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Introduction: The transition to electric vehicles (EVs) has highlighted the need
for efficient diagnostic methods to assess the state of health (SoH) of lithium-
ion batteries (LIBs) at the end of their life cycle. Electrochemical Impedance
Spectroscopy (EIS) offers a non-invasive technique for determining battery
degradation. However, automating this process in industrial settings remains a
challenge.

Methods: This study proposes a robotic framework for automating EIS testing
using a KUKA KR20 robot arm mounted on a 5 m rail track, equipped with a
force/torque sensor and a custom-designed End-of-Arm Potentiostat (EOAT).
The system operates in a shared-control mode, enabling the robot to function
both autonomously and semi-autonomously, with the option for human
intervention to assume control as needed. An admittance controller ensures
stable connections, with forces optimized for accuracy and safety. The EOAT’s
mechanical strength was validated through finite element analysis.

Results: Experimental validation demonstrated the effectiveness of the
developed robotized framework in identifying varying levels of battery
degradation. Internal resistancemeasurements reached up to 1.5mΩ in themost
degraded cells, correlating with significant capacity reductions. The robotic
setup achieved consistent and reliable EIS testing across multiple LIB modules.

Discussion: This automated robotic framework enhances battery diagnostics by
improving testing accuracy, reducing human intervention, andminimizing safety
risks. The proposed approach shows promise for scaling EIS testing in industrial
environments, contributing to efficient EV battery reuse and recycling processes.

KEYWORDS

electrochemical impedance spectroscopy, EV battery, Lithium-ion battery recycling,
admittance Control, robotic disassembly
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1 Introduction

The adoption of electric vehicles (EVs) has accelerated in the
past few years, and this has been accompanied by technological
advancements, policies, and environmental concerns. It has
influenced the economy (Haddadian et al., 2015) with multiple
challenges along the way, including End of Life (EoL) management
and recycling (Steward et al., 2019). The EV batteries are deemed
inappropriate as traction batteries once they reach 75%–80% of
their initial rated capacity, provided the State of Health (SoH) is
adequately assessed. The potential for reusing or re-purposing these
batteries in other applications offers a promising avenue.

SoH is needed to determine the operational efficiency and
overall remaining useful life (RuL) of a lithium-ion battery (LIB).
SoH compares the current performance of a battery to its initial
state. Depending on the method and literature, multiple factors
can be used to describe this metric (Yang et al., 2021). Factors
such as capacity fade, power fade, increase in internal resistance,
charge/discharge cycles, temperatures, capacities, and currents can
all influence the assessment of the SoH and in quantifying the
RuL. Assessing the SoH is crucial for evaluating the operational
performance, associated risks, and reuse potential of LIBs. Beyond
their application in electric vehicles, LIBs are used in various
domains, including renewable energy storage, portable electronics,
and grid stabilisation systems (Zhao et al., 2021). Even after their
primary lifecycle in EVs—where they endure rigorous operational
conditions and degradation—these batteries retain a substantial
portion of their initial capacity at the end of their service life (EoL),
making them suitable for secondary applications. Consequently,
ensuring an accurate SoH evaluation becomes one of the most
critical factors for assessing the potential of these batteries in
alternative applications. Recycling is another aspect of EoL of
batteries. Batteries contain valuable and often scarce materials,
including lithium, graphite, and cobalt. Efficient recycling processes
enable the recovery of these valuable materials, which can be reused
to produce new batteries or other systems. They undoubtedly will
be part of maintaining a supply chain of LIBs (Pinegar and Smith,
2019). In this context, developing robust and scalable systems
for testing the health of used batteries is becoming increasingly
important. These methodologies facilitate efficient battery recycling
and repurposing, contributing to the circular economy, particularly
in heavy-duty environments.

Handling EV batteries, especially during testing and recycling,
involves many safety and technical challenges. Although retired
from EV use, these batteries still contain stored energy and can pose
significant hazards if mishandled. In addition to physical risks like
fires and explosions, EV batteries also present chemical dangers due
to the materials they contain. Integrating automation into battery
testing procedures offers several advantages: it improves safety by
minimizing human interaction with hazardous batteries, reduces
reliance on manual labour by enabling continuous operation, and
enhances the accuracy and consistency of testing.

In our previous study (Rastegarpanah et al., 2021a), the use of
EIS was demonstrated for automating battery health diagnostics.
EIS measures a system’s resistance to an AC signal across various
frequencies, providing insights into battery health and performance.
A collaborative robot was equipped with custom-designed End-of-
Arm Tooling (EOAT) and a potentiostat, successfully automating

the EIS collection process on a single Nissan Leaf 24 kWh LIB
module. This pilot work, and most of the current literature, faces
the challenge ofstudy highlighted the feasibility of automating such
tasks using a collaborative robot arm.The robotic testing framework
utilized visual servoing (VS) to localize and align the EOAT with
the battery terminals, and an impedance controller ensured stable
contact for accurate data collection. Building on this idea, the
current study scales the testing method from single modules to
stacks of modules and extends automation from laboratory-scale
collaborative robots (Rastegarpanah et al., 2021a) to industrial-
scale heavy-duty robotic arms, albeit with some changes. VS has
been replaced with pre-programmed positions and operatormanual
control, while the impedance control has been replaced with
admittance control for the industrial setup.

