation in identifying diffusion sources, with a clustering-based
method for destination selection once a new source is detected, to enhance
coverage and accelerate exploration in unknown environments. Simulation
results and real-world laboratory experiments demonstrate the effectiveness
of our approach in exploring and reconstructing dynamic fields. This study
advances the field of multi-robot systems in environmental monitoring and has
practical implications for rescue missions and field explorations.
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1 Introduction

Environmental monitoring, including the identification and tracing of areas impacted
by environmental hazards, is paramount for safeguarding human life and property. Early
warning systems allow for swift responses to potential threats. Effective environmental
monitoring relies on a deep understanding of key processes like wildfire propagation
and pollutant dispersion. These phenomena often involve spatial and temporal changes,
making them suitable for modeling using partial differential equations (PDEs). For
instance, the advection-diffusion equation can be used to simulate the movement of
smoke plumes from wildfires, providing crucial insights for predicting their evolution over
time (Khaled et al., 2004; Reisch et al., 2024). This information is essential for effective
environmental hazard monitoring and mitigation.

For environmental monitoring tasks, multi-robot systems offer significant advantages
over single-robot setups by enabling faster coverage of larger areas and providing
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redundancy against individual failures. These systems excel in
complex missions across diverse environments, including search
and rescue (Niroui et al., 2019; Shuvo et al., 2023; Cao et al.,
2024), underwater surveillance (Martins et al., 2018; Luvisutto et al.,
2022), and space exploration (Gautam et al., 2019; Bi et al., 2024;
Long and Zhang, 2024). These works place additional emphasis
on developing robust coordination strategies and efficient path-
planning algorithms. Coordination may be centralized, with a
leader directing actions, or decentralized, with robots making their
own decisions based on local observations. Reinforcement learning
has advanced these strategies, with actor–critic models enhancing
control stability of the whole unit under dynamic disturbances
(Hu et al., 2023) and graph-based methods enabling scalable,
distributed decision-making across large robot teams (Chen et al.,
2024). Depending on the mission, formation control may also
play an essential role, where the robot system can be operated in
organized patterns for high-quality data collection, or independently
for greater flexibility. Beyond coordination, reinforcement learning-
based approaches have also been increasingly adopted for path
planning, further enhancing adaptability and performance of multi-
robot systems in unknown environments (Zhu et al., 2023).
These approaches require careful design of both the simulation
environment and reward functions, which should closely model
real-world conditions, to ensure effective learning and reliable
performance in deployment. For applications in environmental
monitoring, multi-robot systems can be equipped with specialized
sensors to enable real-time data collection and reconstruction of
environmental processes (Kinaneva et al., 2019; Dunbabin and
Marques, 2012; Queralta et al., 2020; Rossi and Brunelli, 2016).

To reconstruct dynamic processes through limited
measurements from multi-robot systems, it is necessary to identify
unknown parameters in the PDEs that describe these processes,
such as the diffusion coefficient in a diffusion equation. A common
approach is to deploy static sensor networks (Mourikis and
Roumeliotis, 2006; Burgard et al., 2005). Although effective, this
approach is both costly and impractical for large-scale regions
due to the need for extensive sensor installations. Mobile sensor
networks, with collaborative mobile sensing robots, present a more
practical alternative, offering great flexibility and broad coverage
while using fewer sensors. In mobile sensor networks, parameter
identification can be performed in two primary ways: offline and
online (Zhang et al., 2023). Offline parameter identification requires
mobile sensor networks to explore the entire spatial domain before
any parameter estimation begins (Ucinski, 2005; Ucinski and Chen,
2005; Tricaud and Chen, 2010).This approach often uses techniques
like least squares optimization to minimize the error between
the observed and estimated states, typically requiring complex
computations to solve PDEs. While this approach generally yields
more accurate results, it is time-consuming, as full data collection
must be completed before any estimation can take place. Due to
the limitations of offline methods, increasing attention has shifted
toward online parameter identification approaches (Wu et al., 2020;
Zhang et al., 2023; Christopoulos and Roumeliotis, 2005). Online
identification continuously updates parameter estimates as mobile
sensors collect data in real time. While this approach may not
provide the most accurate solution to PDEs compared to offline
methods, it is far more efficient for time-sensitive applications like
environmental hazard management (Zhang et al., 2023).

A key challenge of online parameter identification is
determining an information-rich trajectory for the mobile sensing
network, as this directly impacts the speed and accuracy of field
reconstruction. However, since online methods operate in real-
time, predicting the optimal path in advance is challenging, making
efficient trajectory planning a complex problem. As a result, recent
works in this field often provide additional strategies for effective
trajectory planning and navigation for mobile sensor networks.
In (You et al., 2016; Zhang et al., 2023), the authors employ a
cooperative Kalman filter (CKF) combined with recursive least
squares (RLS) to identify advection-diffusion field parameters in
real-time using live sensor readings from a formation of mobile
robots. To ensure that the robot formation follows information-rich
trajectories, several studies, including (You andWu, 2018; You et al.,
2022), have integrated robot dynamics into the field dynamics and
focused on minimizing mapping errors. However, these approaches
may converge to local optima and may not adequately address
the complexity of field reconstruction in environments involving
multiple diffusion fields with varying characteristics. To address
this issue, The author in (Talwar, 2020) proposes an exploration
strategy that samples nearby candidate destinations based on custom
weights calculated from cosine similarity to the centroid of unvisited
regions and distance from explored diffusion fields. However, this
approach may result in inefficient backtracking and revisits, which
are undesirable in time-critical missions.

