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This study proposes a novel approach to enhancing the learning experience
of elementary school students by integrating Artificial Intelligence (AI) and
robotics in education, focusing on personalized and adaptive learning.
Unlike existing adaptive and intelligent tutoring systems, which primarily
rely on digital platforms, our approach employs a personalized tutor
robot to interact with students directly, combining cognitive and emotional
assessment to deliver tailored educational experiences. This work extends
the current research landscape by integrating real-time facial expression
analysis, subjective feedback, and performance metrics to classify students
into three categories: Proficient Students (Prof.S), Meeting-Expectations
Students (MES), and Developing Students (DVS). These classifications are
used to deliver customized learning content, motivational messages, and
constructive feedback. The primary research question guiding this study is:
Does personalization enhance the effectiveness of a robotic tutor in fostering
improved learning outcomes? To address this, the study explores two key
aspects: (1) how personalization contributes to a robotic tutor’s ability to adapt
to individual student needs, thereby enhancing engagement and academic
performance, and (2) how the effectiveness of a personalized robotic tutor
compares to a human teacher, which serves as a benchmark for evaluating
the system’s impact. Our study contrasts the personalized robot with a
human teacher to highlight the potential of personalization in robotic tutoring
within a real-world educational context. While a comparison with a generic,
unpersonalized robot could further isolate the impact of personalization,
our choice of comparison with a human teacher underscores the broader
objective of positioning personalized robotic tutors as viable and impactful
educational tools. The robot’s AI-powered system, employing the XGBoost
algorithm, predicts the student’s proficiency level with high accuracy (100%),
leveraging factors such as test scores, task completion time, and emotional
engagement. Challenges and learning materials are dynamically adjusted to
suit each student’s needs, with DVS receiving supportive exercises and Prof.
S receiving advanced tasks. Our methodology goes beyond existing literature
by embedding a fully autonomous robotic system within a classroom setting
to assess and enhance learning outcomes. Evaluation through post-diagnostic
exams demonstrated that the experimental group of students using the AI-
robot system showed a significant improvement rate (approximately 8%)
over the control group. These findings highlight the unique contribution of
this study to the field of Human-Robot Interaction (HRI) and educational
robotics, showcasing how integrating AI and robotics in a real-world learning
environment can engage students and improve educational outcomes. By
situating our work within the broader context of intelligent tutoring systems and
addressing existing gaps, this study provides a unique contribution to the field.
It aligns with and builds upon recent advancements, while offering a distinct
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perspective by incorporating robotics to foster both academic and emotional
engagement.

KEYWORDS

customized assistive robot-based education social robots, human-robot interaction,
robot operating system (ROS), education, learning enhancement

1 Introduction

Over the past decade, researchers have studied people’s
attitudes toward Socially Assistive Robots (SAR) in various
contexts, including education (Park et al., 2010; Flandorfer, 2012;
Johnson et al., 2014; Hinks, 2021; Dou et al., 2021). Studies have
shown that people generally prefer teaching assistant robots over
independent robot teachers in educational settings, and they also
prefer one-to-one learning conditions with a robot rather than
a group or classroom setting (Reich-Stiebert and Eyssel, 2015;
Baxter et al., 2017). The efficiency of the SAR as an educational tool
was evident since the late 2010s (Silvera-Tawil and Roberts-Yates.,
2018; Umbrico et al., 2020; Rudovic et al., 2018; Belpaeme et al.,
2018; Baxter et al., 2017; Jones and Castellano, 2018), with many
studies focusing on using these robots to assist students with special
educational needs such as autism and hearing disabilities (Silvera-
Tawil and Roberts-Yates, 2018; Rudovic et al., 2018; Taheri et al.,
2021; Ismail et al., 2021; Uluer et al., 2021; Wullenkord and
Eyssel, 2020; Singh et al., 2022).

The embodiment of the robot serves as a pivotal factor,
particularly in the early stages of education, fostering
enhanced student participation in the learning experience
(Conti et al., 2020; Ali et al., 2022). Given the prevalent use of
technology in children’s daily lives, acclimating to the presence of
a robot in the educational setting is anticipated to be seamless and
well-received. The social robot is designed not only to interact with
students but also to autonomously retrieve psychological indicators
through analysing facial expressions of students and their subjective
feedback. Leveraging this autonomous capability, coupled with the
systematic recording of students’ scores, our aim is to empower the
robot to effectively tailor educational materials based on individual
learning profiles.

Integrating AI capabilities into robots to assist students and
teachers has the potential to revolutionize the academic industry.
However, this requires a thorough understanding of students’
diverse educational needs and cognitive performance. It is crucial
to carefully select or create educational resources that provide
relevant content and are presented in an engaging manner
to support students’ learning progression, leaving no gaps in
their knowledge and building upon their existing understanding.
Teachers have a difficult but crucial responsibility to identify
the unique differences among students in a classroom, and then
work to address their weaknesses and build upon their strengths
(Soysal et al., 2022; Manzone and Nyberg, 2022).

Recent advancements in intelligent tutoring systems (ITS)
have further explored this potential. For example, Zhang et al.
(2024) conducted a systematic review of intelligent tutoring robots,
emphasizing their ability to enhance student learning through
adaptive and personalized approaches. Building on this foundation,
our study integrates real-time emotional and cognitive assessments

FIGURE 1
The robot Duet is used to assess and support students.

into robotics, providing a unique contribution to the ITS field by
addressing the challenges of personalized engagement and tailored
educational support in real-world classroom environments.

This paper proposes a novel method for assessing a student’s
level in mathematics using multiple indicators and the extreme
gradient boosting (XGBoost) model for classification (Chen et al.,
2015). The indicators used are both subjective and objective,
whereas teaching is conducted through interactive activities with
the assistance of Duet, the interactive robot from Marses Robotic
Solutions, as shown in Figure 1. For the specific task at hand, the use
of any robotic system necessitates an interactive screen and a camera
for enhanced user interaction and control.

To assist with the level prediction, the robot captures the
student’s facial expressions using its upper camera. In addition, the
robot is equipped with two screens - one that displays the robot’s
facial expressions, and another touch screen that is used to display
messages and facilitate interactive tasks.