This advancement reduces the need for direct human
intervention, thus minimizing health and safety risks associated
with handling high-energy lithium-ion batteries. In addition, the
heavy-duty arms can lift heavy objects like battery packs and
stacks of modules. The EIS technique has been improved by
automating the testing process using a KUKA KR20 robot arm
mounted on a 5-m rail. Additionally, the Interfacing Toolbox for
Robotic Arms (ITRA) (Mineo et al., 2019) was employed, which
integrates industrial robotic arms with server computers, sensors,
and actuators, providing easier control of the robot system, allowing
a user to simply program in high-level languages and implement
with libraries already developed for collaborative robot systems.
The main contribution of this study includes proposing a robotic
framework for EIS testing in an industrial setup, ensuring EIS testing
is safer, using an admittance control when connecting the industrial
arm with the battery terminals, and providing consistent results
compared to traditional methods. The system’s adaptability ensures
it can handle various damaged and undamaged battery conditions,
addressing the increased demand generated by the growing electric
vehicle industry. Figure 1 depicts our developed robotic testbed for
testing, disassembly, and sorting EV batteries.

The present paper is structured as follows: Section 2 discusses
related works in EV battery testing, EIS, and the use of robotics
to automate such procedures. Section 3 gives a presentation of
the task and the involved components, first giving a step-by-step
description of the procedure, followed by presenting the hardware,
tools, safety protocols, and robot control architecture used for
performing the EIS data collection and testing, and finishing with an
in-depth explanation of the EIS method, and the results of the tests.
Section 4 presents the findings and results of the testing, analysing
the obtained data and giving an analysis of it. Finally, Section 5
concludes with insights, findings, and broader implications of our
research on the battery ecosystem, also talking about potential future
directions in EV battery testing.

2 Related works

Multiple battery testing methods have been developed due to
the recent necessity of reusing and disassembling EV batteries.
Assessing the battery health condition is one of the primary research
objectives necessary to determine the battery’s life expectancy and
possible repurposing capability for second-life applications. Our
previous work (Rastegarpanah et al., 2021a), andmost of the current
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FIGURE 1
Robotic test-bed developed for testing, disassembly, and sorting of EV batteries at the Birmingham Energy Innovation Centre.

literature, faces the challenge of automating the battery testing
process, where the goal is not only to assess the health of the batteries
but also to do this with fully autonomous systems without putting
humans in danger. Notable challenges include establishing a stable
connection to the terminal to the modules of the spent LIB; given
that the procedure is primarily done manually via human operator,
this raises safety concerns regarding battery-related incidents that
can be injurious to humans, such as electrical shocks, chemical
burns, or explosions (Chen et al., 2021; Lai et al., 2022).

Several non-destructive techniques for SoH estimation in LIBs
have been developed and tested in various studies. Commonly
used methods include capacity-based techniques (Yang et al., 2017;
He et al., 2020; Lin et al., 2022), Kalman filtering (Plett, 2004;
Hossain et al., 2022; Xu et al., 2012; Li et al., 2020), EIS (Li et al.,
2022; Zhang et al., 2020; Jiang et al., 2022; Middlemiss et al.,
2020), and thermal analysis (Fleckenstein et al., 2013; Wang et al.,
2021; Razi et al., 2021). Among these, capacity-based methods are
extremely accurate but require extensive charge-discharge cycling,
making them time-consuming (Jiang and Pang, 2022). In contrast,
EIS offers a faster alternative by analysing the battery’s internal
resistance and measuring the resulting current to construct an
impedance spectrum over a range of frequencies. This spectrum
reveals detailed insights into the battery’s internal processes and
conditions. The data obtained from EIS can be further enhanced
using neural networks or other deep learning algorithms to predict
a battery’s RuL (Gao et al., 2021; Ghosh et al., 2022; Lu et al., 2022;
Rastegarpanah et al., 2023; Zhang et al., 2023; He et al., 2023; Hu and
Wu, 2024; Huang et al., 2024; Chen et al., 2024).

2.1 Battery state of health

Advancements in capacity-based methods and cycling tests
for battery diagnostics and SoH analysis are widely researched,
constantly improved, and preferred for battery testing despite
requiring multiple charging and discharging cycles. He et al. (2020)

propose a function-based voltage-capacity model that uses features
of interest from their collected data and performs linear correlations
to predict battery SoH. However, this method requires at least
100 cycles to make accurate predictions. Similarly, Lin et al.
(2022) employ cycling and ageing experiments to develop a back-
propagation neural network using current and incremental capacity
data. This approach requires between 40 and 200 cycles to achieve
predictionswith amean absolute error (MAE) of less than 2%.While
effective, these methods are time-consuming due to the necessary
cycling. The time required for N cycles depends on factors such
as the charge/discharge rates (C-rates) and cycling protocol. For
instance, fast cycling at 1C can take 1–2 h per cycle, whereas slower
cycling at 0.5C may take 3–4 h per cycle. Long-term testing at lower
C-rates (e.g., 0.1C) could extend the time to a day or more per cycle,
meaning N cycles could span anywhere from days to months.

Temperature-based methods are another type of offline
testing method, which requires data on ageing batteries across
cycles to analyse their SoH. Gaussian Process Regressions (GPR)
and differential thermal voltammetry (DTV) curves together
inmodels byWang et al. (2021) show it is possible to obtain anMAE
of less than 2% with these models. Still, battery cycle limitations
continue to exist, as in capacity-based models.