To tackle the problem of exploring complex dynamic fields,
this research introduces a strategy for path planning and control
of mobile sensing robots designed to effectively explore and
reconstruct a dynamic field consisting of multiple non-overlapping
diffusion fields while offering a good balance between speed and
accuracy. In our proposed algorithm, the robot formation alternates
between two primary operational modes: Field Exploration and
Source Mapping. In Source Mapping mode, the formation makes
use of reinforcement learning (RL), specifically, proximal policy
optimization (PPO) to direct the robot formation to the center
of a newly discovered diffusion field, while attempting to estimate
its diffusion and advection coefficients through the CKF and RLS
developed in (You et al., 2022). When dealing with the challenging
problem that multiple sources exist in the field and the path planned
in Source Mapping mode only leads to one source (local maximum)
in the field, we develop a novel K-means clustering algorithm
in the Field Exploration mode, to allow the robot formation
advances toward unexplored regions to identify traces of potential
new diffusion fields. The K-means clustering algorithm is used to
partition the unexplored regions and facilitate faster scanning of
the whole map. We validate our proposed strategy through both
computer simulations and controlled laboratory experiments. In
these scenarios, the robot formation is randomly placed within a
spatially and temporally varying field, and we compare the field
reconstruction errors to baseline strategies that employ random or
lawn-mowing trajectories. Our research demonstrates the potential
of multi-robot formations for accurate field reconstruction in
complex environments characterized by multiple spatial-temporal
diffusion fields.

To summarize, the main contributions of the paper are twofold:
(1) it introduces a novel two-mode strategy for path planning
and control of mobile sensing robots in dynamic environments,
specifically for exploring and reconstructing fields with multiple
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non-overlapping diffusion sources.The strategy integrates RL-based
path planning with a CKF and RLS for estimating unknown
parameters of the field. A key innovation is the use of K-means
clustering algorithm to facilitate efficient exploration of unexplored
regions, ensuring a balance between speed and accuracy. (2)
Through both simulations and controlled experiments, the research
demonstrates the effectiveness of the proposed strategy in improving
field reconstruction accuracy using only a limited number of mobile
sensing robots.

The remainder of this paper is structured as follows. In
Section 2, we formally define the problem. We present some
preliminary information in Section 3. The proposed algorithm is
presented in Section 4, followed by a detailed analysis of the
simulation and experimental results in Section 5 and Section 6
respectively. Finally, Section 7 summarizes our findings and outlines
future research directions.

2 Problem formulation

In this section, we formulate the problem of reconstructing
an unknown spatial-temporal varying field represented by a linear
combination of several advection-diffusion equations, using a team
of mobile sensing robots.

2.1 Spatial-temporal varying fields

Various processes that exhibit spatial and temporal variations,
such as the dispersion of pollutants in the atmosphere or water
bodies, are often represented by two-dimensional (2D) PDEs over
a domain R. A typical example is the 2D advection-diffusion
equation, which models the transfer of substances via advection
(the movement of substances through a fluid) and diffusion
(the spreading of substances from areas of higher to lower
concentration). This can be mathematically expressed as:

∂z
∂t
(r, t) = θ∇2z (r, t) + vT∇z (r, t) , r ∈ R, (1)

where z(r, t) denotes the concentration function of the field at
position r at time instance t, ∇ and ∇2 are the gradient and
Laplacian operators, respectively. The coefficient θ > 0 represents
the rate of diffusion, and v is the two-dimensional advection
coefficient, representing the speed at which a quantity such as heat,
concentration, or pollutant is transported by the bulk movement of
a fluid. Both θ and v are considered constant but possibly unknown
over a fixed interval.

In this work, we consider the field as a linear superposition
of multiple non-overlapping advection diffusion phenomena, each
governing a spatial-temporal region Ri, i = 1,…,M where M is
the number of the advection-diffusion processes. The concentration
zi(r,t) in each region satisfies the advection-diffusion equation:
∂zi
∂t
(r, t) = θ∇2zi(r, t) + v

T∇zi(r, t), r ∈ Ri. The global concentration
field is then represented as

z (r, t) = ∑
i
χi (r)zi (r, t) , r ∈Ω, (2)

where χi(r) is an indicator function defined as χi(r) = 1 if r ∈
Ri and 0 otherwise, and Ω = ⋃Ri, i = 1,…,M. Moreover, in

various real-world environmentalmonitoring scenarios, the domain
Ω is significantly larger than the dimensions of the operational
robots, enabling the approximation of the boundary as essentially
flat. Under these conditions, we apply the initial and Dirichlet
boundary conditions as shown in Equation 3 at the boundary
∂Ω (Demetriou et al., 2013):

z (r,0) = z0 (r) ,

z (r, t) = 0, r ∈ ∂Ω.
(3)

2.2 Mobile sensing robots

In this work, we consider a group of N mobile sensing
robots moving in a coordinated formation in the field Ω
represented in Equation 2. The algorithm proposed in this work
commands the formation to travel on planned paths to efficiently
reconstruct the unknown field. We make the following assumption
regarding these mobile sensing robots.

Assumption 2.1: Each sensing robot is equipped with sensors to
localize itself and tomeasure the field concentration value at its current
location at each discrete time step k.

The measurement of the ith sensing robot at time step k is
modeled as follows:

p(rki ,k) = z(r
k
i ,k) + ni, i = 1,…N, (4)

where rki represents the location of the ith robot at the discrete time
step k andni is assumed to be i.i.dGaussiannoise. Additionally, using
the locations of all the robots in the formation at time step k, we can
determine the location of the formation center rkc at time step k as
rkc =

1
N
∑Ni r

k
i .

When the robots move in a desired formation, it covers a time-
varying view-scope Γ(k), which is the area of the field domainΩ that
lies inside the polygon formed by sensing robot locations. As shown
in Figure 1, the shaded region illustrates the time-varying view-
scope Γ(k) at discrete time step k, the blue circles represent the four
mobile robots, and the red circle represents the formation center. At
any given time, themobile sensing robots canmeasure and exchange
concentration values at their specific locations as shown in Equation
4 and the field values z(rk,k), rk ∈ Γ(k) can be estimated by
interpolating the measured values from the robots. Consequently,
it is reasonable to assume that the estimated field values, z(rk,k), rk ∈
Γ(k), are available to us at all times.

In this work, to facilitate the implementation of the PPO
algorithm for sourcemapping in Section 4.1, we discretize the global
field Ω to a E× F grid, where each grid cell represents a single
location rk in the map and associates with a concentration value
z(rk,k). The following assumption holds for the formation center.

