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Reliable proprioception and feedback from soft sensors are crucial for
enabling soft robots to function intelligently in real-world environments.
Nevertheless, soft sensors are fragile and are susceptible to various damage
sources in such environments. Some researchers have utilized redundant
configuration, where healthy sensors compensate instantaneously for lost ones
to maintain proprioception accuracy. However, achieving consistently reliable
proprioception under diverse sensor degradation remains a challenge. This
paper proposes a novel framework for graceful degradation in redundant
soft sensor systems, incorporating a stochastic Long Short-Term Memory
(LSTM) and a Time-Delay Feedforward Neural Network (TDFNN). The LSTM
estimates readings from healthy sensors to compare them with actual data.
Then, statistically abnormal readings are zeroed out. The TDFNN receives the
processed sensor readings to perform proprioception. Simulation experiments
with a musculoskeletal leg that contains 40 nonlinear soft sensors demonstrate
the effectiveness of the proposed framework. Results show that the knee angle
proprioception accuracy is retained across four distinct degradation scenarios.
Notably, the mean proprioception error increases by less than 1.91°(1.36%) when
30% of the sensors are degraded. These results suggest that the proposed
framework enhances the reliability of soft sensor proprioception, thereby
improving the robustness of soft robots in real-world applications.

KEYWORDS

soft sensors and actuators, redundant sensors, neural network, self-adaptation,
proprioception, graceful degradation

1 Introduction

Soft sensors are crucial technologies in soft robotics. They enable soft robots’ intelligent
autonomy by providing sensory feedback (Hegde et al., 2023). Soft sensors offer various
sensing modalities, such as strain, tactile sensation, and temperature. Among these sensing
modalities, the awareness of a robot’s own shape, which is called proprioception in
neuroscience, is particularly important (Wang et al., 2018; Yang et al., 2024). Reliable
proprioception is vital for the functionality of soft robots in an unstructured environment,
as the failure in proprioception impairs their autonomous capabilities (Yang et al., 2024).
Due to their softness, soft robots can experience significant and nonlinear deformations in
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response to a control input (Polygerinos et al., 2017; Yasa et al.,
2023). Hence, soft robot modeling is generally challenging, and
minor discrepancies between the model and the actual robot
can deteriorate open-loop control accuracy (Wang et al., 2018).
Furthermore, soft robots are prone to passive deformation. For these
reasons, reliable proprioception feedback is crucial for soft robots
to adapt to continuous deformation and maintain autonomy for
effective task performance. (Wang et al., 2018; Lin Z. et al., 2023;
Chen et al., 2018; Thuruthel et al., 2019; Kawaharazuka et al., 2022).
For example, prior work by Alatorre et al. (2022) reported the use
of proprioceptive feedback for a soft continuum robot improved the
closed-loop position control accuracy by 65%. Indeed, many review
papers have highlighted the importance of consistently reliable
proprioception for soft robots (Hegde et al., 2023; Terryn et al., 2021;
Yang et al., 2024; Lin Z. et al., 2023).

However, soft sensors are susceptible to various damages
(Terryn et al., 2021), interfacial debonding (i.e., wiring failure)
(Lo Preti et al., 2022), and fatigue (Roels et al., 2022).Nevertheless, in
real-world applications like fruit harvesting and rescue (Wang et al.,
2018), soft robots are exposed to multiple sources of damage.
Also, soft robots generally undergo repeated large deformation. As
a result, soft sensors experience degradations (i.e., failures) that
distort sensor signals (Yang et al., 2024). In reality, some studies
have reported sensor failures during soft robot applications (Lin Y.-
H. et al., 2023; Roels et al., 2022).

To overcome the fragility of soft sensors and enhance the
reliability of proprioception, researchers have utilized self-healing
materials (Khatib et al., 2021; Terryn et al., 2021; Mazzolai et al.,
2022) and redundant soft sensor configurations (Thuruthel et al.,
2019; Kawaharazuka et al., 2022; Wang et al., 2023). Then, by
leveraging learning-based approaches, researchers have recovered
or retained proprioception accuracy despite sensor failure.
Note that a learning-based approach is popular to model soft
sensors (Kim et al., 2021), as they present numerous modeling
challenges (Polygerinos et al., 2017).

As the review paper describes (Khatib et al., 2021), researchers
have utilized self-healing materials to fabricate soft sensors (the
Supplementary Material provides an example). Yet, most self-
healing materials require minutes or even hours to complete
the healing process, resulting in downtime and low sensing
frequency (Yang et al., 2024). Additionally, a healing process will
change sensor properties. Thus, recalibration is required to recover
proprioception accuracy after sensor degradations.

On the other hand, redundant soft sensors realize instant
adaptation to degradations and failures without downtime or
intervention [e.g., recalibration (Roels et al., 2022), reconfiguration
of sensor position (Nguyen and Ho, 2022)]. Due to redundancy,
healthy sensors can compensate for the other ones and retain
proprioception accuracy. This specific property is called Graceful
Degradation (Thuruthel et al., 2019), which is essential for
achieving consistently reliable proprioception without downtime.
Here, redundancy refers to having multiple sensors that provide
overlapping or similar information, akin to biological sensory
systems (Proske and Gandevia, 2012). For example, animals possess
redundant muscle spindles within muscle groups to perceive
their joint angles (Erin et al., 2016), enabling adaptation to
changes in musculoskeletal configuration (Philipp et al., 2023). By
leveraging such a biological sensory system, soft robot sensing

can be more robust against damage (Thuruthel et al., 2019) and
provide feedback of multiple sensory modalities over a large
sensing area (Hardman et al., 2023).

Graceful degradation in soft sensors has been typically realized
using neural networks (Thuruthel et al., 2019; Wang et al., 2023).
For example, Thuruthel et al. (2019) realized accurate multimodal
sensing of a soft continuum actuator by combining a redundant
sensor configuration (three embedded soft sensors and one pressure
sensor) with an LSTM network. In addition to their main
contribution, the researchers demonstrated that the LSTM network
adapted to the virtual loss of one or two soft sensors and retained
proprioception accuracy in the simulation experiment. Some
researchers have implemented graceful degradation for soft sensor
exteroception and multimodal sensing. Supplementary Material
provides other examples of graceful degradation. Yet, the proposed
methods did not incorporate the detection mechanism for sensor
degradation, and the evaluation scenarios were limited to the
complete sensor loss (i.e., zeroing sensor readings). In contrast,
soft sensors can experience diverse degradations during operation
due to their softness and nonlinearity: cut, partial breakage,
plastic deformation, length deviation due to interferences, and even
temperature and humidity affect sensor readings (Terryn et al., 2021;
Khatib et al., 2021; Porte et al., 2024; Terryn et al., 2022; Shen et al.,
2016). Without detecting sensor degradation, a non-zero but
distorted sensor reading will significantly affect the proprioception
process and decline the accuracy.