Kalman filtering techniques surpass capacity-based models and
temperature-based methods in speed because they enable real-
time estimation while a battery is in use, providing a significant
advantage. However, they necessitate an accurate mathematical
model, sequentialmeasurements, and precise parameter estimations
(Hossain et al., 2022). Enhancements to Kalman filtering, such
as the Multi-innovation Extended Kalman Filter (MI-EKF) by
Li et al. (2020), aim to address noise and other errors in parameter
estimation. Furthermore, the introduction of the Adaptive Iterative
Extended Kalman Filter has refined state of charge (SoC) estimation
by dynamically updating and summing voltage iterations upon
reaching certain thresholds, achieving aMAE of under 1% (He et al.,
2021). Additionally, the Fractional-Order Adaptive Square-Root
Cubature Kalman Filter (FO-ASRCKF) by Chen et al. has shown
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promise by adjusting to experimental data and noise conditions,
even with incorrect initial values, improving SoC prediction
accuracy and reducing theMAE to less than 0.5% (Chen et al., 2023).

Finally, EIS has been developed as a non-invasive, in-situmethod
for assessing the SoHof lithium-ion batteries, providing insights into
their internal conditions and degradation mechanisms. Although
EIS cannot provide real-time estimations like Kalman filtering
techniques, it offers the advantage of not requiringmultiple cycles. It
can typically be conducted in a fewminutes at a single state of charge
across a frequency range of 0.02Hz–20 kHz. A three-electrode setup
is often preferred for this process (Middlemiss et al., 2020).

Data collected throughEIS is commonly analysedwith advanced
machine learning models to enhance life estimations. For instance,
integrating EIS with GPR has achieved a maximum estimation
deviation within 5.5% of actual values (Jiang et al., 2022).
Additionally, combining methods such as a convolutional neural
network (CNN), a bidirectional long short-termmemory (BiLSTM),
and improved Particle Swarm Optimisation (IPSO), also known
as IPSO-CNN-BiLSTM, has performed up to 35% better than
traditional GPR models (Li et al., 2022).

Other studies to improve SoH predictions have tried integrating
EIS with advanced machine learning models, such as using a
Fractional Order Equivalent CircuitModel (F-ECM) combinedwith
the AutoGluon framework, achieving an RMSE of 2.12% and an
MAE of 1.67% (Li et al., 2024). Ensuring adequate rest times and
optimal current amplitudes is necessary for stable and reproducible
EIS measurements in order to minimise transient effects and
enhance signal-to-noise ratios (Azizighalehsari et al., 2023).

While testing methods for determining the SoH of batteries are
varied, they have been limited by the need for a specialised human in
the loop. However, research on batteries and robots has increased in
popularity, with some robots able to perform tasks on batteries even
better than humans (Hathaway et al., 2024). This, in consequence,
has raised the possibility of applying methods previously limited to
lab environments in industrial settings.

2.2 Robotics in battery testing and
disassembly

Robotising tasks in disassembling EV batteries offers substantial
economic and practical benefits. Recent research has shown
that up to 57% of the pack-to-module (P2M) disassembly tasks
for the Mitsubishi Outlander PHEV battery pack can be fully
automated (Hathaway et al., 2024). This finding is based on a
detailed technical analysis conducted by Hathaway et al., who
carefully documented the manual disassembly process. Their study
categorised tasks into three levels of autonomy—fully autonomous,
semi-autonomous, and fully manual.

Among disassembly tasks, cutting and milling operations stand
out as particularly critical in robotic disassembly, given their
complexity and the variety of components they address. Recent
advancements, such as those reported by Rastegarpanah et al.
(2021b), have introduced innovative techniques like vision-based
path planning using model predictive control (MPC). However,
the diversity of material properties and the lack of standardisation
across battery designs present ongoing challenges. To address
this, recent research by (Hathaway et al., 2023) has employed

adaptive learning-based approaches, enabling robots to adjust
critical parameters—such as feed rate, depth of cut, and mechanical
compliance—in real-time.This adaptability is essential formanaging
the safe and efficient robotic disassembly of diverse battery
components, underscoring the importance of flexible cutting
strategies.

Recent advancements have been made in automating
diagnostic assessments and establishing standardised benchmarking
procedures for battery recycling and testing platforms
(Sommerville et al., 2021;Montes et al., 2022). Notable contributions
include the development of the Strategic materials Weighting
And Value Evaluation (SWAVE) matrix for quantifying material
recovery value, which was done with a comprehensive analysis of 44
commercial recyclers and the categorisation of recycling processes
into four primary functions (Sommerville et al., 2021). These
methods provide a structured framework for evaluating resource
recovery within the battery recycling industry.

Another significant advancement in robotic testing of EV
batteries is detailed in Rastegarpanah et al. (2021a). The proposed
testbed incorporated a Franka robot arm for interfacing the EOAT
with the terminals of a Nissan Leaf battery module, while a
second Franka arm provided visual sensory feedback to support the
operations of the first robot. To ensure precise and stable contact
with the battery terminals, the control system dynamically switched
from visual servoing to impedance control.This approach combined
Cartesian impedance control with joint-level torque sensing to
achieve compliance and stability during terminal engagement.
The robotic framework, designed for Electrochemical Impedance
Spectroscopy (EIS) testing, demonstrated an 83% success rate
across 30 trials. This proof-of-concept underscores the potential
for scalable and automated battery testing solutions, offering high
accuracy with minimal human intervention.

In a recent study, (Rastegarpanah et al., 2024b) demonstrated
a novel approach to sorting disassembled EV battery components
using their developed Decoupled Hybrid Visual Servoing (DHVS)
method. This method combines the advantages of Image-Based
Visual Servoing (IBVS) and Position-Based Visual Servoing (PBVS)
while addressing their respective limitations. The study also
incorporated the ITRA software interface to further showcase
the sorting process for disassembled EV battery components,
as illustrated in Figure 1. This integrated framework highlights
the potential for efficient and precise sorting in automated
disassembly systems.