The rest of the paper is organized as follows: Section 2 provides
a review of related work, while Section 3 details the materials
and methods used in the experiment, including the experimental
setup and data description. In Section 4, the results are presented
and analyzed. Finally, Section 5 concludes the study and offers
suggestions for future work.

2 Related work

The prevalence of social robots increased during the early
21st century due to advancements in AI and robotics technology.
Nevertheless, the idea of social robots can be traced back to the initial
stages of research on robotics and AI in the early 1950s (Nørskov,
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2017). Since then, the development of social robots has been an
important milestone in the field of robotics, with applications in
various domains such as healthcare, entertainment, and education.
In education, social robots have been recognized as a valuable tool
for enhancing the learning experience of students in a multitude of
ways. These include increasing student engagement and motivation,
improving learning experiences, and enabling the development of
new teaching techniques and approaches.

The use of robots in educational settings has demonstrated
potential to enhance both learning outcomes and social behaviors.
To optimize robotic tutoring, incorporating proactive behavior is
critical. Kraus et al. (2023) explores how robotic tutors can leverage
students’ cognitive-affective states to initiate proactive tutoring
dialogues, particularly in concept-learning scenarios. The study
observed that robotic tutors intervening during negative states
such as frustration and confusion helped maintain student focus.
However, it also found that excessive proactivity could harm trust,
emphasizing the need for balanced and context-sensitive proactive
assistance to improve the effectiveness of robotic tutoring systems.
Similarly, Hasan et al. (2020) investigates the shift from ITS to
Affective Tutoring Systems (ATS). While ITS rely on cognitive
data to personalize learning, ATS integrate emotional intelligence
to detect and respond to students’ emotions using tools like
facial recognition and physiological sensors. The paper identifies
challenges such as ethical concerns, technological limitations, and
cultural variability in emotion expression, alongside open issues
regarding ATS integration in diverse educational settings. This
research is particularly relevant in assessing how ATS-equipped
robots can emulate or complement the emotional engagement
provided by human tutors, further contributing to the development
of affective robotic tutoring systems.

Baxter et al. (2017) opted to use the NAO robot as a peer
learner in order to create a more encouraging learning environment
for children, as it was believed that students are more comfortable
dealing with a companion who makes mistakes. The study focused
on observing two groups of learners: one group interacted with a
personalized robot peer, while the other group interacted with a
non-personalized version. The personalized robotic group showed
more positive learning indicators. However, the main drawback
of the NAO robot is its inability to engage with students using
facial expressions, as its face remains static. In our work, the robot
serves as a social interactive platform, placing emphasis on engaging
the student in the learning process. Regular feedback is gathered
systematically to ensure the establishment and maintenance of a
social connection between the robot and the learner.

Pareto et al. (2022) investigated the use of a robot as a “tutee”
or student in the “learning-by-teaching” method. The success of
this approach was reliant on the quality of the interaction between
the tutor and tutee. The authors assessed the level of engagement
exhibited by the child when the tutee was a robot compared to when
it was a younger child. The tutor was able to provide more accurate
explanations and prevent misunderstandings with the child tutee
due to being mindful of the robot’s speech recognition limitations.
However, the robot posed more questions than a younger child,
presenting a challenge to the tutor and leading to enhanced tutor’s
critical thinking skills. The questions asked by the robot in our
work rely on the robot’s assessment of the learner. Considering the

intellectual nature of the topic being evaluated, some questions may
be repeated to strengthen the student’s understanding.

Eva is an example of a human-like tutor robotic head that reads
emotions through facial expressions and speech. It is capable of
mimicking human facial expressions through animation software
and the Facial Action Coding System (FACS) (Lazzeri et al., 2018).
Employing a fully robotic body for Eva holds promise for significant
advancements in the field of education, which would be beneficial
for our particular application.

Another example is the Softbank Pepper humanoid robot,
which was used to support the wellbeing of students diagnosed
with autism in a school (Lemaignan et al., 2022). Pepper was
left to operate autonomously in the school corridor, where it met
different students and interacted with them. The study showed a
variety of responses among the study group, including teachers who
recommended that the interaction with the robot should be more
personalized. Consequently, our study aims to gather personalized
indicators, potentially expanding to accommodate learners with
special educational needs.

Rudovic et al. (2018) have estimated the engagement levels of a
number of children with autism (valence, arousal, and engagement)
during their therapy sessions, which were led by a therapist with
the assistance of NAO. The robot was controlled by the therapist,
and the child was required to wear a wristband equipped with
physiological sensors to enhance engagement levels. The authors
prioritised studying engagement levels over establishing a social
bond between the robot and the child during therapy. In our work,
we contend that fostering a social connection between the robot and
the learner is pivotal in shaping the learning process.

Esfandbod et al. have studied the feedback of students
with hearing impairment on APO, a reading lips
social robot (Esfandbod et al., 2022). The robot’s objective is to
enhance the lip-reading skills of the target group. According to the
results of the experiment, the robot received higher acceptance than
a recorded lip-syncing video. As a result of using an LCD screen
to display lip-synchronized words, the illustration was limited to a
two-dimensional representation. The model we are proposing offers
customized activities tailored to learners’ specific needs.

In another study conducted by de Souza Jeronimo et al. (2022),
NAO and Zenbo social robots were employed to teach children
music, wherein the robots were able to recognize the sound of
a guitar string and teach the children how to properly tune the
guitar. The study aimed to assess their favorite robot embodiment.
Most participants preferred using Zenbo over NAO. However, the
comparison was not completely equitable as the quality of the videos
used for teaching was not consistent between the two robots. In our
suggested approach, the robot’s embodiment could vary as long as it
is equipped with both a camera and an interactive screen to facilitate
human-robot interaction.

Previous research has indicated positive outcomes in using
social robots to enhance children’s learning abilities. Nevertheless,
there are still certain limitations that need to be addressed. These
include the robot’s limited ability to interact with students using
facial expressions, the restricted range of measures the robot can
use to assess user performance, and the underutilization of the data
gathered by the robot. In light of these challenges, we developed
a tutor robot that improves the ability to interact with students
using facial expressions, expanding the range of measures to assess
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user performance, and enhancing the data utilization capabilities by
employing powerful machine learning algorithms such as XGBoost
to identify insights that can inform the teaching process and
optimize the learning experience.