Assumption 2.2: Robots travel in a coordinate formation and the
formation center moves along the eight possible directions “up”,
“down”, “left”, “right”, “up-left”, “up-right”, “down-left”, “down-right”
in the discretized domain.

With the robots moving in a formation, a CKF developed in
(You et al., 2016; Wu et al., 2020) is employed to output estimates
of concentration z(rkc ,k) and gradients ∇z(rkc ,k) at the formation
center rc at time step k. These estimated values will play a major
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FIGURE 1
A symmetric formation composed of four mobile robots rki , i =
0,1,2,3 shown in blue. The formation center rkc is shown in red. The
distance between each robot and the formation center is Δr. The
shaded region is the time-varying view-scope Γ(k).

role in the developed algorithm in Section 4. Furthermore, we apply
the parameter identification algorithms developed in (Wu et al.,
2020) to estimate the unknown diffusion coefficient θ in real-time
using the output from the CKF and the RLS algorithm. Thus, in
the following discussions, we consider θ as a known value for
field reconstruction.

Remark 2.1: Multi-robot formation control is a well-studied
topic and researchers have developed numerous formation control
algorithms (Zhang and Leonard, 2010; Ren and Beard, 2008;Wu and
Zhang, 2012). In this work, we employ the formation control strategy
developed in (Zhang and Leonard, 2010) and applied in (Wu et al.,
2020).The strategy uses the Jacobi transform to decouple the formation
control from the motion control of the multi-robot formation, which
enables us to only plan the path and design the controller for the
formation center rc. The individual robot controllers are then derived
using the formation controller.

2.3 The multi-robot source seeking and
field reconstruction problem

In real-world scenarios, the task of mapping complex dynamic
fields for cases like gas-leaking and wildfires is important and is
often time-critical. It is essential for the robot formation to explore
and detect diffusion sources in unknown areas and generate a
map as quickly as possible. With the field defined in Section 2.1
and the multi-robot formation defined in Section 2.2, the goal
of this study is to design a path for the multi-robot formation

so that the formation can identify the multiple non-overlapping
diffusion sources in the dynamic field and reconstruct the field in
real-time with the limited concentration measurements collected
by the multi-robot formation along its trajectory. To achieve the
goal, we will introduce a two-mode strategy in Section 4, which
consists of a Source Mapping mode and a Field Exploration
mode. In the Source Mapping mode, we employ the RL-based
algorithm and train a PPO model to guide the multi-robot
formation toward a diffusion source in the field and reach
a stationary state, where the formation arrives at the source
and moves with the field at the same speed as the advection
flow. In the Field Exploration mode, we develop a K-means
clustering-based exploration strategy to enable efficient exploration
of unknown areas.

3 Preliminaries

3.1 Proximal policy optimization

PPO (Schulman et al., 2017) is a significant
development in reinforcement learning, introduced as a
more efficient and simpler alternative to Trust Region Policy
Optimization (TRPO) (Schulman et al., 2015). PPO is based on the
policy gradient approach, a class of algorithms that optimize policies
by directly computing gradients of expected rewards for policy
parameters. This approach allows the learning agent to improve
its policy iteratively by following the gradient of expected rewards.
PPO enhances this process by addressing the complexities of earlier
methods while retaining their benefits, particularly in maintaining
stable and reliable policy updates.

PPO operates as an on-policy method. Unlike traditional policy
gradient methods that apply a single update after each interaction
with the environment, PPO refines the policy by using multiple
updates on the same batch of data. The core of PPO is its surrogate
objective function, designed to prevent large, potentially destructive
policy updates. This is achieved through a probability ratio rk
between the new and old policies, which is clipped to keep updates
within a safe range. The surrogate objective function LCLIP(θ) is
expressed as:

LCLIP (θ) = Êk [min(rk (θ) Âk,clip(rk (θ) ,1− ε,1+ ε) Âk)] . (5)

In Equation 5, Êk denotes the expectation over timestep k, θ
represents the policy parameters, Âk is an estimate of the advantage
function at time step k, and ε is a small hyperparameter that
controls the clipping range. It is important to note that while
rk and θ follow the conventional notations used in literature,
they differ from the notations in other sections of this paper,
where r refers to the locations in the field and θ refers to the
diffusion coefficient. The clipping mechanism ensures that if the
probability ratio deviates outside the predefined range [1− ε,1+ ε],
the function applies the clipped values to prevent excessively large
updates, thereby maintaining the stability of the learning process.
By constraining the probability ratio, PPO effectively controls the
size of policy updates, balancing stability and performance. PPO is
particularly well-suited for discrete action spaces, which makes it
an ideal choice for our environment setup. The PPO algorithm is
summarized in Algorithm 1.
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Input: Initial policy parameters θ0, initial value

function parameters ϕ0
for k = 0,1,2,…  do

  Generate a set of trajectories Dk = {τi} by running

the policy πk = π(θk) in the environment

  Calculate the rewards-to-go R̂k

  Estimate advantages Âk using a suitable method

based on the current value function Vϕk

  Update the policy by maximizing the

PPO-Clip objective

θk+1 = arg max
θ
 1
|Dk|T
∑
τ∈Dk

T

∑
k=0

min (rk

 (θ) Âk,clip (rk  (θ) ,1−ε,1+ε) Âk) ,

 where rk(θ) =
πθ(ak|sk)
πθk
(ak|sk)

.

  Update the value function by minimizing the

mean-squared error:

ϕk+1 = arg min
ϕ

1

|Dk|T
∑
τ∈Dk

T

∑
k=0
(Vϕ (sk) − R̂k)

2.

Algorithm 1. PPO-Clip Algorithm.