Therefore, detecting and localizing various types of soft sensor
degradation is essential for achieving graceful degradation. To our
best knowledge, no study has addressed such graceful degradation
for soft sensor proprioception. A few researchers implemented it for
soft tactile sensing (Lo Preti et al., 2022) andmultimodal sensor data
fusion (Lee et al., 2021). Supplementary Material provides the details
of these studies. However, applying the fault detection method
utilized in these studies to soft sensor proprioception is difficult
due to a non-unique mapping of a soft sensor (Thuruthel et al.,
2019; Hegde et al., 2023) and the difficulty in training data
collection. Non-unique mapping in this paper indicates that sensor
degradation results in similar or identical sensor readings for
different system states (Figure 1). This non-unique mapping makes
signal-based fault detection (Lo Preti et al., 2022) inapplicable. On
soft sensor proprioception, unlike tactile sensing, it is impracticable
to distinguish whether the signal variation is due to a deformation of
a proprioception target or due to sensor degradation. Regarding the
fault detection through reconstruction (Lee et al., 2021), extensive
pre-training of degradation pattern is required for precise fault
detection; however, the infinite number of soft sensor failure modes
makes the training data acquisition infeasible. Additionally, the
non-unique mapping would affect fault detection accuracy. Sensor
degradation will be overlooked if the distorted sensor readings are
similar to healthy sensor readings in different states of a target,
leading to reduced proprioception accuracy.

This paper proposes a novel learning-based framework for
graceful degradation, enabling redundant soft sensors to maintain
reliable proprioception under various sensor degradation. To the
authors’ best knowledge, this is the first framework to achieve
comprehensive graceful degradation for redundant soft sensors
by implementing fault detection that avoids non-unique mapping
and impracticable dataset preparation. The proposed framework
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FIGURE 1
A simple example of non-unique mapping. One resistive soft sensor
(white) is embedded in a pressure-driven soft extending actuator
(blue) with tubings (black). When the sensor is partially torn, its
resistance typically increases (Hegde et al., 2023). Consequently, the
distorted sensor readings (upside) become identical to those of a
healthy sensor with a longer actuator length (bottom), leading to
non-unique mapping.

consists of a stochastic LSTM for sensor fault detection and a Time-
delay Feedforward Neural Network (TDFNN) for proprioception.
The LSTM receives control inputs to a proprioception target
and outputs the corresponding values of healthy sensors. The
actual sensor readings are then compared with the estimates.
Next, statistically unreliable values are identified as degraded
and zeroed. This fault detection procedure prevents non-unique
mapping from occurring. This procedure also realizes dataset
preparation without seminal characterization and inclusion of all
possible sensor failure modes. Subsequently, the TDFNN receives
the processed sensor data and performs proprioception. As a
result, the proposed framework realizes the comprehensive graceful
degradation to diverse degradation of redundant soft sensors.
Our framework was evaluated by simulation experiments with a
nonlinear musculoskeletal leg model that contains 40 nonlinear
soft sensors. We utilized a musculoskeletal system because a
realistic and reliable simulation model is available, while it shares
similar characteristics with soft robots (Polygerinos et al., 2017;
Driess et al., 2018; Masuda et al., 2019; Carpenter, 1968; Hirashima
and Oya, 2016; Almanzor et al., 2023). We demonstrate that
the proposed framework retains proprioception accuracy against
four different degradation scenarios. Then, we show that the
framework can tolerate degradation in more than half of all sensors.
Finally, we present the framework’s scalability with two additional
musculoskeletal leg models featuring different numbers of sensors
or muscle-joint configurations.

2 Methods

2.1 Architecture of the proposed
framework

2.1.1 Architecture overview
Figure 2 describes the process flow of the proposed framework

at the time step t. The LSTM continuously receives control input ut.
Then, the LSTM estimates the current values of healthy sensors ŷt.
The outputs of the LSTM are the estimated mean μ̂t and variance σ̂2

t

of ŷt which are assumed to follow the normal distribution. Next, the
anomaly coefficient At of sensor k is calculated with actual sensor
readings yt:

Ak
t =
|ykt − ̂μ

k
t |

3 ̂σkt
(1)

IfAk
t > 1, the sensor k is identified as degraded, and ykt is zeroed since

it is statistically 99.7% abnormal. Finally, the TDFNN receives 20
steps of processed sensor readings y′t−20:t and outputs the estimated
states θ̂t.

In this study, the values from abnormal sensors are processed to
zero. Unifying abnormal values obviates the need to prepare datasets
for every possible sensor degradation scenario and prevents non-
uniquemappings.Moreover, using zero facilitates the generalization
of the TDFNNwith themax pooling layer.This processing is further
justified by the baseline resistance of soft sensors, which is always
greater than zero unless a sensor rupture occurs.

2.1.2 Stochastic LSTM for fault detection
The stochastic LSTM is responsible for real-time fault detection

and acts as a healthy forward model. The LSTM accurately estimates
healthy sensor values by accounting for the dynamic nonlinearities
of the proprioceptive target. The LSTM is implemented as a
stochasticmodel which outputs μ̂t and σ̂

2
t instead of ŷt (Murata et al.,

2013). The threshold for the direct comparison between yt and ̂yt
is affected by the actuation speed of a proprioception target. If the
target is not actuating, the variation of u is close to zero, which
leads to the smaller variation of y. In such situations, even the slight
differences between y and ŷ are more likely to be due to sensor
degradation.Thus, the threshold has to be small if the target actuates
slowly and large otherwise to maintain fault detection accuracy.
The anomaly coefficient A, derived using the variance predicted
by the stochastic LSTM, removes the need for dynamic threshold
adjustments. Consequently, accurate and consistent quantitative
fault detection is achieved, regardless of the actuation state of a
proprioception target or parameter tuning.