Similarly, the study by Tan et al. (2021) presents a
hybrid disassembly framework for EV batteries, addressing the
inefficiencies, high costs, and safety hazards of current manual
disassembly processes by incorporating automated robotic arms
and specialized tools. This framework optimised design, safety,
and cost parameters, allowing for a more efficient and safer
disassembly process. Qu et al. (2024) have developed platforms
that employed four industrial robots to automate the disassembly of
plug-in hybrid EV battery packs, applying them to non-destructive
tasks. Additionally, studies emphasise the importance of human-
robot collaboration in EV battery disassembly, advocating for a
flexible approach that combines manual and automated processes
to optimise safety and productivity, especially in hazardous
environments (Villagrossi and Dinon, 2023).
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FIGURE 2
The KUKA KR20 robot is mounted on a 5 m rail and equipped with custom-designed tooling for connecting battery terminals to the potentiostat.

While robotic approaches for EV battery disassembly have
seen significant development, the application of robotic systems
for SoH diagnostics remains underexplored, particularly at an
industrial scale. The SoH diagnostics are critical for determining
which batteries are still viable for use and which should be
recycled, making the disassembly process crucial for effectively
managing the end-of-life stage of EV batteries. Many EIS tests are
conducted at a lab scale, but with the growing number of retired
EV batteries, there is a pressing need for scalable solutions for
industrial-level testing. Hence, this implementation is a proof of
concept demonstrating how automated testing using EIS can be
fully established across the industry. The subsequent sections will
detail the implementation, including the tools, procedures, control
architecture, and the findings and results of the testing conducted
using the industrial setup.

3 Methodology and experimental
setup

Our experimental design focuses on implementing EIS within
an automated robotic setup that guides the field for battery
diagnostics. With this study, there are two purposes: first, the aim
to improve the automation of battery testing for industrial settings
through EIS technology. Second, to unveil the capabilities of EIS,
which demonstrates great promise for a more precise, effective, and
scalable SoH assessment of batteries.

3.1 Task description

Our proposed robotic framework for EIS testing involves five
subtasks: 1. Moving the robot to the task space, close to the battery
terminals, using ITRA (Mineo et al., 2019; Rastegarpanah et al.,
2024b). 2. Switching from pre-programmed movements to an
admittance control in close proximity to contact with the battery

terminals to add compliance to the system and perform better
precision movements accordingly. 3. Collecting EIS data by a
potentiostat connected to the EOAT. 4. Safe disconnection from the
battery terminals and returning to the home position. 5. Analysis of
the collected EIS data.

3.1.1 Setup for EIS testing
The experimental setup consisted of a KUKA KR20 mounted

on a 5 m rail, chosen for its range of movement due to the large
workspace and load capacity to hold the designedEOATPotentiostat
(Figure 2). The EOAT, shown in Figure 3, has a main body 3D
printed with PLA and metal plates made of aluminium 6061. The
reliability and safety were validated by conducting finite element
analysis on the proposed end-effector design.

The robot also had a force-torque sensor attached to the end-
effector to enable the use of an admittance control. The integration
of ITRA running within a remote computer allowed precise pre-
programmed coordinates to be fed to the robotic system while also
enabling the use of the admittance control.

A Nissan Leaf battery pack consisting of 24 modules is placed
in the testing area next to the robot. Before initiating tests, the
batteries underwent a preparation phase performed by a human
technician, including cleaning terminals and performing voltage
checks to ensure their correct functioning. An alarm system was
designed and connected to the EOAT to ensure proper connection
between the potentiostat and the battery modules by activating a
series of LEDs on the EOAT and a piezo buzzer, which emits a
loud sound upon successful connection. The VMP3 Multichannel
Potentiostat and FlexP060 from BioLogic were used for EIS testing.
Once the connection between the EOAT and the battery terminals
is established, an operator runs the data capture software and starts
the collection process. Once the testing is completed, the robot
disconnects from the battery and returns to a defined home position.

The robot control system was implemented using a computer
featuring a GTX 1080 Ti graphics card, an Intel i7 processor, and
32 GB of RAM. The computer was linked to the controller of a
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FIGURE 3
Detailed view of the 3D CAD model of the robot’s End-of-Arm tooling and the stack of LIB modules. Metal plates in the connection box are supported
by springs to provide extra compliance in contact with the LIB terminals, allowing connection to two modules simultaneously.

FIGURE 4
The digital twin designed to replicate the movements of the robots.

KUKAKR20, running a KUKARobot Language (KRL)module that
contained all required KUKA configurations to enable the execution
of the ITRA functions. Additionally, a digital twin environment
was developed in SolidWorks to enable users to visualize the
robot’s movements prior to executing commands in the physical
environment. The SolidWorks simulation is illustrated in Figure 4.

3.1.2 Safety protocols
Before the tests, a risk assessment was conducted for every

component of the testing robotic cell. Instruction and safety
protocols from our previous research (Rastegarpanah et al., 2021a)
were followed and adapted to the industrial environment for the
testing. The following points were considered: a) A thermal image
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camera was set up next to the cell to monitor the temperature of
the battery modules during the experiment to mitigate the risks. b)
The robotic cell is enclosed within a safety enclosure equipped with
an interlock mechanism, ensuring operational safety. The system
triggers an immediate shutdown of all robots when the enclosure
door is opened, preventing unauthorized access during operation. c)
Insulating gloves were worn to connect the cables of the Potentiostat
to the EOAT. d) The Kuka KR20 robot was set in T1 mode, i.e.,
controlled in manual mode with speed limits, requiring an operator
to continuously press the operation button for the robot to perform
the tasks. e)Multiple robot emergency buttonswere set up, including
those in the teach pendant and external to it, to stop the robot
in case of emergencies. f) Equipping the robotic cell with multiple
buckets of sand to quickly submergemodules in case of fire, excessive
temperature rise, smoke, or other thermal events. This is a crucial
safety precaution when working with LIB. g) Mockup 3D-printed
batteries were utilized to validate the procedure before testing
with active batteries, allowing verification of the KUKA KR20’s
movements.