In the work of Karthigha and Akshaya (2022), the XGBoost
algorithm achieved an accuracy of 95.01% in predicting human
sepsis disease using multiple features such as the heart rate, pulse
oximetry, temperature, systolic blood pressure, and a few others.
TheXGBoost outperformed other commonly usedmodels including
the decision tree, gradient boosting tree, and random forest. In
another study conducted by Alhaddad et al. Alhaddad et al. (2022),
the XGBoost algorithm achieved the highest accuracy (90%) in
characterizing five possible undesired interactions between a child
and a social robot. Moreover, the XGBoost algorithm demonstrated
a better performance and required significantly less training than the
random forest and support vector machines (SVM) algorithms due
to its ability to handle sparse data and model complex relationships
through gradient boosting techniques, which iteratively improve
the accuracy of predictions. Unlike random forests that build trees
independently and SVMs that require extensive parameter tuning,
XGBoost optimizes both themodel and computation speed by using
a sparsity-aware algorithm and effective handling of missing values.
For instance, in a student performance prediction task, XGBoost
can quickly converge to an accurate model with fewer iterations,
reducing computational costs and training time compared to the
more resource-intensive random forest and SVM approaches. This
could become particularly valuable if the model were to be adapted
for more diverse student groups, including those with special needs.
In such cases, incorporating additional features like physiological
or vital sign data could enhance the model’s predictive validity and
relevance. XGBoost’s efficiency with smaller datasets and complex
featuresmightmake it particularly suited for such scenarios, offering
both flexibility and high accuracy in more nuanced applications.

3 Materials and methods

In today’s education system, a noteworthy challenge arises in
seamlessly blending cutting-edge tools with traditional methods to
meet the evolving cognitive needs of students in our technology-
driven era. The gap between conventional teaching methods and
students’ desire for personalized, interactive learning experiences
prompts a thorough examination. Our research focus revolves
around the potential of incorporating robotics into education
to address these challenges, aiming to bridge the gap between
traditional teaching approaches and contemporary students’
preference for tailored and engaging learning encounters. Our
work expands beyond the evaluation of academic performance to
include the interpretation of psychological indicators and subjective
feedback within a non-judgmental framework.

3.1 Level indicators description

The presented methodology is groundbreaking in its
consideration of five level-indicators as metrics for assessing
student performance. These indicators encompass both the
psychological state and academic performance of the student,

forming a comprehensive approach to performance evaluation.
These indicators include: the dominant facial expression displayed
by the student during their most recent interactive task with the
robot, the score achieved by the student in that task, the student’s
historical performance score, the duration of their interaction
during the most recent interactive task with the robot, and
the subjective feedback provided by the student regarding their
satisfaction. Table 1 shows the variables listed under each indicator
used to predict students’ levels.

The Convolutional Neural Network (CNN) VGG13-PLD
approach is used to analyze the student’s facial expression and
identify one of eight possible emotions: neutral, happy, surprised,
sad, angry, disgusted, fearful, or contemptuous (Barsoum et al.,
2016). The CNN leverages the Bleedfacedetector package, which
includes four different face detection models, to identify facial
features and support facial expression analysis. By analyzing these
detected features, the system calculates the likelihood of each
potential emotion, allowing it to predict the dominant expression
displayed by the learner.

As a second level-indicator, the student’s current score is
captured from the most recent interactive activity completed with
the robot using the Selenium web page automation tool. Based
on the score, the student is classified into one of the following
categories: distinct, above average, average, below average, or weak.
The activities encompass a range of formats, including multiple-
choice questions, fill-in-the-blank exercises, and matching tasks.
This diverse array of question types is designed to assess and
reinforce students’ understanding of the topic from different angles.
By engaging with various formats, students can demonstrate their
comprehension in multiple ways, allowing for a more thorough
evaluation of their knowledge. Each activity is assigned a unique
average score, determined by a professional consultant, who is an
expert in mathematics teaching. The scoring is based on the activity
format, the level of difficulty, and the number of questions in
the activity.

To ensure accuracy, the assessment of a student’s proficiency
level considers their previous score as a third level-indicator, in
addition to their current score. By using the same scoring categories
for both the previous and current scores, we aim to ensure a fair and
impartial evaluation of the student’s comprehension. Total scores are
not shown to students. Instead, incorrect answers are highlighted in
red once the student submits their responses to the activity.

In addition to scores, the time required to complete an
interactive activity is considered important for assessing the
student’smastery of the subject and their readiness for advancement.
Based on the completion time, the student may be classified into
one of the following categories: very early, early, average, late, or
very late. An average completion time has been determined for each
activity based on observations of the time students spent completing
different types of tasks during the testing period of the experiment.
The student’s completion time is classified into different categories
based on the following criteria: very early completion is achieved if
the student answerswithin 65%of the average time, early completion
is achieved if the student answers within 70% of the average time,
late completion is achieved if the student answers 30% above the
average time, and very late completion is achieved if the student
answers 50%above the average time.The classification of completion
time into five groups and the calculation of the average time are
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TABLE 1 List of variables for the input indicators that are used to predict the performance level of a student (facial expression, old score, current score,
completion time, and subjective feedback).

Facial exp Current score Old score Completion time Feedback Level

happy distinct distinct very early positive 3

neutral above average above average early neutral 2

surprised average average average negative 1

sad below average below average late

angry weak weak very late

disgusted

fearful

contemptuous

based on observations made during students’ completion of various
interactive activities.

Finally, the robot obtains subjective feedback by asking the
student about their satisfaction and willingness to continue with the
lessons. Pop-up messages are displayed at the end of each lesson
to gather their feedback. The messages are presented in language
that is easy for students to understand, and students respond by
pressing one of the following buttons: positive, neutral, or negative.
For example, the message “How do you find the lesson?” is followed
by the options listed below:

• Button 1: Easy, I love the lesson with the robot!
• Button 2: Not easy, but I like it!
• Button 3: Hard, I do not enjoy the lesson!

Based on the five previous level-indicators, the system classifies
students into one of three proficiency levels: Proficient Students
(Prof.S), Meeting-Expectations Students (MES), or Developing
Students (DVS). Students classified as DVS (level 1) are required
to repeat the same task until they improve and advance to the
next activity. Students who are classified as MES (level 2) can
proceed to the next activitywithin the lesson, following the activities’
sequence, while students classified as Prof. S (level 3) have obtained
the necessary knowledge and ability to move on to the next level
within the same lesson, allowing them to skip the activities of the
level they have already mastered. A more detailed depiction of the
classification process is presented in Figure 2.