3.2 Cooperative Kalman Filter

CooperativeKalmanFilter(CKF)isacollaborativestateestimation
schemefirstdevelopedin(ZhangandLeonard,2010), thenusedinlater
studies (WuandZhang,2012;Youetal., 2016;Wuetal., 2020;Youetal.,
2022), by combining live sensor data collected by the network of
multiple mobile robots to collaboratively improve the accuracy of
the state estimation process. In particular, when applied to the state
estimation in dynamic fields, the authors incorporated the dynamics
of the mobile robot formation and the diffusion equation into the
formulationof the state equationof theCKF.This integration facilitates
reliable andaccurate state estimation, taking intoaccounthowchanges
in diffusion fields and the formation trajectory over time affect sensor
data measurements. More specifically, the state vector X(k) at each
time step k is defined as:

X(k) = [z(rkc ,k) ,∇z(rkc ,k) ,z(rkc ,k− 1) ,∇z(rkc ,k− 1)]
T,

where z(rkc ,k) and z(rkc ,k− 1) denote the field concentration values
at location rkc at two consecutive time steps k and k− 1, respectively,
and ∇z(rkc ,k) and ∇z(rkc ,k− 1) denote the field gradient at location
rkc at two consecutive time steps k and k− 1, respectively. Given
that the mobile robots maintain a symmetrical formation while
traversing the environment, CKF estimates the state vector X(k)
along the trajectory of the formation center. Note that since the
field is spatial-temporal varying, the field concentration values and
gradients are different at time steps k and k− 1 even at the same
location rkc . This fact is critical in the construction of the CKF to
provide reliable estimates of the state vector. The estimated state
vector is subsequently employed to iteratively identify the diffusion
coefficients of the field over time, based on the RLS algorithm. The

estimated diffusion coefficients are vital for the task of identifying
and reconstructing spatial diffusion fields in our paper. To save time
and avoid excessive length in this paper, we will not provide the
complete derivation of the CKF. For additional details, interested
readers may refer to the original papers.

4 Methodology

In this section, we introduce the proposed path-planning
algorithm for guiding themobile sensing robot formation to quickly
explore an open field while reliably mapping and reconstructing all
detected diffusion sources along its trajectory. The algorithm aims
to find a balance between speed and reliability for the dynamic
field reconstruction. To achieve this, the solution alternates the
robot formation between two operational modes: Map Exploration
and Source Mapping. In Map Exploration, the robots systematically
advance toward unexplored regions to detect new diffusion fields.
Upon detecting a new diffusion field, the system transitions to
SourceMapping, where the formation converges on the field’s center
to achieve a stationary state, necessary for estimating advection
coefficients.

Throughout both modes, the robots continuously collect data,
using the CKF for real-time concentration and gradient estimation
and the RLS algorithm for identifying diffusion coefficients. In
the discrete simulation environment, concentration estimates are
interpolated across the formation’s view-scope. Mode transitions are
based on the formation’s state and the concentration estimates at
its center. Figure 2 provides an overview of all major components in
our algorithm and their interactionwithin the two operationmodes.
In the following sections, we will provide details of the algorithms
developed for the two modes.

4.1 Source mapping mode

Asdiscussed in the high-level overview, the goal of the formation
in SourceMappingmode is to move toward the source of a diffusion
field and facilitate diffusion field reconstruction by estimating
advection and diffusion parameters. For this purpose, we train a
PPOmodel that takes the field information vector state to predict the
optimal action. In this section, we describe the setup of our training
environment and the architecture of our PPO model.

We define the observation input state S(k) for our PPO
model as follows:

S (k) = [z(rkc ,k) ,∇zx (rkc ,k) ,∇zy (rkc ,k)] , (6)

where ∇zx (r
k
c ,k) and ∇zy (r

k
c ,k) represent the estimated

concentration gradients at the formation center at time step k, in the
x and y directions, respectively. As discussed in the previous section,
we rely on the CKF to provide estimates of the field concentration
and gradients at the formation center, which form the complete
input state of our model. By incorporating concentration gradients
in the observation state, we provide the model with the direction of
the largest concentration value change at the current location, which
can be useful for heading toward the source center. Additionally, our
definition of the state vector S(k) in Equation 6 limits the model to
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FIGURE 2
Flow chart showing the key components of our algorithm and two operation modes of the robot formation.

learning state-action values solely based on the characteristics of
the field. With the formation controller, the mobile sensor robots
can maintain a constant desired formation while traversing the
environment; thus; we only plan the path for the formation center
instead of individual robots.

For every time step, our robot formation canmove to any adjacent
cells (including diagonal) or stay at the current location.Thus, we can
define the action space A(k) consisting of nine actions as follows:

A (k) = { “up”, “down”, “left”, “right”, “up

− left”, “up− right”, “down− left”, “down

−right”, “stay” } . (7)

Since our goal is to train a PPO model that can guide the
formation toward the center of a diffusion field and maintain
stationary state as long as possible, it is crucial to develop a reward
function that incentivizes this behavior. For this reason, we model
the reward function based on the concentration values inside the
formation view-scope as follows:

R (k) = α ∑
r∈Γ(k)

z(rk,k) , (8)

where α is a rescale constant. As regions with high concentration
values play a significant role in field reconstruction, a reward
proportional to the total concentration values within the view-
scope as shown in Equation 8 motivates the model to learn to
navigate towards areas with higher concentration values. This, in
turn, greatly reduces the error in reconstruction and prioritizes
information-rich trajectory. We chose PPO as our model due to its
long-standing role as a crucial component in various state-of-the-art
solutions in reinforcement learning. Furthermore, PPO can be used
for environments with discrete action space, as in our case. Figure 3
shows the architecture of our PPO model. Since PPO is a type of
actor-critic algorithm, it has two neural networks - the actor network
and critic network. In our case, we employed the same architecture

FIGURE 3
The PPO neural network architecture used in the source
mapping mode.

for both.This network consists of three dense layers of size 128 each,
an input layer of size 3 and an output layer of size 9. We added
random dropout layers and regularization between the hidden
layers, with ReLu as the non-linear activation function (Agarap,
2018). The network is trained using Adams optimizer (Kingma
and Ba, 2015).