3.1.3 Robot control architecture
A strategy was developed to control the KR20 robot arm

equipped with the EOAT and move it toward the battery terminals
as a step toward full automation. Initially, the KR20 was controlled
in joint space, making joint movements to predefined positions
within the workspace to ensure both safety and precision. These
positions included the following: i) the home position, where the
robot is fully retracted and in a safe state; ii) the approach position,
a midway point where the robot begins to decelerate as it nears the
battery; iii) the battery reach position, a critical point 10 cm apart
from the battery terminals where control is switched to manual
mode, allowing the admittance controller to make the movement
granular and ensure safe contact with the terminals; iv) the battery
retreat position, where the robot withdraws from the terminals after
completing the task, and finally, the return to the home position,
where the robot is once again fully retracted and in a safe state. This
sequence of positions (Home, Approach, Reach, Retreat, andHome)
ensures controlled and safe operation, allowing for the integration of
the admittance control during the critical battery reach phase.

The robot’s velocity varied depending on the position it aimed
to reach. When moving from the home position to the pre-defined
approach position or from the retreat position back to the home
position, the robot operated at 50% of T1 mode speed. From the
approach position to the reach position and from the reach position
to the retreat position, the robot operated at 20% of T1 mode speed.
While in admittance control mode, the robot was adjusted to allow
a maximum of 5% of the maximum velocity of T1 mode. These
percentages were chosen as part of the safety procedure.

ITRA makes communication to the computer and integration
with the sensors possible. ITRA allows a high-level programming
language (Python and Matlab, among others) to communicate
with our robotic setup. The KUKA KR20 can be operated with
ITRA with a control mode that relies on the KRL and the teach
pendant a keyboard or predefined positions. ITRA establishes
communication with MATLAB by running a script in the teach
pendant and the connected computer. While operating in the KRL
mode, target positions are selected and saved as waypoints, with
the robot reaching them in the chosen order, using either Cartesian

or joint space depending on the selected configuration; for the
implementation, linear Cartesian movements were chosen as they
are easier for a human operator to control, plan, and visualize
compared to joint movements (Craig, 2005). Adjustments to the
predefined positions were made over the experiments.

ITRA also provides a real-time control mechanism for contact
with the battery terminals. This is called the RSI-based approach,
exploiting the KUKA Robot Sensor Interface (RSI) (KUKA
Robotics, 2014) and allowing commands to be sent back and
forth at a 4 ms rate. The system continuously measures forces
using a Force-Torque sensor mounted between the EOAT and
the robot’s end-effector. These forces are captured in real-time
and transmitted back to the central control computer via the RSI
at a 4 ms interval, ensuring that the system has an up-to-date
understanding of the interaction forces at all times. The control
system then evaluates the incoming force data against predefined
thresholds, which are set based on the safety requirements of the
task and the mechanical limits of the robot and the environment,
such as the fragility of battery terminals. The robot continues its
pre-programmedmotion path if the forces remain within acceptable
limits. However, the admittance controller intervenes if the forces
exceed the established thresholds, this meaning, that the robot will
automatically go to a pre-programmed position to make contact
with the battery terminals, but will adjust its position dependent on
the generated forces.

The controller dynamically adjusts the robot’s motions by
modifying the trajectory, reducing the speed, or retracting the end-
effector to prevent damage. These adjustments are computed in
real-time and immediately communicated to the robot via RSI,
allowing the robot to respond promptly to varying conditions during
the battery terminal connection process. At the same time, the
controller via the teach pendant or a keyboard allows the operator
to move the end-effector, with the same trajectory adjustments
relying on the admittance controller, being this approach preferred
over the pre-programmed positions, due to positional errors that
can arise. Figure 5 shows the control procedure performed by ITRA
for positioning the KR20 in the industrial cell, EIS data acquisition,
and movement back to the home position.

The admittance control strategy focuses on how the end-
effector position and velocity of the robot are influenced by the
external forces applied by the environment. The KR20 robotic arm
has 6 degrees of freedom (DOF), so n = 6. Mathematically, this
relationship is represented by Equation 1:

F (t) =mẍ (t) + bẋ (t) + kx (t) (1)

where m ∈ ℝn×n is the virtual mass matrix, b ∈ ℝn×n is the adaptive
damping coefficient matrix, k ∈ ℝn×n is the adaptive stiffness matrix,
x(t) ∈ ℝn represents the position vector of the robot’s end-effector at
time t, ẋ(t) ∈ ℝn is the velocity vector of the robot’s end-effector at
time t, ẍ(t) ∈ ℝn is the acceleration vector of the robot’s end-effector
at time t, The external force applied by the environment at time t is
denoted by F(t) ∈ ℝn.

To incorporate adaptive gain into this control system, the
damping matrix b(t) and stiffness matrix k(t) are made time-
dependent, adapting based on real-time feedback from the external
forces. These adaptive gains are introduced to dynamically modify
the damping and stiffness matrices to ensure the robot adjusts its
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FIGURE 5
Flowchart of Robot Control Architecture for EIS data acquisition.

responsiveness in real-time. Specifically, the matrices are modified
as shown in Equation 2.

b (t) = α (t) ⋅ b0 and k (t) = β (t) ⋅ k0 (2)

Here, b0 ∈ ℝn×n and k0 ∈ ℝn×n are the nominal damping and
stiffness matrices, respectively, representing the system’s baseline
behaviour.The adaptive gain factorsα(t) andβ(t) are scalar functions
of time that adjust the system’s responsiveness based on real-
time force feedback or position error. This allows the system to
dynamically adjust its behaviour, making it more or less responsive
to external forces, especially as the robot approaches delicate tasks,
such as connecting to battery terminals.