The robot possesses a library of lessons that can be modified
and expanded. In the initial experimental testing phase, which
lasted 3 days, the library consisted of three lessons. However, during
the subsequent experimental stage that spanned over 2 weeks, the
library was expanded to include seven lessons. All students start
with a level 1 interactive activity at the beginning of every lesson,
regardless of their academic proficiency. To become acquainted with
the robot’s interaction, the student must complete three activities
before being evaluated by the model if it is their first session.
Otherwise, the student’s level is evaluated at the completion of the
second activity to assess their fundamental knowledge required

FIGURE 2
The proposed lessons structure and activities levels.

to proceed with the remaining part of the lesson. In subsequent
activities of the same lesson, the student’s level is determined
upon completion of each activity. The structure of Lesson 1 is
depicted in Figure 2, which is consistent with the structure of all
other lessons provided online by theMinistry of Education inUAEat
Edushare platform. The proposed model uses data from the lessons
to determine the student’s level.

3.2 Experimental procedure

The adopted experimental procedure employs a comprehensive
approach to ensure personalized and effective learning for each
student. This is achieved through the use of OpenCV’s face
recognition tools to identify the student and access their previous
lesson history. The student is welcomed and encouraged before
starting their lesson activities, further enhancing the personalized
nature of the learning experience.

During the activities, the student’s facial expression is
analyzed using the VGG13 model to determine their current
emotional state (Barsoum et al., 2016). The VGG13 model’s
robustness to noise and light variations enhances its ability to
function effectively under real-world conditions, ensuring reliable
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FIGURE 3
Different steps of Duet’s tutoring for a complete 20-minute session.

student identification and emotional state assessment. Emotional
analysis is a critical component of our methodology, as it allows
the system to provide tailored feedback and adjust lesson content
in real time. This level of personalization is central to the study’s
objectives and would not be achievable with simpler identification
methods.The score and completion time are recorded tomonitor the
student’s progress. Furthermore, the student’s feedback is solicited
to provide a more accurate evaluation of their understanding and
proficiency level.

Using the XGBoost gradient boosting model, a holistic
assessment is performed based on the student’s facial expression,
previous score, completion time, subjective feedback, and the score
obtained in the last interactive activity. After the completion of
each activity, the model updates the student’s level based on their
performance, which is then used to assign appropriate material in
the next activity. This process is continuously repeated until the end
of the session, which typically lasts for 20 min. Figures 3, 4 illustrate
the different stages of this procedure. The flowchart in Figure 4
outlines the different steps of the robot tutoring procedure,
elucidating the specific functions attributed to XGBoost in assessing
the student’s level and directing the students to the next activity
tailored to match their needs.

3.2.1 Data collection
The dataset used for the AI model was synthetically curated

by generating various input (level indicators) and output (levels)
combinations using Microsoft Excel. This process ensured the
dataset encompassed all hypothetical data combinations of different
inputs and output values. The initial dataset contained 9,000 entries.
However, after a thorough review by two mathematics teachers,
6,064 entries were deemed unrealistic and removed, leaving a
refined dataset of 2,936 entries.This refined dataset is non-repeating,
consistent with its labels, and more representative of real-world
student data.

The data filtering process was as follows: The first teacher
reviewed the dataset to eliminate impossible combinations. For
example, if a student’s scores were categorized as “weak” or

FIGURE 4
A flowchart illustrating the different steps of the proposed tutoring
procedure.

“below average,” yet their placement level was listed as Level
3 (which is reserved for higher-performing students), such
combinations were marked as unrealistic and discarded. Similarly,
combinations where a student was categorized as “average” or
“above average” but placed in Level 1—especially if their completion
time was in the “early” or “on-time” range—were also considered
invalid. After this initial filtering, the second teacher verified the
decisions to ensure all remaining entries were valid and logically
consistent.

To illustrate, Table 2 displays selected valid samples from
the filtered dataset, showing consistent and realistic input-output
mappings. Conversely, Table 3 provides examples of discarded
entries, such as:

• A student with a “weak” score but assigned to Level 3.
• A student categorized as “above average” with an “on-time”

completion but placed in Level 1.
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TABLE 2 Selected samples of the filtered dataset.

Facial exp Old score Current score Completion time Feedback Level

fearful average average on time neutral 2

happy above average distinct very early neutral 3

sad weak average very late positive 1

neutral distinct above average very early positive 3

neutral average average on time neutral 2

disgusted weak below average on time negative 1

angry average below average late neutral 1

sad average distinct on time neutral 2

angry below average average early negative 1

surprised distinct weak late negative 1

neutral average above average on time negative 2

neutral average distinct very late negative 2

contemptuous below average average on time negative 1

TABLE 3 Selected samples of the discarded data entries.

Facial exp Old score Current score Completion time Feedback Level

fearful average average very early positive 3

surprised below average average on time positive 3

contemptuous below average average on time positive 3

neutral below average weak late positive 2

neutral below average weak very early neutral 2

happy average average very early negative 1

contemptuous distinct below average early positive 3

sad weak above average late neutral 3

fearful weak average very early neutral 3

neutral weak distinct late positive 2

neutral weak above average late positive 2

neutral average above average early negative 1

neutral average above average on time negative 1

The remaining 2,936 samples are unique and do not repeat
across different labels. Each entry represents a logically consistent
mapping between input indicators and the corresponding level,
ensuring the dataset’s integrity for evaluating and predictingwith the
AI model.

3.3 Machine learning model

While the VGG13 deep neural network is used for facial
expression recognition, the XGBoost model is employed to evaluate
the student’s level. The VGG13 model is trained on a set of labeled
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images depicting expressions from different age groups, genders,
and races. The model architecture comprises ten convolution layers,
each interposed withmax pooling and dropout layers.The first layer
processes the input, followed by two convolution layers utilizing 64 3
× 3 kernels. After the max pooling layer, a dropout layer with a 25%
dropout rate is introduced. This pattern is repeated with different
numbers of convolution layers and kernels. The model also includes
two dense layers with 1,024 hidden nodes each, followed by a 50%
dropout layer after each dense layer. Finally, a softmax layer is added
after the final dense layer to generate the output.