The stochastic LSTM is trained using a loss function [Equation 3,
(Murata et al., 2013)] that is derived as follows. First, the
current reading from sensor k, ykt are assumed to follow the
normal distribution. The probability density function of the normal
distribution Nk is written as:

N (ykt ;μ
k
t ,σ

k
t ) =

1

√2π(σkt )
2
exp(−
(ykt − μ

k
t )

2

2(σkt )
2 ) (2)

where μkt and (σkt )
2 are the mean and variance of the distribution.

The maximum likelihood estimation of Nk yields optimized ̂μkt and
( ̂σkt )

2. A function L is obtained by converting the Equation 2 into a
negative log-likelihood and removing constant:

L(μ̂t, γ̂t) =
1
n

n

∑
k=1
(γ̂t +
(yt − μ̂t)

2

exp(γ̂t)
) (3)

wheren is the total number of sensors and γ̂t = ln (σ̂2
t ).The estimated

variance σ̂2
t is output in the form of γ̂t to avoid gradient explosion.

The training of the LSTM minimizes L, which is equivalent to the
maximum likelihood estimation of N . Consequently, the LSTM
outputs maximum likelihood μ̂t and σ̂2

t after the training.
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FIGURE 2
The simulation testbed and architecture of the proposed framework. Supplementary Figure S1 in the supplemental material provides the detailed
process flow. The ut, θt, and yt represent the control input, the target state for proprioception, and the sensor readings at time step t. The LSTM is
responsible for fault detection, while the TDFNN performs proprioception. First, the LSTM zeroes out statistically abnormal sensor readings. These
processed readings are then input to the TDFNN, which outputs the estimated states. As a result, the framework achieves graceful degradation and
realizes reliable proprioception despite diverse degradation in the constituent soft sensors.

2.1.3 FNN for proprioception
The TDFNN is responsible for proprioception. The TDFNN

outputs the estimated states θ̂t, receiving processed time-series
sensor values. We incorporated a time-delay architecture to address
the delays typical of soft sensors. For graceful degradation, a
proprioception network needs to learn and adapt to the temporal
variations of the healthy/zeroed sensor combination. Using a static
network enables a more efficient training process and reduces
training time. Additionally, in terms of real-time proprioception,
this approach avoids the time-consuming sequential estimation
with LSTMs.

The combination of healthy and zeroed sensor data increases
quadratically. Thus, as the number of sensors in a single soft
actuator increases, it becomes infeasible for a simple TDFNN
to learn all possible combinations. We addressed this issue
using a 1-D convolution and max pooling layers before fully-
connected layers. The convolution across adjacent sensors

and max pooling extract features for accurate proprioception,
ignoring zeroed sensor readings. This approach enhances
translation invariance. Also, augmented training data enables more
efficient training (Section 2.3).

2.2 Simulation experiment setup

We utilized a musculoskeletal leg simulation to evaluate the
proposed framework because a realistic nonlinear muscle model
is available (Hill, 1938). The leg model was constructed on
MATLAB/Simscape. The proprioception target state was a joint
angle of the leg θ (Figures 2, 3). Soft sensorsmeasuredmuscle length.
Humans perceive joint angles through signals from muscle spindles
within their muscles (Erin et al., 2016). Muscle spindles generate
sensory signals via primary and secondary afferent fibers. They
can be approximated as muscle velocity and length, respectively
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FIGURE 3
Musculoskeletal leg models used in the experiments.

(Marques et al., 2014). Using the nonlinear musculoskeletal leg and
soft sensor model for such proprioception enables simulation based
on a reasonable model, and it is similar to soft robot proprioception
with embedded soft sensors (Thuruthel et al., 2019). Additionally,
themusculoskeletal legmodel shares similar characteristics with soft
robots, such as static and dynamic nonlinearity (Sugiyama et al.,
2024; Polygerinos et al., 2017; Driess et al., 2018; Masuda et al.,
2019) and the lack of a unique solution to achieve the desired
robot state (i.e., motor equivalence problem) (Carpenter, 1968;
Hirashima and Oya, 2016; Almanzor et al., 2023). Besides, prior
studies on proprioception with a redundant sensor configuration
also utilized musculoskeletal systems (Kawaharazuka et al., 2022;
Thuruthel et al., 2020).

We modeled the sensors as soft resistive strain sensors
(Souri et al., 2020). The model was built based on literature
that characterized a soft resistive sensor made from a carbon
nanocomposite elastomer (Muth et al., 2014). Note that it is one of
the most commonly used materials for such sensors (Yamada et al.,
2011; Thuruthel et al., 2019). Soft sensors typically exhibit nonlinear
responses due to elastomeric materials, temporal nonlinearity such
as response delay, and individual differences (Hegde et al., 2023;
Terryn et al., 2022; Thuruthel et al., 2021; Sugiyama et al., 2021).
Hence, we applied a second-order delay to the sensor length changes
and modeled the strain-resistance characteristics with a quadratic
function. Moreover, individual differences were implemented by
randomizing the parameters required for these modelings. Finally,
we added Gaussian noise for a more realistic simulation (Lin Y.-
H. et al., 2023). Through this process, we simulated the typical
response and temporal nonlinearities of soft resistive strain sensors
made from carbon elastomer. These nonlinearities are also observed
for the other sensor materials, such as liquid metal and hydrogel
(Park et al., 2012; Shi et al., 2021; Lu et al., 2020; Guan et al.,

2023; Cai et al., 2017; Shen et al., 2022; Xu et al., 2019;
Wang et al., 2016).