To fully incorporate the adaptive gain into the
governing Equation 1, the expressions for the time-dependent
damping and stiffness matrices are substituted.

F (t) =mẍ (t) + α (t)b0ẋ (t) + β (t)k0x (t) (3)

This updated equation is shown in Equation 3, where α(t)b0
represents the adaptive damping term. The factor α(t), with the
damping gain calculation shown in Equation 4, adjusts the nominal
damping matrix b0 in real-time based on force feedback. The
function α(t) ensures that the damping gain decreases as the external
force F(t) approaches the maximum allowable force Fmax, making
the system more responsive to smaller forces.

On the other hand, β(t)k0 represents the adaptive stiffness term,
with the calculation shown in Equation 5.However, the contribution
of the stiffness gain is minimal because the position deviation
xe(t) = xd(t) − x(t) is very small, approaching zero but not exactly
zero. Therefore, while the stiffness gain is still present, its effect
on the system is negligible compared to the damping gain, and it
contributes very little to overall control, as given by Equations 4, 5.

α (t) =max(min(αmax,
Fmax − |F (t) |

Fmax
⋅ α0),αmin) (4)

β (t) =max(min(βmax,
xthreshold − |xe (t) |

xthreshold
⋅ β0),βmin) (5)

Equation 3 can be rearranged to solve for the acceleration
ẍ(t)as given by Equation 6:

ẍ (t) =m−1 (F (t) − α (t)b0ẋ (t) − β (t)k0x (t)) (6)

The position and velocity of the robot are updated iteratively
using numerical integration. The velocity is updated as given by
Equations 7, 8:

ẋd (t+Δt) = ẋd (t) + ẍ (t)Δt (7)

xd (t+Δt) = xd (t) + ẋd (t)Δt (8)

With Δt being the discrete time step given by the 250 Hz limit of
the data transfer rate.

To ensure accurate control, position and velocity errors are
computed as given by Equations 9, 10:

xe (t) = xd (t) − x (t) (9)

ẋe (t) = ẋd (t) − ẋ (t) (10)

where xd(t) ∈ ℝn is the desired position vector at time t, ẋd(t) ∈ ℝn is
the desired velocity vector at time t, xe(t) ∈ ℝ

n is the position error
vector at time t, and ẋe(t) ∈ ℝn is the velocity error vector at time t.

These errors are used in a feedback loop to adjust the control
inputs and improve the performance of the admittance controller.
The parameters for the damping (b) and stiffness (k) were tuned
through experimental trials. The tuning process involved adjusting
these parameters iteratively to balance responsiveness and stability,
ensuring that the robot could effectively respond to external forces
without causing excessive oscillations or instability. A force-torque
sensor is attached to the end-effector of the KR20, providing real-
time force feedback. This feedback loop lets the operator monitor
the forces applied to the battery terminals.

The operator uses a keyboard as an interface tool to translate
manual inputs into end-effector movements. These movements are
influenced by external forces, including the contact force from
the battery terminals and gravity-generated forces, which must be
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FIGURE 6
Battery Module Terminals diagram.

accounted for during operation. The admittance controller uses
real-time force inputs to adjust the position of the end-effector in
response to the external forces, ensuring the system is not damaged
during contact.

3.1.4 Task procedure
To complete the task, everything is precisely coordinated to

maintain high efficiency and safety. The robot only operates when
the work cell’s doors are closed and the interlock system is activated,
ensuring the safe operation of the KR20 system.

First, the robot is moved to its home position in T1 mode,
ensuring it starts from the correct state. After verifying the robot’s
position, the KR20 runs a script on its teach pendant, enabling
communication with the RSI manager in the ITRA system for
computer-based control and stopping.

The robot is then guided using the ITRA KRL Control Method,
which employs aMATLAB script tomove it to pre-definedCartesian
coordinates, which correspond to specific locations within the work
cell. Throughout this process, the operator ensures safety by holding
the teach pendant in T1 mode, with one hand positioned near
the emergency stop button on the pendant, ready to intervene if
necessary.

The system then safely approaches the coordinates with
linear movements, carefully getting closer to the battery modules
previously prepared in the work cell for easy connection. The
admittance control loop activates when the KR20 reaches its final
programmed coordinate, located near the battery terminals within
the work cell. This control loop allows the system to respond
dynamically to external forces measured by the force-torque sensor
(as mentioned in Section 3.1.3), ensuring precise contact with the
battery terminals.

The adaptive gain used in the control system has been
explained in Equation 3, where the damping and stiffness matrices

adjust based on real-time feedback. The control strategy ensures
that the robot remains responsive to changing forces, preventing
potential damage to both the robot and the battery modules.
Specifically, if the forces exceed the predefined safe thresholds,
set with a safety factor of 1.5 of the max forces obtained during
testing a successful connection. The safety mechanism operates by
dynamically adjusting the damping and stiffness matrices or, in
more critical cases, immediately stopping themovement of the robot
through emergency stop procedures integrated into the control loop.