Data is prepared for machine learning by converting score and
time classes into numerical values. Since facial expression categories
lack an inherent order, one-hot encoding is used to represent the
facial expression classes.

The XGBoost model is selected to classify the student’s level
into one of three abilities. XGBoost, an acronym denoting eXtreme
Gradient Boosting, employs an ensemble learning methodology
featuring numerous constituent decision-making entities known
as “decision trees.” Each decision tree within the ensemble
iteratively updates the weightings assigned to its predecessors,
thereby contributing to an optimized decision-making process.
XGBoost encompasses three notable techniques: Boosting, Gradient
Boosting, and Extreme Gradient Boosting:

1. Boosting: This machine learning approach combines several
weak models—models that are marginally better than random
chance—to forge a robust predictive model. Each subsequent
model learns from the errors of the preceding ones, thereby
incrementally boosting accuracy.

2. Gradient Boosting: A refinement of boosting, gradient
boosting constructs models in a sequence, with each new
model addressing the inaccuracies of its predecessors. It is akin
to a collaborative team effort, where each new contribution
builds on the collective learning from prior outcomes.

3. Extreme Gradient Boosting (XGBoost): Elevating gradient
boosting, XGBoost introduces several improvements to
enhance both efficiency and processing speed. It leverages
parallel processing and tree pruning among other techniques,
rendering it exceptionally versatile and powerful for various
applications, including regression, classification, and ranking
challenges.

One of the primary reasons for selecting XGBoost over a single
decision tree is its ability to address the limitations of decision trees.
A single decision tree tends to overfit the training data, especially in
datasets with high variance or noise, as it tries to perfectly classify
the training data by creating overly complex splits that do not
generalize well to new, unseen data. Decision trees also struggle
with representing complex, non-linear relationships or interactions
between features due to their binary splitting nature. In contrast,
XGBoost’s ensemble learning approach mitigates overfitting by
combining multiple decision trees, each focusing on correcting the
errors of its predecessor. This iterative process refines the model’s
predictions, improving generalization and performance. Moreover,
XGBoost incorporates advanced regularization techniques, such
as L1 (lasso) and L2 (ridge) regularization, which prevent the
model from becoming overly complex and help it generalize better.
It also handles sparse or noisy data efficiently through sparsity-
aware algorithms, making it robust in scenarios where features

might be missing or incomplete. For example, in this dataset,
dominant features like facial expressions and completion times
exhibit complex interactions that a single decision tree cannot
effectively model. XGBoost’s iterative learning mechanism captures
these interactions and assigns importance to features adaptively,
enhancing prediction accuracy. This capability also allows XGBoost
to achieve high accuracy even with limited training data, unlike
decision trees thatmay struggle with sparse data. Additionally, while
SVM with an RBF kernel can model non-linear relationships, its
decision boundaries are often complex and less interpretable than
the decision trees in XGBoost. XGBoost combines the predictions
of multiple trees to enhance robustness and accuracy, particularly
in noisy datasets or those containing outliers. This interpretability
makes XGBoost an excellent choice for educational applications
where understanding model decisions is crucial.

The process begins with XGBoost taking various input features,
such as facial expressions, previous scores, completion times,
subjective feedback, and the latest activity scores. These features are
preprocessed into a numerical format suitable for model training.
During training, XGBoost builds an ensemble of decision trees
iteratively. It starts with a base prediction and sequentially adds
trees, each aiming to correct the errors of the previous ones by
focusing on the residuals. For instance, if a student’s facial expression
indicates confusion and their completion time is high, the model
might predict a need for review material. Conversely, positive
expressions and short completion timesmight suggest advancing the
student. This iterative process continues until the model accurately
predicts the student’s level, enabling personalized learning material
assignment.

To validate the superiority of XGBoost in this context, additional
experiments were conducted to compare its performance against
decision trees. These experiments revealed that a random forest for
example, failed to generalize well on test data due to overfitting and
poor handling of complex relationships between features. XGBoost’s
ability to iteratively refine predictions and handle sparse data was
critical in achieving superior performance. Visualizations of feature
importance further demonstrated how XGBoost effectively captures
intricate patterns and interactions that decision trees miss. Such
robustness and interpretability solidify XGBoost’s suitability for this
application, as detailed in Section 4.

3.4 ROS structure

The proposed approach is implemented on the Robot Operating
System (ROS) 2 - Humble distribution. ROS is an open-source
middleware framework designed to facilitate the development of
robotic software by providing services, tools, and a communication
infrastructure that allow different components of a robot system
to communicate with each other. The ROS model designed for the
proposed work includes five nodes: the student identity node, which
uses OpenCV’s face recognition to detect faces and VGG13 to verify
the learner’s identity, thewelcomenode, the lesson planner node that
plans the next activity by XGBoost, the subjective feedback node,
and the main controller node - the lesson node. A single launch file
is used to initiate all of the nodes. When the student’s identity node
detects a face that matches one of the faces in the resources files
(where all participant images are saved), it sends a string message
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FIGURE 5
Students’ engagement and performance during the tutoring sessions with Duet.

to the lesson node with the student’s name. The lesson node then
triggers the welcome node, which uses the student’s name to display
a welcome message in the GUI. Once the welcome message is
displayed, the lesson node progresses to the first activity in the
lesson, where it calculates both the completion time and score.Then,
the lesson node triggers the subjective feedback node, retrieves the
student’s feedback, and transmits all the collected data to the lesson
planner.TheXGBoostmodel incorporated in the lesson planner uses
this data to determine the student’s level and the next activity in the
lesson. The activities are passed to the lesson node as links.

3.5 Participants and experimental setup

Five fourth-grade students (9–10 years old) participated in
the experiment, as shown in Figure 5. They were chosen by the
mathematics teacher based on their scores in a pre-diagnostic
exam, graded out of 15 marks, along with the teacher’s professional
judgment. Similarly, a control group was formed using identical
criteria of age, grade level, pre-diagnostic exam scores, and
teacher’s professional judgment to facilitate comparison with the
experimental group. The experimental group consisted of four
boys and one girl, while the control group comprised of two girls
and three boys. All participants were natives of the Middle East,
originating from countries including the United Arab Emirates,
Egypt, Jordan, and Yemen. They were citizens and expatriates who
were born and raised in the United Arab Emirates. Additionally,
all participants received their education within the framework
of the country’s public school system. The experimental group
received the instructional material through the robot, whereas the
control group received the same instructional material but in a
traditional classroom setting, with a mathematics teacher delivering
the instruction. Table 4 illustrates the scores achieved by students
in each group: 14 for the distinct student, 13 for the above-average
student, 11 for the average student, 8 for the below-average student,
and 5 for the student performing weakly.