2.2.1 Musculoskeletal leg model
Figure 3 (Original model) describes the configuration of the

model. The leg consists of the femur and tibia. The angle of the knee
joint θ was set as a proprioception target. The joint was simulated
as a revolute joint and actuated by two pairs of agonist-antagonist
muscles: the Rectus Femoris (RF) and the Long Biceps (LB), the
Vastus Intermedius (VI) and the Short Biceps (SB). The range of
motion was 0°to 140°. The positioning of the muscles was based
on the literature (Marques et al., 2014; Geyer and Herr, 2010).
The femur was suspended from the ceiling and simulated as a
weld joint. The masses of both femur and tibia were 1 kg. Each
muscle approximated a muscle group containing muscle spindles
(Erin et al., 2016). The muscles were modeled as Hill-type muscles
(Hill, 1938) consisting of an active contractile, a passive spring,
and a passive damper element arranged parallelly (Almanzor et al.,
2024). Consequently, a muscle j output nonlinear force according
to muscle activation signal aj(t) while possessing nonlinear passive
dynamics (Equation 4):

F j
MTU ( ̂l

j (t) , v̂ j (t) ,a j (t)) = F j
CE ( ̂l

j (t) , v̂ j (t) ,a j (t)) + F j
spring ( ̂l

j (t)) + F j
damper (v̂

j (t))
(4)

where ̂l(t) is the muscle length normalized to the initial resting
length lref, and v̂ is themuscle contraction velocity that is normalized
to the maximum contraction velocity vref. The contractile element
receives a(t) and generates the active contraction force FCE, which
incorporates a normal distribution function and a sigmoid function
to approximate the natural activation of muscles (Meyer et al.,
2017; Heinen et al., 2016; Haeufle et al., 2014). The spring and
damper elements generate the passive forces of the muscle, where
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TABLE 1 The parameters of the musculoskeletal leg models.

RF LB VI SB IL GM

FMAX

Original 1,335 1,315 302 305 — —

6-muscles 2,378 940 384 200 72 661

lref

Original 0.46 0.45 0.27 0.27 — —

6-muscles 0.59 0.39 0.29 0.24 0.21 0.35

vref

Original 0.23 0.32 0.022 0.029 — —

6-muscles 1.31 0.45 0.021 0.028 0.018 0.20

the spring force Fspring depends on muscle length, and the damper
force Fdamper depends on muscle velocity. These elements simulate
the natural behavior of real muscles. Muscles tend to contract
back to their resting length when stretched by external forces
and oppose the speed of extension or contraction (Haeufle et al.,
2014). The detailed implementation of the model was described
in the authors’ previous work (Almanzor et al., 2024). Table 1
lists the parameters of each muscle required to build the model:
the maximum isometric force FMAX [N] derived from Chou-
Hannaford equation (Chou andHannaford, 1996), the initial resting
length lref [m], and empirically found maximum contraction
velocity vref [m/s].

For the scalability evaluation of the proposed framework in
Section 3.3, two other musculoskeletal leg models, RFLB and 6-
muscles, were built. Figure 3 shows the configuration of each model.
The RFLB model was built by removing VI and SB muscles
from the original model. The knee joint was actuated only by RF
and LB muscles. This model shares the same parameters as the
original model. The 6-muscles model was cited from the authors’
previous work (Almanzor et al., 2024) and consisted of the pelvis,
femur, and tibia. Sixmuscles, RF, LB, VI, SB, Iliacus (IL), and Fluteus
Maximus (GM), were attached to actuate the hip and knee joint.The
pelvis was fixed in the air as a weld joint. For both models, the range
ofmotion for the knee angle was 0° to 140°, and that for the hip angle
was −70° to 70°.

2.2.2 Soft resistive sensor model
A soft resistive strain sensor k on a muscle jmeasures simulated

muscle lengths (i.e., sensor length) lj(t) [m] as resistance Rj,k(t)
[kΩ]. We modeled the sensor as follows so that the model
approximates the length-resistance characteristics and the response
delay experimentally verified by Muth et al. (2014). Note that
other studies that characterized the properties of carbon elastomer
soft strain sensors also reported similar nonlinearities (Park et al.,
2019; Yamada et al., 2011; Li et al., 2015; Mattmann et al., 2008;
Shintake et al., 2018). Figure 4 illustrates an example of simulated
sensor response and corresponding sensor length.

First, sensor length was converted to strain ϵ j,k(t) [%]. The
initial resting length of all the sensors was set to 20 cm so that no
sensor deflection occurred during all experiments. Then, second-
order delay denoted by the differential Equation 5 was applied to
ϵ j,k(t) to obtain delayed strain ϵ j,kdelay(t). Due to the viscoelastic nature

FIGURE 4
Example of simulated sensor response (blue) and corresponding
sensor length (red). This sensor was attached to the Short Biceps (SB).

of soft material (Polygerinos et al., 2017), uniforming strain in a soft
sensor requires time.

d2ϵdelay (t)

dt2
+ 2ζωn

dϵdelay (t)
dt
+ω2

nϵdelay (t) = Kω
2
nϵ (t) (5)

where ωn is natural frequency, ζ is damping ratio, and K = 1 is
system gain. After that, a quadratic Equation 6 calculated change in
resistance ΔRj,k(t) from ϵj,kdelay(t).

ΔR (t) = bquad ⋅ ϵ2delay (t) + cquad ⋅ ϵdelay (t) + dquad (6)

where bquad,cquad,dquad are constants. We set bquad = 0 and cquad = 0
to simplify parameter settings, as ΔR is always zero when ϵ = 0. This
quadratic equation originated from Ohm’s law R = ρ L

S
where ρ,L,S

are the resistivity, length, and the cross-section area of a soft sensor
(Hegde et al., 2023).The literature (Shi et al., 2021) provides detailed
derivation of Equation 6. Finally, sensor resistance Rwas obtained as
follows (Equation 7):

Rj,k (t) = ΔRj,k (t) +Rj,k
baseline (t) (7)

where Rj,k
baseline(t) is the baseline sensor resistance. The obtained

resistance values were processed with Gaussian noise with a
standard deviation of 0.4% (Lin Y.-H. et al., 2023). Four parameters
bquad,ζ,ωn,Rbaseline were independently set for each sensor to
represent their individual characteristic differences (Thuruthel et al.,
2021; Sugiyama et al., 2021). We varied each parameter by ±20%
from values that approximated experimental data found in the
literature (Muth et al., 2014): bquad = 1.189× 10−2, ζ = 3.087× 10−1,
ωn = 3.587rad/s, and Rbaseline = 30.00k℧.

In addition to these nonlinearities, soft strain sensors often
exhibit hysteresis and drift (Amjadi et al., 2016), which are
challenging to model. In this paper, we ignored these complex
temporal nonlinearities to simplify the modeling process. However,
we already employed temporal nonlinearity as the second-order
delay. In addition, the proposed framework consists of the LSTM
and TDFNN, making it capable of modeling time-series data.