At the 165-second mark of the test, the operator gains the
ability to manually control the system using a keyboard or
the teach pendant. The force-torque sensor provides continuous
force feedback, enabling both the operator and the system to
monitor and respond to any forces that deviate from expected
parameters. Additionally, LEDs illuminate and buzzers sound when
successful alignment and connection are achieved, providing further
confirmation and acting as a safety net to prevent any harm to the
battery terminals due to misalignment or excessive force. After a
successful connection, the EIS data collection starts and continues
for 25 min. Then, the robot separates from the battery modules
and returns to its home position. The EIS testing description is
detailed below.

3.1.5 EIS testing procedure and data analysis
This test evaluates the state health of two Nissan Leaf battery

modules connected in series using VMP3Multichannel Potentiostat
and FlexP060 fromBioLogic.The pouch cells employed in this study
utilise lithium-manganese-oxide with nickel oxide (LiMn2O4 with
LiNiO2) as the cathode material. Each module has three terminals:
red, white, and black (RWB).The red and black terminals function as
the positive and negative terminals of the module, respectively. The
white terminal is either a positive or negative terminal relative to
the two arrangements, as illustrated in Figure 6. The cells’ terminals
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FIGURE 7
Connections between battery modules and the Potentiostat, prior to connection with the EOAT.

TABLE 1 Cell Pair Capacities and State of Health. SoH is determined by
comparing the current capacity with the initial rated capacity in Ah.

Cell pair Capacity Ah/SoH%

Pair 1 43.27/65%

Pair 2 55/83%

Pair 3 60/90%

Pair 4 61/92%

are welded to copper bus bars to establish electrical connections
for the module, which prevents direct access to individual cells.
Consequently, following pack disassembly, the smallest accessible
unit in the module available for testing is the 2P pairs, either the
RW or WB cell pairs, referred to as a cell pair. Each cell pair has an
A hour rating of 66 Ah and a nominal voltage of 3.75 V. The module
canister is characterised by dimensions of (303 × 223 × 35 mm)
and a weight of 3.8 kg.

The modules were connected in series, as illustrated in Figure 7.
This configuration was chosen to include modules with varying
health conditions, offering a detailed assessment of the EIS test. It
is worth noting that the adopted experimental design capitalises on
the equipment’s capacity to assess modules in series, presenting an
efficient and cost-effective alternative to individual testing.

The EIS test was initiated to assess their electrochemical
performance after confirming a successful connection between
the EOAT and the battery modules. The experiment aimed to
gain information and data about the underlying electrochemical
processes using a frequency range tailored for impedance
measurements (1 kHz–20 mHz) in galvanostatic mode with 10 A
perturbation current. Impedance spectra were recorded during the
test, providing essential data for subsequent analysis to determine
the SoH of each cell pair within the series connection of modules.

3.1.6 Finite-element analysis
A Von Mises stress analysis was carried out, studying the effect

the forces applied on the end-effector tool had when connecting
to the terminal of the LIBs. The SolidWorks simulation modelled
the Terminals and battery casing utilising Aluminum 6061 alloy.
Majority of the body of the tool and the connectors interfacing with
the robot were constructed from polylactic acid (PLA), while the
bolts, nuts, and screws used in the tool were made from a steel
alloy. Fixtures were added to the body of all LIBs, simulating them
being fixed in position. Spring connectors were added to the springs
within the EOAT, and a force of 15 N was applied to the end-
effector (Figure 11). The Aluminium 6061 Alloy was defined as a
Linear Elastic Isotropic Material with a Poisson’s ratio of 0.33 N/A, a
density of 2.7 g/cm3 and a tensile strength of 124.084 MPa. For the
steel alloy, the properties were a Poisson’s ratio of 0.28 N/A, a density
of 7.7 g/cm3, and a tensile strength of 723.826 MPa. A Poisson’s ratio
of 0.35 N/A, a density of 1.3 g/cm3, and a tensile strength of 50 MPa
were defined for the PLA.

4 Results and discussion

This section presents and analyses the experimental outcomes of
our procedure, validating the EIS tests, mechanical integrity of the
EOAT, and the robotic process carried out in the semi-autonomous
test. Additionally, it highlights opportunities for future iterations of
this work. Table 1 illustrates the measured capacity of each cell pair
within the series connection.

4.1 Validation of the EIS experimentation

As illustrated in Figure 8, the results demonstrate voltage
readings consistent with expectations, signifying a secure and well-
established connection. Figure 9 highlights that cell pair 1 exhibited
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FIGURE 8
Voltage readings across different battery modules obtained using EIS. The plot shows the voltage stability during the test, which indicates a secure
connection and consistent performance of the battery modules.

FIGURE 9
Internal resistance readings across different battery modules obtained using EIS. The plot highlights variations in internal resistance among the cell
pairs, with Cell Pair 1 exhibiting the highest internal resistance. Conversely, Cell Pairs 3 and 4 show the lowest internal resistance.

the highest internal resistance, around 1.5 mΩ, indicative of the
lowest capacity compared to other cell pairs within the same battery
module. Conversely, cell pairs 3 and 4 exhibited the lowest internal
resistance with resistances of 0.69 mΩ and 0.94 mΩ respectively,
aligning with their anticipated high capacity. This consistency
shows the effectiveness of EIS in identifying the health of individual
cell pairs within multi-cell modules, thereby facilitating improved
diagnostics and informed maintenance strategies for EV battery
systems. The distinct characteristics observed in cell pair 1, such as
its higher internal resistance than the other pairs, strongly indicate it
as theweakest link in the batterymodule.This identification presents
an advantage for battery re-use. It allows targeted interventions,
such as replacement or specific maintenance procedures, to

address the weaker cell pair and maintain overall battery
performance.