For the experimental group, the experiment was conducted
individually with one student at a time in the school’s library.
The initial experimental stage lasted three days, during which the
students were introduced to the robot and familiarized themselves

with various question types, including drag and drop, fill-in-
the-blanks, and reorder. Concurrently, an observer documented
the system’s performance and identified any technical problems
requiring attention or improvement. Three weeks following the
completion of the initial stage, the experiment was repeated with
the same students over a two-week period, which formed the
second experimental stage. Meanwhile, the control group remained
unaware of the experiment and continued attending regular math
classes in a conventional classroom environment. They used tablets
to complete lessons and activities, with their scores recorded for
comparative analysis.

4 Results and discussion

The hyperparameters used to train the XGBoost model were
carefully tuned to optimize performance. Key hyperparameters
included a learning rate of 0.1, a maximum tree depth of 6, and
a minimum child weight of 1. Additionally, the subsample ratio
was set to 0.8, and the colsample˙bytree was 0.8, ensuring robust
feature sampling. The number of boosting rounds was capped at
100 to balance training efficiency and performance. To evaluate
the model’s ability to achieve 100% accuracy on the test set (98%
of the data) while training on just 2% of the data, a stratified
random sampling procedure was employed. This approach ensured
that the training set was representative of the class distribution
in the entire dataset. The train-test split was fixed to maintain
consistency across experiments, and cross-validationwas performed
with five folds to assess performance variability.The cross-validation
results indicatedminimal performance variation, demonstrating the
model’s stability and robustness in achieving high accuracy even
with limited training data.

To further elucidate themodel’s ability to learn the data structure
with minimal training data, a comparative analysis was conducted
using the XGBoost with a random forest and an SVM with
RBF kernel.

Each of the three models achieved a perfect accuracy score
of 100% when training the models on 70% of the dataset and
testing them on the remaining 30%. These remarkable results
can be attributed to the unique significance levels exhibited by
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TABLE 4 Diagnostic scores for the experimental and control groups.

Distinct Score Above average score Average score Below average score Weak score

14 13 11 8 5

FIGURE 6
Indicators contribution rates to predict the student’s level.

TABLE 5 Minimum train and test sizes for 100% accuracy of the
XGBoost, random forest, and SVM with RBF kernel models.

Test accuracy

Train Size Test Size XGBoost Random
Forest

SVM

60% 40% 100% 100% 100%

19% 81% 100% 100% 86%

2% 98% 100% 84% 79%

each indicator used in the experiments. Specifically, the new score
indicator emerged with the highest level of importance, with the
old score and completion time following in order of importance,
as shown in Figure 6. Determining each indicator’s importance is
based on a comparison of impurity reduction or Gini index for each
level indicator within the XGBoost training set.

As shown in Table 5, when training the three algorithms
on reduced training sizes, all three achieved a 100% accuracy
score at various performance levels. The SVM with RBF kernel
achieved a 100% accuracy score when trained on 60% of the
dataset. However, the random forest achieved a 100% accuracy
score with only 19% of the dataset, while XGBoost outperformed
them all by achieving a 100% accuracy score with only 2% of the
dataset, making it the model of choice for our proposed method.
When trained on such a limited dataset, the accuracy of SVM
dropped to 79%, whereas random forest achieved an accuracy score
of 84%.

The random forest, despite being an ensemble method of
decision trees, failed to fully capture the intricate relationships
between features for several reasons. Random forests can struggle
with datasets where feature relationships are highly nonlinear or
dependent on nuanced interactions. While the method reduces the

risk of overfitting compared to a single decision tree, it can still
exhibit overfitting tendencies in scenarios with imbalanced data
or insufficient diversity in the training set. This issue can lead to
overly complex trees within the ensemble, which collectively fail
to generalize well to unseen data. For example, while the random
forest relied heavily on dominant features such as facial expressions
and completion times, it failed to integrate these features effectively
with secondary attributes like subjective feedback. On the other
hand, although the SVM with RBF kernel can model nonlinear
relationships, performance is highly sensitive to hyperparameter
tuning. Moreover, an RBF-based decision boundary is relatively
opaque, making it more challenging to understand exactly how the
model arrives at its predictions. In contrast, XGBoost’s ensemble
learning and iterative corrections allowed it to model these
complex relationships more effectively, highlighting its superiority
in this context.

Therefore, our contribution is not simply using XGBoost as a
powerful algorithm “off-the-shelf,” but rather demonstrating how
and why it uncovers the underlying relationships in the data even
withminimal training samples, where simpler or more interpretable
models (like a random forest or an SVM) either underfit, require
extensive tuning, or fail to capture the key feature interactions.

The data collected from the students was exported to
a CSV file. Table 6 presents the results of the initial experimental
stage, where the students’ names were replaced with a digit that
denotes their rank within the group, ranging from 1 to 5.

The testing sessions were conducted after the students had
studied the topics relevant to the experiment and were preparing
for the final mathematics exam of the term. These sessions
provided an opportunity for the students to practice for the
exam. Throughout the tutoring sessions, it became apparent that
the students’ performance improved with increased interaction
with the tutor robot. The data presented in Table 6 indicates
that Stu-1 progressed from above average in the initial tutoring
session to distinct in the following session. Stu-2 and Stu-4 also
improved from a weak performance level in the first session to a
distinct one in the subsequent sessions. Stu-3, initially classified
as weak, advanced to an average level in the second session and
eventually reached a distinct performance level in the last session.
Although Stu-5 completed the interactive activities quickly in their
only session, their low scores resulted in an evaluation of weak
performance.