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2024.1504651
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Sugiyama et al. 10.3389/frobt.2024.1504651

Therefore, the framework is expected to address hysteresis and drift
if it can handle the response delay. Moreover, researchers have
succeeded in reducing sensor hysteresis and drift through sensor
structure and material design (Park et al., 2019; Guan et al., 2023;
Shen et al., 2022; Lu et al., 2020).

2.3 Training data collection

The musculoskeletal leg was actuated with motor babbling
data. This process involves the iteration of ramping up/down
and holding of input to allow the leg to explore its entire range
of motion (Almanzor et al., 2024). The knee joint angle θ, muscle
activation signals a, and muscle length lwere recorded at a sampling
frequency of 10 Hz. Then, each muscle length data was captured
as sensor resistance values R. Consequently, the sensor sampling
frequency was 10 Hz. During all the experiments, the resistance
values obtained were processed using a low-pass filter with a cutoff
frequency of 3 Hz. We generated 400 s of training data for the
TDFNN and 1,600 s of training data for the LSTM.The training data
were normalized and split into training and validation datasets in a
ratio of 3:1.

The TDFNN dataset was augmented by zeroing all raw sensor
resistance of randomly selected sensors. For each muscle, ten files
containing the same 400 s of sensor resistance data were generated.
Then, for each file, 0%, 10%, …, up to 90% of sensors were
randomly selected and zeroed (i.e., masked). Since four muscles
were involved, there are 24 possible combinations whether each
muscle contains masked sensors or not. Thus, the ten masked
files of each muscle were combined. This process was followed by
concatenating them with the corresponding masked or unprocessed
sensor data from the other muscles. The concatenation was
performed in 24 − 1 combinations, excluding the case where no
muscle contained masked data. As a result, the TDFNN dataset was
composed of 10× (24 − 1) = 150 files with different combinations of
masked sensors.

2.4 Framework implementation

The stochastic LSTM had one LSTM layer with a size of 1,600
and a fully-connected layer for final output calculation. The mini-
batch size was 8. ADAM optimizer with a learning rate of 5.0×
10−5 was utilized. During the training process, the LSTM was
trained using 150 steps of sequential data extracted from the dataset.
The leg (muscle) and sensor responses included delay that can be
modeled as first-order and second-order delay systems, respectively.
The maximum time constant of muscle activation was 1.2 s, and
the settling time of sensors was 2.0 s. Thus, the sequence length
was set to 150, which is sufficiently higher than the total response
delay (3.2 s). As a result, the LSTM effectively learned time-series
characteristics between muscle activations and sensor responses.
The loss function was calculated only with data at t ≥ 50. Typically,
an initial sensor value is essential for the calculation of μ̂t and σ̂2

t
from the control input history. However, elasticity, common among
soft actuators, gradually decreases the effect of their initial state.
Therefore, by learning from data where the effect of the initial state
was assumed to be sufficiently minimized, the LSTM was able to

achieve the accurate estimation of μ̂t and σ̂2
t without the initial state.

The calculation threshold was set to 50, which was higher than the
total response delay.

Regarding the TDFNN, the 1-D convolution and max pooling
were carried out separately for each muscle and sample time steps.
The kernel size was 3 with a stride of 1, and the output channels
were 3. The pooling size and stride were 3. The max pooling
results were concatenated into a vector and input to the fully-
connected layer. The number of layers was 3, each with 500 hidden
neurons. The input sequence length was set to 20 based on the
sensor settling time of 2.0 s. The batch normalization layer was
applied after the 1-D convolution layer to avoid overfitting. The
mini-batch size was 512. ADAM optimizer with a learning rate
of 1.0× 10−4 was employed.

3 Results

3.1 Graceful degradation capability to
different sensor degradation

First, we evaluated the fault detection and graceful degradation
capabilities of the framework under diverse sensor degradation.
We conducted five 100-s simulations using motor babbling inputs.
For each trial, we generated five evaluation datasets: Normal
(i.e., baseline), Lost, Stretch, Offset, and Deviation. These four
degradation scenarios were designed to simulate diverse failure
modes of soft sensors based on the literature. They effectively
represented the fragility of soft sensors for framework evaluation. In
each scenario, 30% of the sensors were randomly selected, and their
readings were distorted as follows:

• Lost: Readings from subjected sensors were zeroed to
simulate simple sensor loss (e.g., sensor rupture) (Lin Y.-
H. et al., 2023; Thuruthel et al., 2019).

• Stretch: Sensor resistance values were recalculated with new
sensor length lstretch randomly stretched up to 25%. This
scenario comprehensively simulates changes in the geometric
positioning of sensors, which can result from misalignment,
environmental contact, or deformation of the proprioception
target (Hegde et al., 2023; Lin Y.-H. et al., 2023).

• Offset: The persistent increase in baseline resistance, mainly
caused by the self-healing process and plastic deformation of
soft materials (Hardman et al., 2022; Terryn et al., 2021), was
simulated. We increased the baseline resistance of subjected
sensors by 50%.

• Deviation: The measured sensor resistance was randomly
deviated by ±50%. Soft sensors experience diverse degradation
and failures due to multiple factors (e.g., partial damage
and healing, the effect of temperature, humidity, and sensor
interference (Khatib et al., 2021; Porte et al., 2024)). This
scenario provided a comprehensive simulation of these
degradations, which are challenging to simulate uniformly
with a single model.

In addition to this Separate dataset, we prepared a Consecutive
dataset to evaluate the framework under actual deployment
conditions, where degradation occurs consecutively during a single
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FIGURE 5
The average RMSEs of proprioception for each of the degradation
scenarios. Five trials were conducted for both the Separate and
Consecutive datasets. The error bar indicates the standard deviation.
The blue bars show the proprioception results without the fault
detection.

leg movement. To create the Consecutive dataset, we processed 100-
s sensor readings, randomly selecting 30% of the sensors every 20 s
to represent one of five states. The states followed the order: Normal,
Lost, Stretch, Offset, and Deviation. We utilized the same five 100-s
simulation data used for the Separate dataset. During the evaluation
with the Consecutive dataset, the LSTMhidden states were not reset.