Moreover, while EIS serves as a practical initial test for
identifying individual cell pair health, it can be complemented by
additional testing techniques for a more comprehensive assessment.
One such technique is a capacity test, which provides insights into
the remaining useful life and degradation mode of the aged cell
pair. By conducting capacity tests on the identified weaker cell pair,
engineers can better understand its current state and anticipate its
future performance. This allows for proactive measures, such as
adjusting charging protocols or scheduling timely replacements, to
mitigate potential risks associated with degradation and ensure the
longevity of the battery system.
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FIGURE 10
Resultant force present on EOAT at the KUKA KR20 when interacting with the LIBs terminals during the operation of the system.

4.2 Robotic performance

The semi-autonomous process presented no major
complications, with pre-programmed positions easy to follow. The
connection with the keyboard and ITRA real-time control allowed
for the necessary manoeuvrability in close range. A schematic
diagram of the robotic control process during different steps was
illustrated in Figure 5. This diagram outlines the workflow from
initial positioning using pre-programmed coordinates, transitioning
to force control during the connection phase, and completing
the EIS data collection. The EOAT, mounted on the KR20, was
successfully used for the experimental procedure without major
challenges thanks to its design (Figure 3) and the simulations carried
out beforehand (Figure 4). Although the EIS data collection took
25 min, the ability of the robot to maintain stability during the
connection was crucial for it, which the robot was able to perform
with our setup.

Despite a significant force spike of 15.1 N during the operator’s
connection to the batteries (Figure 10), this force was distributed
among the battery terminals, reducing the risk of damaging the
battery terminals. The force was recorded during the trials with
the mock-up cells, and the data was then used to perform a finite-
element analysis of the tool to carry out the procedure in the real
battery cells.

4.3 Finite-element analysis for a
damage-free contact

The performed Finite-element analysis confirmed the tool’s
usability and limits for the real-world experiment. A force of

15.1 N was applied in the FEA analysis since this was the
maximum force presented while connecting with the LIBs terminals
(Figure 11B.). Figure 11 shows the results of the Von Mises analysis
in both Top View and Front View, with the maximum stress spots
represented in their meshes with a maximum stress of 1.56905e + 05
N/m2.While the stress reachedwith the tool during contact with the
batteries was insufficient to cause deformation, FEA indicated that
theweakest part of the tool is a corner of the centre rod directly at the
bottom, suggesting future iterations could benefit from structural
improvements to distribute the forces better.

4.4 Scalability and industrial application

It has been demonstrated that the developed robotic framework
can identify faulty modules, even when scaled up to multiple
modules. This capability suggests that the framework can serve as a
complementary step before full robotic disassembly, allowing for the
identification of reusablemodules and replacing those that should be
discarded. This pre-disassembly testing ensures that only defective
modules are targeted for replacement, optimizing the reuse and
recycling process and enhancing its speed.

Our developed semi-automated process using industrial robots
has proven effective for battery testing, offering significantly
improved safety, precision, and efficiency over traditional methods.
A possible enhancement would be integrating more advanced
control or haptic systems. These approaches could improve the
system’s responsiveness and adaptability. Advanced control systems
might enhance the robot’s ability to handle variations in module
positions or unexpected forces, making the process more robust.
On the other hand, haptic systems would allow the robot to “feel”
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FIGURE 11
Results of Von Mises stress (A) Top view, depicting maximum forces in the connection (B) and front view depicting the forces in the centre of the tool.

the forces during connection anddisconnection, providing real-time
feedback for even more precise manipulation.

Additionally, machine vision algorithms could improve the
system by enabling better object recognition and localisation. For
example,machine vision could detect andmap themodule positions
accurately, as demonstrated by (Aflakian et al., 2023), who applied
deep reinforcement learning (RL) with human demonstrations to
optimize robotic tasks. The authors constrain the action space for
a mixture agents by applying 3D convex hulls, thereby reducing the
search space and enhancing learning speed and resilience to local
minima. Incorporating machine vision with reinforcement learning
could expedite our robot’s ability to identify and handle battery
modules in varying conditions. Finally, connecting the robotic
system to ourVRplatform (Rastegarpanah et al., 2024a)would allow
for real-time monitoring and control, enabling operators to train
and adjust the system’s behaviour in a virtual environment before
real-world deployment.

5 Conclusion

In this study, we extended our previous work, where vision-
guided manipulation techniques were used to predict the SoH
of a single battery module, by demonstrating how industrial
robots can predict the SoH for a stack of modules simultaneously.
This innovation highlights the potential of robotic automation to
accelerate the battery testing process, reduce testing time, and
advance sustainability by enabling battery reuse and promoting the
circular economy.

Our semiautomatic robotic system, leveraging EIS,
demonstrated precision in identifying battery degradation, with
the most degraded cells reaching an internal resistance of 1.5
mΩ. The robot successfully distinguished less degraded batteries
while maintaining safe operation with maximum contact forces no
larger than 15.1 N. The system’s pipeline of subtasks ensures safety
and scalability, offering a streamlined and replicable process for
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accessing and testing battery packs, modules, and cells, which can
be automated in future applications.

By integrating automation, this system not only minimizes
labor costs and improves efficiency but also supports environmental
sustainability by reducingLIBwaste and extending battery life.These
advancements facilitate early SoH detection and enable second-
life applications like energy storage, reducing the environmental
footprint of raw material extraction and overproduction.

In future, we aim to fully automate the process by incorporating
visual servoing and advanced control systems, enabling autonomous
connection to battery terminals and initiating automated data
collection. This progress will further enhance the system’s industrial
applicability and extend its benefits to a broader range of battery
types, cementing the role of robotic automation in sustainable
battery lifecycle management.
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