Using the trained PPOmodel, the robot formation takes actions
chosen from the action space in Equation 7, and is guided toward
the source of the diffusion field until it reaches the stationary
state. This stationary state is achieved when the estimated field
concentration reaches a local maximum and the estimated field
gradient approaches zero, i.e., z(rkc ,k) > z(r

k−1
c ,k− 1), z(r

k
c ,k) >

z(rk+1c ,k+ 1), and ∇z(r
k
c ,k) ≈ 0. At this point, the formation moves

at the same speed as the advection flow for a designated period of T
steps before switching to the Field Exploration mode to search for
other diffusion fields in unexplored areas.
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4.2 Field exploration mode

Whenever the robot formation reaches a stationary state,
indicating the detection of the source of a diffusion field, the robot
formation switches back to Field Exploration mode and moves
toward unexplored area in the map to look for the remaining
diffusion fields. During this phase, it is essential for the robot
formation to come up with a new destination that is away from the
already explored locations to avoid revisiting the same source, but
also not too far to cause the formation to go back and forth when
scanning the whole map. In short, our main objective is to generate
a path that allows our robot formation to scan the whole field as
quickly as possible without leaving any diffusion field undetected.
Lawn mowing is a good example of generating a deterministic
trajectory for scanning an unknownmap.However, since ourmobile
sensing robots are often deployed in time-critical missions. It is
necessary to opt for a more aggressive exploration strategy that
allows the formation to discover all sources as quickly as possible. In
our algorithm, we partition the unvisited cells in the entire map into
multiple clusters using the K-Means clustering algorithm (Na et al.,
2010). The selection of K directly affects how aggressive or cautious
the scanning behavior of our robot formation will be. The initial
value of K is selected based on the initial estimate of the minimum
size of a diffusion field. In this work, we use the term “size” to refer to
the bounded area of a diffusion field where the concentration value
exceeds a certain threshold. For different scenarios (such as wildfires
and gas leaks), we are often able to come up with a rough estimation
of the average size of a diffusion field. Let us denote this as ̃Sfield and
the global map size as Smap = E× F. Then, K is estimated as:

K =max(2,⌊
Smap

̃Sfield
⌋). (9)

After partitioning the map, the robot formation selects the
centroid of the nearest cluster as the new destination and moves
toward that destination to explore the field. It continues to visit
the centroids of other clusters, prioritizing nearby clusters, as long
as it is in the Field Exploration mode. The formation switches
to Source Mapping mode when the estimated field concentration
value exceeds a chosen threshold, i.e., z(rkc ,k) > δ. At all times, the
formation maintains a record of visited clusters and diffusion fields,
effectively creating a mask that distinguishes between explored and
unexplored regions.

Whenever a switch occurs from Field Exploration mode to
Source Mapping mode and the formation reaches the stationary
state in the Source Mapping mode (indicating a new diffusion field
is detected), the robot formation evaluates the field and computes
a new estimated K value to repartition the remaining unexplored
areas in the map. The “size” of the newly discovered diffusion
field can be roughly estimated based on the circular area with
radius Rdist extending from the source center to the location where
the concentration first surpasses the threshold. This is also where
the formation switches from Field Exploration to Source Mapping
mode. Denote the size as Snew represented as:

Snew ≈ π∗R2
dist. (10)

With the size of the latest detected diffusion field calculated
based on Equation 10, we can update the estimated average size of

1: Input: Unexplored region M0 as an N×N grid map.

2: Initialize:

3: Compute initial estimate K0 based on diffusion

field radius using Equation 9.

4: Apply K-Means Clustering with K = K0 to partition

M0 into K0 clusters.

5: Let Acentroids be the set of centroids for

these clusters.

6: Set concentration threshold δ for mode

switching.

7: Set target destination Target = (xk,yk) = r
k
c.

8: Let DONE ← False.

9: while z(rkc,k) < δ do

10:  if formation center rkc = Target then

11:   if Acentroids ≠ ∅ then

12:    Set Target as the nearest centroid Cnearest

in Acentroids.

13:    Remove Cnearest from Acentroids.

14:   else

15:     DONE ← True

16:     break

17:  Move formation towards Target using

A∗path-finding algorithm.

18: if DONE then

19:  Transition to Source Mapping Mode.

20: else

21:  Move to new region Mi and restart

exploration.

Algorithm 2. K-Means Clustering Based Exploration Mode.

the diffusion field ̃Sfield as follows:

̃S′field = (1− β) ⋅ ̃Sfield + β ⋅ Snew, (11)

where β ∈ [0,1] is the weighting factor that determines the influence
of the newly discovered field on the updated estimate ̃S′field. This
approach allows for increasing accurate field size estimation with
newdiscovery.Note thatKwill only decrease ormaintain unchanged
with each new source found. When the size of an unexplored area
in the map falls below a certain threshold, we consider the whole
map has been adequately covered. At this point,The robot formation
can either be set to idle mode or be directed to transition to a new
map (potentially a neighboring global field) to initiate its operations
from a different starting location. The exploration strategy can be
summarized in Algorithm 2.

4.3 Parameter estimation and field
reconstruction

The field reconstruction begins when the formation detects
the source of a diffusion field within the global domain. Given
that our environment is modeled as a 2D grid, we discretize the
diffusion Equation 1 to enable field reconstruction. Assuming the
domain of interest Ω is divided into square cells of size Δrx =
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FIGURE 4
A 3×3 section of the discretized advection-diffusion field.

Δry, as illustrated in Figure 4, where a 3× 3 grid is demonstrated.
Here, r1, r2, r3, r4 are the neighboring cells of grid cell r0. Let
z(r0,k),z(r1,k),z(r2,k),z(r3,k) and z(r4,k) denote the concentration
values at grid cells r0 to r4 at discrete time step k. Using the finite
difference method, the discretized advection-diffusion equation can
be expressed as:

z(r0,k+ 1) − z(r0,k)
ts

= θ[
z (r2,k) + z (r4,k) − 2z(r0,k)

Δr2x

+
z (r1,k) + z(r3,k) − 2z(r0,k)

Δr2y
]

+ vT∇z(r0,k) + e(r0,k) , (12)

where ts denotes the sampling interval and e(r0,k) represents the
approximation error.With the symmetric property, Equation 12 can
be further simplified to:

z(r0,k+ 1) − z(r0,k)
ts

= θ
∑4

i=1z(ri,k) − 4z(r0,k)

Δr2x
+ vT∇z(r0,k) + e(r0,k) .