The stochastic LSTM and TDFNN were trained for 75 epochs
and 30 epochs, respectively. Overfitting did not occur for both
networks. Once trained, the networks did not experience any further
retraining or intervention. Figure 5 shows the average root mean
squared error (RMSE) of proprioception for five trials. The blue
bar describes the result when all sensor data were directly input to
the TDFNN without being zeroed. Table 2 lists the corresponding
RMSEs. Note that for the calculation of the RMSE, the first 50 steps
of the results were ignored as the LSTM training process did not
use data at 0 ≤ t ≤ 50. The results labeled as w/o Fault Detection
represent the framework’s performance without fault detection.
These results effectively simulate existing methods for soft sensor
proprioception that do not include fault detection (see Section 1 for
details). These results serve as a meaningful proxy for the evaluation
with existing methods.

As shown in Figure 5, the proposed framework demonstrated
graceful degradation andmaintained accurate proprioception across
all degradation scenarios and dataset types. For the Separate
dataset, the average RMSEs remained nearly constant at 6.44°,
7.50°, 7.03°, and 6.71° for Lost, Stretch, Offset, and Deviation
scenarios, respectively. Similarly, the Consecutive dataset resulted in
a consistent trend, with RMSEs of 6.50°, 6.77°, 6.04°, and 6.78° for
the corresponding scenarios. The differences in sensor degradation
resulted in RMSE variations of only 1.06° and 0.74°, validating
the effectiveness of the framework. In addition, Table 2 shows that
the RMSE increase reached a maximum of 18.0° without fault
detection, highlighting its importance. Figure 6 shows an example of
proprioception conducted with the Consecutive dataset. Even if the
degradation type was switched every 20 s, the proprioception RMSE
was 5.92°, almost identical to the baseline RMSE of 5.24°. Figure 6B

confirms that the LSTM performed precise fault detection with
accurate sensor signal estimation. False positives at the beginning
of the estimation followed by large σ̂2

t are due to the LSTM training
process. The LSTM could not perform estimation when the effect of
the initial state did not decrease sufficiently. Subsequent small false
positives of the RF sensor are due to noise.

3.2 Accuracy retention against increasing
degraded sensors

Next, we evaluated the accuracy retention capability of the
proposed framework, increasing the number of degraded sensors.
Using the 100-s simulation data described in Section 3.1, we
generated ten datasets for each trial by applying Offset degradation.
In each of the ten datasets, 0%–90% of randomly selected sensors
were degraded.

Figure 7 and Table 3 presents the average proprioception RMSEs
with different percentages of degraded sensors. The proposed
framework tolerated the degradation in 50% of all sensors, with
an average RMSE increase of only 3.30°. In contrast, without the
fault detection component, even the 20% degradation led to the
average RMSE increase of 21.3°, demonstrating the effectiveness of
the proposed framework. When the percentage of degraded sensors
exceeded 60%, the proprioception RMSE began to rise gradually.
This increase is due to the lack of features for proprioception, as
an input vector to the fully-connected layer contained more zeros.
However, it is noteworthy that the RMSE increase was only 6.97°
with the 80% loss of the sensors.

3.3 Scalability to different musculoskeletal
configurations

Finally, the scalability of the proposed framework was evaluated.
We prepared two additional models for the investigation, the RFLB
and 6-muscles model (Figure 3). The RFLB model was developed
as a proprioception target, incorporating both different actuation
and sensor morphology. The 6-muscle model was designed as
a proprioceptive target with significantly higher nonlinearity. As
described in Figure 3, the RFLB model only included the RF and
LB muscles to actuate the knee angle, while the number of sensors
per muscle was doubled. On the other hand, the 6-muscles was a
2-DoF system with two states to perform proprioception (the hip
and knee angle). Six muscles interacted with each other for the
actuation. Moreover, the RF and LB muscles acted as bi-articular
muscles. Consequently, the 6-muscles model had much higher
system nonlinearity than the original model.

The same evaluations as in Section 3.1 were conducted using
these two models. New networks were prepared and trained for
each model. The stochastic LSTM/TDFNN were trained for 75/25
epochs for the RFLB model and 10/10 epochs for the 6-muscles
model to avoid overfitting. The training data collection process, the
other network’s parameter settings, and the evaluation procedure
were the same as the original model, except for the TDFNN dataset
for the RFLB model. We prepared three additional datasets to train
the TDFNN effectively. Each dataset was created following the same
procedure as the original model. Since there are 22 combinations
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TABLE 2 Proprioception RMSE for different degradation scenarios.

Proposed method [°] Without fault detection [°]

Normal
Separate 5.59± 1.32 4.30± 0.17

Consecutive 8.37± 4.88 4.73± 0.42

Lost
Separate 6.44± 1.44 5.10± 0.44

Consecutive 6.50± 0.95 5.40± 1.65

Stretch
Separate 7.50± 1.36 10.9± 3.95

Consecutive 6.77± 1.31 11.9± 5.73

Offset
Separate 7.03± 1.14 22.3± 10.1

Consecutive 6.04± 1.84 15.5± 9.99

Deviation
Separate 6.71± 1.61 11.7± 5.28

Consecutive 6.78± 2.71 12.8± 4.29

TABLE 3 Proprioception RMSE with increasing number of degraded sensors.

Degraded percentage [%] 0 10 20 30 40

Proposed Framework [%] 5.53± 1.32 5.91± 1.13 6.17± 1.14 6.39± 1.32 8.30± 2.97

w/o Fault Detection [%] 4.31± 0.18 13.9± 9.83 25.6± 11.6 26.9± 10.1 30.1± 8.87

Degraded percentage [%] 50 60 70 80 90

Proposed Framework [%] 8.83± 4.23 10.8± 4.29 11.9± 5.17 12.5± 3.93 20.5± 11.5

w/o Fault Detection [%] 31.6± 7.61 32.4± 8.89 30.8± 9.81 33.9± 5.71 34.0± 4.88

FIGURE 6
An example of proprioception with the Consecutive dataset. (A) The actual angle of the knee joint angle (blue dotted line), the result without
degradation (green dash dot line), and the result with different degradation for every 20 s (red line). (B) The corresponding result of the fault detection
for one of the sensors of each muscle. The blue line denotes the actual sensor readings. The red line and band denotes μ̂t and 3σ̂t, respectively. The
grey vertical bands indicate successful fault detection, while the pink ones display false positives.
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FIGURE 7
Proprioception RMSEs with different percentages of degraded
sensors. The RMSE values are the average of five trials, and the error
bars indicates the standard deviations. The blue bars show the
proprioception results without fault detection.

whether each muscle contains the degraded sensors or not, the
TDFNN dataset consisted of (1+ 3) × (10× (22 − 1)) = 120 files with
different healthy/zeroed sensor combinations.Note that the TDFNN
dataset for the 6-muscles model contained 10× (26 − 1) = 620 files
because the use of sixmuscles resulted in 26 combinations ofwhether
each muscle contains zeroed sensors or not.