The second experimental stage began 3 weeks after the first
experiment and lasted for 2 weeks, with the same students but with
new lessons belonging to the following term’s curriculum. Prior
to each session, the students were briefly introduced to the topics
covered in the experiment. Students assigned to any of the three
proficiency levels continued with the lesson activities, proceeding
to the following lesson only if all levels in the current lesson had
been accessed and assessed (Lesson Completed - LC). Each session,
usually lasted between 20 and 25 min. Throughout the sessions,
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TABLE 6 Data collection during the testing period of the first experimental stage.

name Timestamp Lesson Last score Time spent Feedback Expression

Stu-3 1670225305 1 weak late positive Neutral

Stu-4 1670227196 1 weak very late positive Neutral

Stu-1 1670229970 1 above average very early positive Neutral

Stu-2 1670230327 1 weak on time positive Neutral

Stu-1 1670310026 2 distinct very early positive Neutral

Stu-3 1670312330 1 average early positive Neutral

Stu-4 1670313014 1 distinct on time positive unknown

Stu-2 1670314423 1 distinct early positive Neutral

Stu-3 1670396295 2 distinct very early positive unknown

Stu-5 1670398207 1 weak very early positive Happy

Stu-2 1670402449 2 distinct very late positive unknown

Stu-4 1670403127 2 distinct very early positive Neutral

the students remained attentive and engaged, typically displaying
neutral facial expressions. Occasionally, some students would look
away or down, likely counting on their fingers while thinking,
resulting in moments of unknown facial expressions. Additionally,
since the VGG13 model was not explicitly trained to detect facial
expressions in children,many emotionswere not identified andwere
labeled as unknown.

It is commonly observed that students tend to perform
better during the second evaluation of a lesson, which can be
attributed to the practice received during tutoring sessions. The
data shows that individual differences are considered, with Prof.
S students demonstrating swift progress and understanding while
DVS students required more time to practice and grasp the lesson
content. Despite these differences, each student had a positive
experience during all sessions.

Following each session, the mathematics teacher, who was also
instrumental in refining the dataset, conducted an assessment of
each student’s proficiency using five distinct level indicators. These
assessments consistently aligned with those generated by XGBoost,
indicating that students were appropriately placed at their respective
levels during the robot tutoring sessions. The teacher’s evaluation
thus confirmed the effectiveness of the XGBoost model. However,
it is important to clarify that our proposed method operates
autonomously without requiring direct input from the teacher. This
means that the robot assesses the student without the teacher’s
involvement while it is in operation. Nonetheless, we recommend
taking the teacher’s insights into account when selecting activities
based on the student’s proficiency level.

The effectiveness of the proposed method was validated by
comparing the scores achieved by both the experimental and
control groups and by calculating the percentage improvement
between them.

To support our findings, we employed improvement rates
calculated within each robotic session. The improvement rates
were computed individually per lesson for each student, allowing
us to evaluate differences in improvement rates between the
experimental and control groups. Improvement rates were
determined by our study’s professional consultant, the mathematics
teacher, by analyzing scores from initial and concluding activities
within each session. The improvement rate for each student
was based on the difference between their starting score and
their final score in a session, measured as a percentage of the
starting score.

To address concerns about the potential interdependence
of repeated measures within subjects, we acknowledge that
improvement rates were calculated repeatedly for the same students
across multiple sessions. This introduces a potential dependency
structure that was not fully accounted for using the Mann-Whitney
U test. While this test was initially chosen for its simplicity, we
recognize its limitations and suggest that a mixed-effects model or a
paired analysis could be explored in future analyses to address these
dependencies explicitly.

Tables 7, 8 display the scores from both initial and concluding
activities for each student per lesson. These tables illustrate the
raw scores and calculated improvement rates for both experimental
and control groups, supporting the comparative analysis of
teaching methods. The data presented in these tables reveal that
the experimental group demonstrated better improvement rates
compared to the control group, highlighting the effectiveness of the
robotic teaching sessions.

In summary, our analysis involved two distinct groups,
each with a dataset of 16 improvement rate values, thereby
facilitating a comprehensive comparative analysis. The average
improvement rate is computed by averaging these improvement
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TABLE 7 Improvement rates per lesson for students in
experimental group.

Student Old score New score Improvement
rate

Stu-1 89.31% 98.45% 10.23%

Stu-1 88.06% 97.03% 10.19%

Stu-1 88.33% 97.24% 10.09%

Stu-1 92.74% 100% 10.03%

Stu-1 89.29% 99.97% 11.96%

Stu-2 86.13% 93.12% 8.11%

Stu-2 87.13% 94.36% 8.3%

Stu-2 84.31% 91.47% 8.49%

Stu-3 78.13% 86.03% 10.11%

Stu-3 80.9% 89.31% 10.4%

Stu-3 79.62% 87.88% 10.38%

Stu-3 78.44% 85.27% 8.71%

Stu-4 75.75% 80.01% 5.62%

Stu-4 75.52% 79.43% 5.18%

Stu-5 69.91% 70.58% 0.96%

Stu-5 71.98% 72.15% 0.24%

rates across all lessons, as illustrated in Table 9. In the experimental
group, the average improvement percentage in scores peaked
at 10.5%, while in the control group, it reached a maximum
of 7.8%.

Furthermore, students in both the experimental (Stu-x) and
control (Stu-x’) groups took a post-diagnostic exam, the findings of
which are compared to their diagnostic reference scores (Stu-x,x’), as
displayed in Table 10. The exam focused on the same topics as those
covered in the experiment. The results show that the experimental
group students scored either equally or higher than the students
in the control group, with a mean difference of approximately 1
point and an average improvement rate of about 8% higher than
the control group, in comparison to their performance on the pre-
diagnostic exam conducted before the experiment.

Despite experiencing some intellectual challenges with certain
activities, the students consistently maintained a favorable attitude
toward the tutor robot across all lessons. The mathematics
teacher observed that the students involved in the experiment
displayed a greater interest in their mathematics classes and
participated more actively in class activities after the experiment’s
completion. According to the students’ feedback, while the
robot piqued their interest, they expressed their preference for
the robot to be more interactive by moving during sessions,
incorporating games, or even providing tangible rewards for
correct answers.

TABLE 8 Improvement rates per lesson for students in control group.