(13)

To reconstruct a diffusion field using the measurements taken
by the robot formation with Equation 13, we need the estimated
field concentration values ̂z(r,k) within the view-scope of the robot
formation at each time step k, as well as the estimated diffusion
coefficient θ̂ and the advection vector v̂. The former can be obtained
through interpolation at each time step using the measurements
taken by the robots. As mentioned previously, we employ the
strategy developed in (Wu et al., 2020) to identify the diffusion
coefficient θ. In many scenarios, the advection coefficient v is
assumed to be a known constant. When the advection coefficient
is unknown, we estimate it when the robot formation reaches a
stationary state, where the robot’s velocity matches that of the
advection flow. Let v = (vx,vy)T and kS > 0 represent the time step
when a stationary state is detected. Assuming the formation stays at

the stationary state for T steps, (vx,vy) can be estimated as

v̂x =
rkS+Tc,x − r

kS
c,x

T
,

v̂y =
rkS+Tc,y − r

kS
c,y

T
.

(14)

With these values determined, the field values across the
diffusion field can be propagated through Equation 13. This
approach enables field reconstruction using only the sparse
measurements gathered along the robots’ paths.

5 Simulation results

In this section, we provide a comprehensive analysis of
the proposed multi-robot field reconstruction strategy, which
encompasses source mapping and field exploration modes in
simulations. We begin by outlining the implementation details,
followed by a discussion on the PPO training specifics. Finally, we
present the results derived from these simulations.

5.1 Simulation environment

To assess the overall solution, we developed a low-fidelity
simulation environment within a discrete space. This environment
is structured as a 100× 100 square grid, incorporating between
one to four non-overlapping spatial diffusion fields of varying
sizes and configurations, as depicted in Figure 5. We generated
a total of 15 different environments, with increasing level of
complexity, to investigate and assess the model’s efficiency in
mapping unknown environments. The color of each cell in the grid
denotes the concentration value of the diffusion field. Each diffusion
field possesses distinct and independent advection and diffusion
coefficients. Figure 6 shows the evolution of a sample diffusion field
over time. The environment was simulated for up to 400 time steps
with the discrete interval Δt = 0.1, Δx = 0.1, and Δy = 0.1. Table 1
lists the configurations of the 15 diffusion field environments with
advection terms (vx,vy) and diffusion term θ. The center of the field
is denoted as pos(x,y). Note that size is only used internally by the
generator as a scale factor to control how large a diffusion field
appears on the map.

Since the map is discretized in our approach, selecting an
appropriate grid cell size also plays a role in both the accuracy of
data collection and computational efficiency. Each grid cell should
be small enough to capture meaningful concentration gradients but
large enough to reduce computational demands. Ideally, the grid
cell size should reflect both the overall map dimensions and the
characteristics of the environment being monitored. For example,
when studying gas leaks, where subtle concentration changes are
significant, a finer grid may be required. On the other hand,
wildfire propagation fields, which tend to cover larger areas, can
accommodate slightly larger cells. Adjusting the grid cell size based
on the specific characteristics of the environment allows us to
find the right balance between resolution and computational cost,
facilitating effective and efficient exploration and reconstruction.
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FIGURE 5
A set of 15 simulation environments, each consisting of one to four diffusion fields centered at various locations with distinct diffusion and advection
coefficients.

FIGURE 6
Sample of a diffusion field environment over different time steps.

5.2 PPO training

For the training of the PPO model, we follow a curriculum
learning approach (Wang et al., 2023;Wang et al., 2022) that involves
gradually increasing the complexity of the training environment.We
created a 100× 100 training environment featuring a single diffusion
field at the center of the map p = (50,50) with a constant diffusion
coefficient θ = 1. The spread of this diffusion field at the beginning

of an episode is drawn randomly based on the parameter size, which
controls how large the area with non-zero concentration is due to the
presence of the diffusion field. This environment has two variants:
a “static” environment with the advection term set to zero, and a
“dynamic” environment with a fixed non-zero advection term.

We simulate a group of four mobile robots in a symmetric
formation as shown in Figure 1 to move in the environments, with
the formation controller running tomaintain the desired formation.
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TABLE 1 Configurations of the 15 diffusion field environments with
advection terms (vx,vy) and diffusion term θ. The center of the field is
denoted as pos(x,y). Note that size is only used internally by the
generator as a scale factor to control how large a diffusion field appears
on the map.

Source pos (x,y) Size vx vy θ

1-src-1 (50, 50) 80 0.73 −0.44 0.76

1-src-2 (30, 70) 60 0.14 −0.65 1.02

1-src-3 (90, 10) 160 0.74 0.09 1.24

2-src-1
(20, 20) 100 0.62 −0.01 1.07

(80, 80) 100 −0.04 −0.14 0.96

2-src-2
(50, 20) 60 −0.22 −0.47 1.04

(50, 80) 60 −0.59 −0.45 1.08

2-src-3
(20, 20) 80 −0.71 0.09 1.17

(50, 80) 80 0.56 −0.67 0.78

2-src-4
(20, 80) 80 −0.20 0.37 0.75

(90, 10) 120 0.71 0.78 0.99

2-src-5
(40, 80) 60 0.10 0.38 1.15

(80, 30) 60 −0.09 0.25 1.07

3-src-1

(10, 10) 100 0.54 0.19 1.21

(50, 90) 100 0.03 0.58 0.94

(90, 10) 100 −0.64 0.67 0.79

3-src-2

(40, 40) 80 0.39 −0.50 0.81

(80, 80) 80 0.60 0.25 0.93

(90, 10) 80 −0.12 0.11 1.18

3-src-3

(50, 50) 80 −0.37 0.24 1.13

(10, 90) 80 −0.32 −0.75 1.21

(90, 10) 80 0.76 0.71 1.02

3-src-4

(50, 5) 120 −0.49 0.17 0.91

(30, 80) 80 −0.50 0.56 0.84

(80, 70) 80 −0.44 0.42 0.98

3-src-5

(20, 20) 80 0.58 0.45 0.97

(80, 80) 80 0.66 −0.18 0.99

(30, 80) 80 0.73 −0.23 0.99

(Continued on the following page)

TABLE 1 (Continued) Configurations of the 15 diffusion field
environments with advection terms (vx,vy) and diffusion term θ. The
center of the field is denoted as pos(x,y). Note that size is only used
internally by the generator as a scale factor to control how large a
diffusion field appears on the map.