Figure 8 shows the evaluation results with the RFLB and 6-
muscles model. Table 4 presents the corresponding proprioception
RMSEs. For the RFLB model, while the baseline RMSE showed
a slight increase, the proposed framework demonstrated graceful
degradation comparable to that of the original model. In each
scenario, the average RMSEs were 8.30°, 9.74°, 9.13°, and 9.08°
for the Separate dataset and 10.0°, 9.00°, 10.3°, and 8.83° for the
Consecutive dataset. RMSE variations remained within 1.44° or
1.47°. The maximum RMSE increase was only 2.22° in the Stretch
scenario with the Separate dataset. With the 6-muscles model,
reasonable proprioceptionRMSEsweremaintained for all scenarios,
with only a minimal increase in baseline RMSE. Across the four
degradations, the average RMSE only changed by no more than
2.29° (hip joint) and 2.79° (knee joint) for the Separate dataset and
3.04° and 1.78° for the Consecutive dataset. Notably, the maximum
RMSE increase was just 2.99° for the knee joint angle (Offset,
the Separate dataset). While the Consecutive dataset resulted in
prominent RMSE increases compared to the other models, the
maximum increases were still limited to 4.49° and 3.20° (Deviation)
despite the significant nonlinearity of the 6-muscles model.

4 Discussions

4.1 Discussion

In this paper, we propose a novel learning-based graceful
degradation framework for redundant soft sensor systems. For thefirst
time, the proposed framework realizes graceful degradation for soft
sensor proprioception against diverse sensor degradation scenarios.

We evaluated the proposed framework using a simulated
musculoskeletal leg with soft sensors based on sufficiently nonlinear
models. The soft sensor model was sufficiently reliable as it
approximated the behavior of an experimentally verified soft sensor
in the literature. This simulation allowed precise control over actual
sensor degradation to evaluate the framework effectively. As a result,
the experimental results demonstrated the framework’s excellent
capability for graceful degradation, providing a solid understanding
of its general behavior and performance. As shown in Figures 5,
6, 8, the framework adapted to four different sensor degradation
scenarios and adequately retained the original proprioception
accuracy. The fault detection with the stochastic LSTM was precise
and essential for the framework’s graceful degradation. Under the
Lost scenario, RMSEs were similar to those without fault detection
as the scenario zeroed the values of affected sensors, resulting
in identical original and processed sensor readings. In contrast,
turning off the fault detection led to a significant RMSE increase
in the Stretch, Offset, and Deviation scenarios. Particularly in the
Offset scenario, sensor reading amplification due to degradation
reduced proprioception accuracy. This is attributed to the max-
pooling layer in the TDFNN, which caused amplified resistance
values to affect the proprioception process directly. In the stretch
scenario, the RMSE increase occurred for the same reason, while
the minor amplification of sensor responses had less impact on the
proprioception. In the Deviation scenario, RMSE increases were
smaller than in Offset because the degradation both amplified and
reduced sensor responses.When sensor responses were reduced, the
max-pooling layer could exclude the affected readings from being
input to the TDFNN, depending on the state of the proprioception
target. Owing to the framework’s architecture, the proposed
method successfully addressed both amplification and attenuation
of sensor response. As a result, versatile graceful degradation was
achieved across all the sensor failure modes. Additionally, Figure 7
shows noteworthy results that the framework could tolerate the
deactivation of up to 80% of the constituent sensors. Furthermore,
the experiments also revealed the scalability of the framework.
Even when the proprioception target’s morphology and sensor
configuration changed (RFLB model) or the system’s nonlinearity
significantly increased (6-muscles model), the framework achieved
graceful degradation across all degradation scenarios. Although
small RMSE increases were observed for the evaluation with the
6-muscles model (the Consecutive dataset), this was due to the
LSTMunderfitting.The additional hip joint and bi-articularmuscles
of the 6-muscles model significantly complicated the forward
healthy sensor model learned by the LSTM. Nevertheless, we did
not change the hyperparameters and the amount of the LSTM
dataset for comparison. As a result, the range of ±3σ (Equation 1)
expanded, and false negatives impaired the accurate proprioception
of the TDFNN (Supplementary Figure S2 in the supplemental
material). Thus, fine-tuning the hyperparameters, such as Bayesian
optimization (Akiba et al., 2019), will enhance the framework’s
scalability.

Our work is distinguished from other existing research by
its capability to tolerate diverse soft sensor degradation and
availability for proprioception. Soft sensors have been widely
modeled using learning-based approaches, and researchers have
realized graceful degradation for soft sensor proprioception
(Thuruthel et al., 2019; Wang et al., 2023). Researchers have also
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FIGURE 8
The average proprioception RMSEs with different musculoskeletal leg models. The error bars indicate the standard deviations of the five trials. (A)
Separate dataset. (B) Consecutive dataset.

TABLE 4 Proprioception RMSE with different leg models.