Student Old score New score Improvement
rate

Stu-1′ 92.25% 96.59% 4.71%

Stu-1′ 89.69% 93.87% 4.66%

Stu-1′ 89.95% 94.28% 4.81%

Stu-1′ 90.4% 95.26% 5.38%

Stu-1′ 89.73% 94.16% 4.94%

Stu-2′ 86.2% 92.54% 7.36%

Stu-2′ 84% 90.46% 7.69%

Stu-2′ 83.28% 90.23% 8.35%

Stu-3′ 78.05% 78.77% 0.92%

Stu-3′ 80.5% 81.26% 0.95%

Stu-3′ 81.49% 82.23% 0.91%

Stu-3′ 81.19% 82.51% 1.62%

Stu-4′ 73.86% 75.59% 2.34%

Stu-4′ 76.28% 77.55% 1.66%

Stu-5′ 72.43% 72.9% 0.65%

Stu-5′ 70.65% 70.9% 0.35%

TABLE 9 The average score improvement of the experimental group
compared to the control group for all lessons completed by the
experimental group.

Student % Improvement in
exp. Scores

% Improvement in
cont. Scores

Stu-1 10.5% 4.9%

Stu-2 8.3% 7.8%

Stu-3 9.9% 1.1%

Stu-4 5.4% 2.0%

Stu-5 0.6% 0.5%

5 Conclusion and future work

In this work, we introduced a novel approach to personalized
education through the development of a tutor robot to enhance
the learning experience of elementary students. By integrating
the XGBoost algorithm, our robot can assess students’ proficiency
levels using a multifaceted set of indicators, such as scores and
completion time for activities, facial expressions, and subjective
feedback. This multifactorial evaluation allows the robot to tailor
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TABLE 10 Summative assessments exam scores of experimental (stu-x) vs. control (stu-x’) groups.

Student groups x:1 x:2 x:3 x:4 x:5 Average improvement rate

Stu-x,x’ 14 13 11 8 5 Reference scores

Stu-x 20 18 16 14 13 72.4%

Stu-x’ 19 18 14 13 13 64.8%

Mean difference 0.8 points

educational content specifically to each student’s needs and
performance expectations, thereby offering a highly personalized
and effective learning experience. The key contribution of our
work lies in presenting a tutor robot that interacts with the
students to personalize educational content by leveraging both their
psychological and intellectual indicators. The proposed approach
involves tailoring learning resources and experiences to match each
student’s unique emotional reactions and cognitive evaluations,
thereby addressing the varied needs, learning preferences and
abilities of students, and promoting a more engaging and focused
educational atmosphere. The integration of a physical robot into the
customisation of educational content introduces a social dimension
to student interactions, while also gathering and applying relevant
data to enhance the learning process. The effectiveness of our
method is supported by two factors: first, the experimental group
displayed an improvement rate of 8% higher than the control group;
second, the experimental group showed an increase in academic
motivation and ability level.

Although our approach demonstrates significant potential, it is
essential to acknowledge limitations that may affect its scalability
and reliability in real-world settings. For instance, the use of
facial recognition for identifying and evaluating students’ emotional
states is known to be sensitive to environmental factors such as
lighting conditions and camera angles. This sensitivity introduces
potential error rates that could impact the accuracy of student-level
predictions and the overall system performance. Future iterations
of this research should include a detailed analysis of error rates in
various real-world scenarios and investigate strategies to mitigate
these limitations.

The experimental setup may have introduced confounds that
affect the fairness of comparisons between the control and
experimental groups. For instance, students in the robot group
experienced a “tutorial session”, whereas students in the human
teacher group did not. Additionally, the novelty effect of interacting
with a robot may have influenced student engagement differently
compared to the familiarity of a human teacher. These differences
could skew the results, emphasizing the importance of addressing
such factors in future experimental designs. Future work should
include experiments that either equalize the conditions for both
groups or isolate the impact of these variables to ensure a more
rigorous evaluation of the system’s effectiveness.

Additionally, while the stated contribution of this work is the
identification of relevant input features for personalization, the
current algorithm groups students into three categories and delivers
pre-scripted content rather than true user-specific personalization.

This valid design choice could benefit from further exploration to
clarify its implications and justify its practicality. Future research
should aim to expand the personalization framework to incorporate
finer-grained, dynamic adaptations tailored to individual student
behaviors and needs. Moreover, direct comparisons between the
interaction styles and pedagogical approaches of the robot and the
human teacher, including factors such as prior familiarity with the
teacher and the novelty of the robot, should be examined in depth
to ensure a balanced evaluation.

Moreover, our study was conducted in a controlled environment
with a relatively small sample size, which may not fully capture the
complexities of diverse educational settings. Scaling the system to
accommodate larger, heterogeneous groups of students will require
robust testing and optimization. Future research should explore
alternative methods for student identification, such as manual entry
or wearable technologies, to enhance reliability while balancing
practicality and user experience.

We also recognize that the real-time decision-making
capabilities of the proposed algorithm, which are crucial for its
practical applicability, remain untested in this study. Future work
will focus on evaluating the system’s performance in live classroom
settings under dynamic and variable conditions to ensure its
effectiveness and reliability in real-world scenarios. Generating
additional synthetic data and retesting the algorithm with real-
world student data are essential steps to enhance the robustness of
the validation process. These efforts will form a critical component
of future work, employing data augmentation techniques, such
as SMOTE (Synthetic Minority Over-sampling Technique), to
supplement the dataset, while real-world trials will allow for a
more comprehensive assessment of the algorithm’s performance
and adaptability in diverse educational settings.

Moving forward, there is a potential to expand on the findings
of this study by creating a platform that incorporates diverse
and innovative learning materials to cater to learners of different
proficiency levels. The platform should prioritize a user-friendly
interface to enhance the overall learning experience. Additionally,
we recommend developing a platform specifically tailored for the
tutor robot, which seamlessly integrates with ROS to ensure accurate
data collection. To complement the facial expression indicator, we
suggest incorporating additional indicators collected through bio-
signal sensors to enhance the student level prediction. Furthermore,
the use of humanoid robots like Pepper, which are capable of
engaging gestures, head, hands, and body movements, or a robotic
head like Eva, can increase student engagement during tutoring
sessions. Collaboration between education experts and robotics
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engineers is critical for the success of this research endeavor.
Consequently, we highly recommend developing a comprehensive
dataset encompassing all variables that could contribute to the
evaluation of student performance.
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