Source pos (x,y) Size vx vy θ

4-src-1

(10, 10) 80 −0.08 0.22 1.14

(90, 10) 80 0.37 0.35 0.77

(90, 90) 80 −0.72 −0.38 0.76

(10, 90) 80 0.37 0.63 0.86

4-src-2

(50, 10) 80 0.72 −0.73 1.05

(50, 90) 80 −0.75 0.74 1.06

(5, 50) 100 0.35 −0.05 1.03

(95, 50) 100 0.12 0.73 1.25

With the CKF providing the state S(k) which includes the estimated
field value z(rkc ,k) and gradient along the trajectory of the formation
center ∇zx(rkc ,k) and ∇zy(rkc ,k), the PPO model underwent training
on static maps first before advancing to training on dynamic maps.
After training, our PPO model outputs the policy to direct the
robot formation to move toward the source of a diffusion field and
maintain the stationary state, which is required for the estimation of
advection coefficients.

We provide the training results in Figure 7. The PPOmodel was
initially trained for 400,000 time steps on the static environment
where advection terms are set to zero, as shown in Figure 7A.
After that, we proceeded to train the PPO model on the dynamic
environment for an additional 2,000,000 time steps, as shown in
Figure 7B The model was trained multiple times with orthogonal
randomweight initialization using the Stable-Baselines3 framework
(Raffin et al., 2021), and the best-performing model was selected
for use in our experiments. In both environments, the formation
is initially placed in a low-concentration region at the start of each
episode to avoid starting too close to the source. Additionally, in
our dynamic environment, the source is assigned random, non-
zero advection and diffusion coefficients, causing it to move in
a different direction in each episode. This setup encourages the
model to adapt to various scenarios but also introduces some
fluctuations in performance early in training, as the formation may
take suboptimal actions initially and struggle to catch up to the
moving source. In both training phases, however, the average reward
per episode increases steadily, indicating that the model successfully
improves its given task over time. Additionally, Figure 7C provide
some samples of source-heading operation performed by our PPO
model post-training. In these samples, the 4-robot formation, shown
as the red square in the map, are tasked with locating the source
while maintaining its formation. The yellow region denotes the
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FIGURE 7
(A) Stage 1: Pre-training PPO on static fields. (B) Stage 2: Training PPO on dynamic fields. (C) Samples of training environments and generated
trajectories post-training.

area with high concentration - where the source is located, the
red square represents the robot formation, and the red dot is the
starting position of the formation center. The robot formation is
directed towards the center of the source, which has maximum
concentration, per the PPO’s objective of reward maximization.
PPO’s role in this task is to update the policy per iteration tomake an
informed decision on where to go next. The simulation results show
the PPO algorithm’s efficacy in source mapping.

The PPO algorithm’s training process effectively learns a policy
that guides the robot formation to explore the field, detect
diffusion sources, and assist in reconstruction while adapting to
dynamic changes in the environment. The algorithm’s capability
in handling complex and dynamic environments indicates its
potential in real-life scenarios where rapid environmental change
happens, and accurate detection of diffusion sources is crucial.
This capability is precious in pollution tracking or gas leak
detection scenarios, where time-sensitive and precise localization
is essential.

5.3 K-means clustering-based exploration

When the PPO model leads the robot formation to move
toward a diffusion source and the formation center reaches
the stationary state, the advection coefficient can be estimated
based on Equation 14, and the field reconstruction process
can start using Equation 13. Along with the field reconstruction
process, the robot formation switches to the field exploration
mode, where the K-means clustering-based exploration algorithm
2 plays a role.

Figure 8 provides an example of how the K-means clustering-
based exploration works in a 100× 100 grid map with two
diffusion fields. The formation started in Field Exploration mode
with the starting position shown as the red dot. Based on our
initial assumption about the average size of diffusion fields, the
map is partitioned into six clusters with K = 6 as illustrated in
Figure 8B. The formation moves toward the centroid of the nearest
cluster and continues to other neighboring centroids until an area
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FIGURE 8
Field Re-partitioning Behavior of the Exploration Module using K-Mean Clustering. The red dot is the starting position of the formation center.
Partitioning happens at the beginning of an episode and whenever a new source is detected. (A) The trajectory of the formation center. (B) The initial
partition of the field. (C) The updated partition after the first source on the upper right corner is detected. (D) The updated partition after the second
source on the lower left corner is detected.

FIGURE 9
Generated trajectories obtained from simulations across different spatial-diffusion environments. The robot formation center is initially located at rc =
(90,10) - shown as the red marker, and the red square shows the position of the formation the end of the episode.

with a high concentration is detected. When that happens, the
formation transitions to Source Mapping mode and attempts to
move toward the source center to reconstruct the field. When
the new diffusion field is fully reconstructed, the formation
switches back to Field Exploration mode, re-calculates a new K
as described in Equations 9-11 and re-partitions the unexplored
area, as shown in Figure 8C. Note that the unexplored area has
excluded visited clusters and any detected diffusion fields. This
process continues to repeat until the map is fully covered.

5.4 Multi-robot source seeking and field
exploration results

With the trained PPOmodel and the K-means clustering-based
exploration algorithm,we now ready to implement the overallmulti-
robot Source Mapping and Field Exploration strategy to reconstruct
a dynamic field. Figure 9 shows different trajectories of the robot
formation obtained from the simulation across multiple spatial-
diffusion environments. In this setup, the robot formation started
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FIGURE 10
Analysis of the generated trajectory and mapping errors of our solution in comparison with the Lawn Mowing and Random Walking approaches.

FIGURE 11
Mobile robot formation setup for real-world testing and evaluation.