RFLB [°] 6-muscles (Hip) [°] 6-muscles (Knee) [°]

Normal
Separate 7.52± 0.39 8.08± 1.46 7.91± 1.80

Consecutive 9.38± 1.83 6.61± 1.77 6.29± 7.43

Lost
Separate 8.30± 2.58 8.21± 1.70 8.11± 2.16

Consecutive 10.0± 4.23 8.06± 1.27 9.05± 4.47

Stretch
Separate 9.74± 4.74 9.94± 1.02 9.09± 1.57

Consecutive 9.00± 3.08 11.0± 2.86 7.71± 2.84

Offset
Separate 9.13± 1.26 10.5± 1.34 10.9± 2.83

Consecutive 10.3± 2.06 8.81± 1.79 7.74± 1.67

Deviation
Separate 9.08± 1.75 9.35± 1.69 8.83± 1.12

Consecutive 8.83± 2.99 11.1± 2.39 9.49± 3.36

performed graceful degradation for soft sensor exteroception
(Shih et al., 2020; Lo Preti et al., 2022; Dingley et al., 2023) and
multimodal sensory systems (Zambelli et al., 2020; Chen et al.,
2021; Lee et al., 2021; Liu et al., 2017; Zhi-Xuan et al., 2020; Wu
and Goodman, 2018). However, these methods were not equipped
with a fault detection component, and the evaluation scenarios
were limited to complete sensor loss. On the other hand, soft
sensors undergo various degradation due to their softness and
nonlinearity (Terryn et al., 2021; Khatib et al., 2021; Porte et al.,
2024; Terryn et al., 2022; Shen et al., 2016). Thus, direct input of
distorted sensor readings will impair proprioception accuracy. Our
framework employed fault detection based on the stochastic LSTM
and tolerated diverse sensor degradation. The comparison with
w/o Fault Detection results highlights significant improvements
in our framework over existing approaches, particularly in
Stretch, Offset, and Deviation scenarios. In addition, our complete
framework also improved RMSE performance in the Lost scenario

compared to existing methods, even though the evaluation setups
were not identical. Specifically, our evaluation showed an RMSE
increase of only 0.85° (0.61% of the leg joint’s range of motion),
whereas existing literature (Thuruthel et al., 2019; Wang et al.,
2023) reported RMSE increases exceeding 2.1% with 5% less
sensor loss.

To our knowledge, no study has realized this capability for
soft sensor proprioception. Fault detection has been applied
to soft tactile sensing (Lo Preti et al., 2022) and multimodal
sensing (Lee et al., 2021); however, signal-based or reconstruction-
based fault detection utilized in these works is not suitable
for proprioception. Due to the non-unique mapping illustrated
in Figure 1, these approaches cannot determine whether the
variation in sensor readings is caused by the deformation of
the proprioception target or by sensor degradation, especially
when the distortion in sensor readings is indistinct. In contrast,
our LSTM-based fault detection avoided such a situation due
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FIGURE 9
The contribution of the meta-voting algorithm to prevent external loads from affecting proprioception accuracy. (A) The actual angle of the knee joint
angle (blue dotted line), the result without the meta-voting (green line), and the result with the meta-voting (red line). The foot position (i.e., the knee
joint angle) was fixed at t = 50. (B) Examples of the corresponding LSTM outputs. The blue line denotes the actual sensor readings. The red line and
band denotes μ̂t and 3σ̂t, respectively. The pink vertical bands display false positives.

to non-unique mapping by comparing sensor readings with
the estimated responses of healthy sensors. Consequently, our
framework achieved fault detection for proprioception against
diverse sensor degradation. Furthermore, this fault detection and
the subsequent zeroing process eliminated the need for seminal
characterization and inclusion of all possible degradation to prepare
the training dataset, typically required by the reconstruction
approach (Lee et al., 2021; Zambelli et al., 2020). Despite the various
types of degradation that soft sensors exhibit, our framework only
requires its users to augment the obtained data by randomly zeroing
sensor readings.

In summary, soft sensors are subjected to various types of
degradation during operation. To address the degradation, the
proposed graceful degradation framework for redundant soft
sensors achieved consistently reliable proprioception. Unlike
self-healing soft sensors, this framework realizes instantaneous
adaptation to degradation without downtime or reduced
sampling frequency. This capability allows soft robots to maintain
proprioception under real-world deployments, where they
experience repeated large deformations and various sources of
damage. Due to their softness and nonlinearity, consistently
reliable proprioception feedback is crucial for soft robots to retain
performance. Therefore, the proposed framework will contribute
significantly to enhancing the robustness of soft robots, maintaining
their intelligent autonomy in real-world applications (e.g., soft
grippers and rescue robots).

4.2 Limitations and future works

Our framework has three main directions for improvement: (1)
adapting to damages and disturbances affecting the proprioception
target itself, (2) evaluating the framework with an actual soft robot,
and (3) further simplifying the training process.

With regard to the first point, the framework assumes that
the proprioception target remains unaffected by damage to its
body or external loads. The damages and disturbances can lead
to sensor readings deviating from the estimated healthy values.
As a result, all sensors are incorrectly identified as degraded,
and proprioception accuracy will decrease. We will address
this limitation by implementing a meta-voting algorithm that
cancels sensor deactivation when the number of simultaneously
degraded sensors exceeds a threshold. We conducted a preliminary
experiment to investigate the effectiveness of this approach. While
motor babbling input randomly actuated the Original model, we
fixed the foot position (i.e., knee joint angle). We modified the
proposed framework to cancel zeroing sensor readings if more than
50% of all sensors were simultaneously detected as degraded for
five consecutive steps. As shown in Figure 9B, the LSTM output
incorrect healthy sensor estimates after fixing the foot. Nevertheless,
the FNN maintained accurate proprioception because the meta-
voting canceled the incorrect sensor zeroing (Figure 9). In contrast,
all sensors were zeroedwithout themeta-voting, and proprioception
accuracy fell. We will further modify this algorithm so that the
proposed framework can address the damages and external loads
to a proprioception target. Furthermore, we will explore the use
of tactile sensors in this modification (Lo Preti et al., 2022). By
incorporating exteroceptive sensor data, the LSTM can account for
the impact of damage and external loads on healthy sensor readings.
As a result, the LSTM may directly compensate for these effects.

For future work (2), while we used a sufficiently nonlinearmodel
in the simulation, we excluded hysteresis and drifts to simplify
the modeling. Thus, evaluating the framework with an actual soft
robot will highlight the framework’s practical effectiveness. Note
that the simulation already incorporated temporal nonlinearity
as a second-order delay. Additionally, the proposed framework
consists of the LSTM and TDFNN. Hence, the framework
can handle these nonlinearities through hyperparameter tuning.
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Finally, regarding the third point, we augmented the training
dataset by randomly zeroing sensor readings. However, this step
can potentially be omitted by applying dropout before the 1-
D convolution layer during training (see Figure 2). This minor
adjustment will further simplify the training process.
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