FIGURE 12
(a) Lab experiment setup with a projected dynamic field and four mobile robots. (b) Snapshots of the trajectories of the robot formation at three
different time steps in an experiment. The red dashed lines represent the trajectories.
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FIGURE 13
The field exploration and reconstruction results in two experiments with two and three diffusion sources. “Environment Field End State” figures
illustrate the end states of the two experiments with corresponding trajectories of the robot formation. The red dots indicate the starting locations of
the formation center and the red squares are the ending locations of the formation. “Agent Field End State” figures show the end states of the
reconstructed fields in the two experiments. “Concentration” figures illustrate the estimated field concentration along the trajectories of the formation
center, and “Mapping Error” figures show the mapping errors while reconstructing the fields.

FIGURE 14
Screenshot captured from the experiment on the first environment with two diffusion fields.

at the same initial position r0c = (90,10) (top-right corner, shown as
a red marker).The red square displays the final position of the robot
formation at the end of the episode (k = 300). Despite variations in
spatial-diffusion field distributions and characteristics, we can see

that the robot formation managed to detect all sources in the map
while efficiently covering the entire map before the episode ends.

In Figure 10, we compare the trajectory and mapping errors
of our solution against other alternative path-planning algorithms,
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FIGURE 15
Screenshot captured from the experiment on the second environment with three diffusion fields.

including Random-Walking (shown in black) and Lawn-Mowing
(shown in green). With the Random-Walking strategy, the
formation takes a random action in every time-step, resulting in
an arbitrary trajectory. On the other hand, with Lawn-Mowing
strategy, the formation attempts to scan the field row-by-row until
the entire field is fully covered. Compared to these approaches,
the trajectory generated by our solution is faster at detecting and
mapping diffusion fields, resulting in a much lower mapping error.
In this map, our K-Mean-based approach is the only one that detects
all diffusion fields before the episode ends (k = 300).

6 Experimental results

To validate our solution in a real-world setting, we developed
a high-fidelity testing environment in our lab. Our setup includes
four mobile robots operating in a 12 × 12 square foot open field
that simulates an actual advection-diffusion environment. Figure 11
shows our laboratory setup of the mobile sensor network consisting
of 4 mobile robots with motion tracking enabled, allowing for
accurate collection of real-time trajectory data. The robots are two-
wheel differential drive and ROS-based, running on the Jetson
Nano (Developer Nvidia, 2024) computing platform. Each robot
is equipped with a 2D Lidar scanner [YDLidar-G4 (YDLIDAR-
G4-Datasheet, 2024)], a speed encoder, and an IMU (BNO-
055 (Industries, 2024)). To enable low-latency sensor fusion, a
Teensy 4.0 (PJRC, 2024) collects and preprocesses sensor readings
from the speed encoder and IMU before streaming the results to the
main board via rosserial. Lidar is installed to enable basic obstacle
avoidance behaviors, allowing the formation to adapt to various
scenarios when navigating in outdoor environments.

For localization, we rely on an indoor motion capture system to
provide absolute positional tracking, analogous to GPS in outdoor
scenarios. An Extended Kalman Filter (Ribeiro, 2004) fuses data

from both the IMU and motion capture system to improve real-
time position estimation of the robots. Our software stack uses
ROS Noetic (Quigley et al., 2009) and its ecosystem to facilitate
sensor fusion for localization and obstacle avoidance, as well as
to simulate and visualize the behaviors of the advection-diffusion
field. In our stack, each robot has its own action server (based on
ROS Action), which is responsible for moving the robot to a target
destination. A master node running on a stand-alone computer
is responsible for broadcasting the concentration values of the
simulated field as well as performing formation control during the
experiment.

Figure 12 presents various views of the simulated spatial-
temporal diffusion field in our laboratory as well as an example of the
trajectory generated by our robot formation. Given the difficulties
of installing physical diffusion field sources indoors, we utilized
computational models to simulate the environment. The simulated
field is projected onto the floor in real-time footage captured by
side and top-down cameras. Sensor measurements are generated
based on the robots’ locations, which are tracked using the motion
capture system.

To validate our solution in real-world settings, we selected two
spatial-diffusion environments from our list and ran simulation
experiments using actual mobile robots. While the spatial-temporal
diffusion field is generated by computer simulation, the mobile
sensor network is still designed to function exactly like how they
should behave in the real-world. This involves having individual
mobile robots take raw measurements and combine the results to
estimate the concentration and gradients at the formation center,
using CKF. Figure 13 provides a summary of our experimental
results. The first column “Environment Field End State” shows the
final states of our spatial diffusion environments and the trajectories
of the robot formation. In both experiments, the formation enters
the map from the bottom right corner with r0c = (90,90) - shown as
a red marker, and the red square again shows the formation’s final
location when the episode ends.The “Agent Field End State” column
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shows the final reconstructed field computed by our mobile sensor
network. As we can see, the formation center managed to explore
the entire map while following an information-rich trajectory,
which resulted in consistently high concentration readings and
low mapping errors. Additionally, the results from experiments in
the high-fidelity simulation environment closely resemble those
from the low-fidelity testing environment, demonstrating that our
solution can be adapted to more realistic scenarios. Additional
screenshots from our laboratory experiments are available in
Figures 14, 15. The plots in the upper left corners in both figures
illustrate the reconstructed fields.

7 Conclusions and future work

In this paper, we developed a strategy to map and reconstruct
dynamic fields with multiple diffusion sources using a multi-robot
formation. This strategy proved effective on various maps with
different configurations. Our approach efficiently explores unknown
maps while ensuring that potential diffusion sources are detected.
The results from our experiments show that the robot formation
can effectively utilize environment data from all robots to navigate
toward the source center and accurately reconstruct the advection
and diffusion coefficients. While we did encounter some challenges
with overlapping diffusion fields, these complexities only underscore
the need for further research and detailed experiments. Our system
holds potential for practical use in scenarios like rescue missions
and field explorations, where robots can assess hazards before
sending humans into these environments. This research shows the
capability and versatility of ourmulti-robot system in environmental
monitoring and could be important in enhancing safety measures
during high-risk missions.
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