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Embedding-based pair
generation for contrastive
representation learning in
audio-visual surveillance data

Wei-Cheng Wang*, Sander De Coninck, Sam Leroux and
Pieter Simoens

IDLab, Ghent University—imec, Ghent, Belgium

Smart cities deploy various sensors such as microphones and RGB cameras
to collect data to improve the safety and comfort of the citizens. As data
annotation is expensive, self-supervised methods such as contrastive learning
are used to learn audio-visual representations for downstream tasks. Focusing
on surveillance data, we investigate two common limitations of audio-visual
contrastive learning: false negatives and the minimal sufficient information
bottleneck. Irregular, yet frequently recurring events can lead to a considerable
number of false-negative pairs and disrupt the model’s training. To tackle this
challenge, we propose a novel method for generating contrastive pairs based
on the distance between embeddings of different modalities, rather than relying
solely on temporal cues. The semantically synchronized pairs can then be used
to ease the minimal sufficient information bottleneck along with the new loss
function for multiple positives. We experimentally validate our approach on real-
world data and show how the learnt representations can be used for different
downstream tasks, including audio-visual event localization, anomaly detection,
and event search. Our approach reaches similar performance as state-of-the-art
modality- and task-specific approaches.

KEYWORDS

self-supervised learning, surveillance, audio-visual representation learning, contrastive
learning, audio-visual event localization, anomaly detection, event search

1 Introduction

Today, around 55 percent of the global population is living in an urban area or city,
and this number is expected to rise to 68 percent by 2050 (United Nations Department
of Economic and Social Affairs, 2018). To support this urbanization in a sustainable
way, smart cities deploy a variety of sensor, networking and data analysis technologies
to improve their operational efficiency and safety measures. Cameras and microphones
are two prevalent sensors in smart city applications. Cameras primarily serve surveillance
functions, facilitating crime prevention and traffic monitoring, while microphones are
utilized for detecting phenomena such as gunshots or glass shattering (Mydlarz et al., 2017).
Deploying cameras and microphones in the same location enables more comprehensive
situational insights. Audio and video cues provide complementary information, which
enhances the robustness of event detection against challenges encountered in real-world
settings, including noise, occlusions, or low-light conditions (Bajovic et al., 2021).
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Deep neural networks are currently the state-of-the-art solution
for audio-visual surveillance tasks such as vehicle detection
(Mao et al., 2020), violent scene detection (Ullah et al., 2023),
and sound tagging (Bai et al., 2022). However, training these
models requires large (labelled) datasets that are expensive to
collect. Furthermore, research indicates the advantages of employing
location-specific models for surveillance (Leroux et al., 2022),
further increasing the amount of training data and associated labels
that need to be collected.

The objective of this work is to design a scalable framework
for learning representations of real-world audio-visual surveillance
data in a self-supervised manner. The resulting representations
should generalize well to a wide range of downstream surveillance
tasks, meaning that the training of task-specific models that will
take these representations as input requires little or no labelled
data. Examples of downstream tasks for smart city surveillance
include event localization (Ran et al., 2022), anomaly detection
(Wu et al., 2022; Kumari and Saini, 2022; Leporowski et al., 2023)
and event search (Munjal et al., 2019).

Self-supervised learning of transferable representations is
typically achieved by training a feature extractionmodel on a pretext
task. Contrastive learning, a specific type of self-supervised learning,
formulates the training objective in terms of a distance metric
between the representations of a pair of input samples. The goal is
to minimize the distance for semantically similar instances (positive
pairs) and maximize it for dissimilar instances (negative pairs). The
process of generating positive and negative pairs during training is
a crucial factor in obtaining transferable features. Negative pairs are
often generated through random sampling from the dataset. Positive
pairs can be constructed without requiring label information by
pairing a sample with an augmented version of that sample. Such
augmentations are straightforward in the case of static images, but
much harder to design for temporal data (Qian et al., 2021). In the
case of multi-modal data, positive pairs can be naturally formed
by treating audio and video clips sampled at the same timestamp
within a stream as positive pairs, a pair generation mechanisms
known as Audio-Visual Synchronization (AVS) (Aytar et al., 2016).
To distinguish it from our approach, we refer to it as Temporal-
based Pair Generation (TPG) to highlight that typical Audio-Visual
Synchronization takes temporal cues when generating data pairs.

TPG however introduces two challenges related to the semantic
repetition that is observed in audio-visual surveillance data over
time. First, a large temporal distance between two fragments of a
recording does not guarantee a semantical difference between these
fragments. Ambulances, police cars, buses, auditory beacons for
visually impaired pedestrians, or vans with similar appearance are
only a handful examples of scenes recurring at unpredictable and
variable intervals. One example taken from a surveillance camera
in Tokyo is shown in Figures 1A, B shows two visually and aurally
similar trucks appearing at different time frames. When sampling
a data pair where the visual modality is taken from (A) and the
audiomodality from (B), this pair is labeled as negative based on the
time stamps, despite their semantic similarity. Suchmislabeled pairs,
referred to as false negatives, compromise the training process and
cause the learned embedding spaces to lose the semantic meaning
(Zolfaghari et al., 2021; Sun et al., 2023; Chuang et al., 2020).

Another limitation of relying on temporal cues to generate
positive and negative pairs in contrastive learning arises from

the information bottleneck in the training objective. Since all
supervision information for learning a representation of one element
comes from the contrasting element (Tian et al., 2020a), the
representations areminimal sufficient, meaning that they are focused
on the mutual information between the samples of positive pairs.
While this is effective when the downstream task is aligned
with the pretext task, the minimal sufficient may not contain
enough information to generalize across multiple downstream tasks
(Tsai et al., 2021; Wang et al., 2022; Feichtenhofer et al., 2021).
Increasing the number of positive pairs for each sample can address
this limitation, as it makes the pretext task more challenging
and encourages the representations to encode richer information
(Chuang et al., 2020; Khosla et al., 2020; Tian et al., 2020a).
With TPG, each video clip forms a single positive pair with its
corresponding audio, leading to minimal sufficient representations
that only contain information on objects that are simultaneously
audible and visible. However, real-world events are complex,
involving multiple elements at different time intervals, as shown
in Figure 2. Figures 2A–C shows the progressive stages of a police
car cautiously passing by a busy intersection. Due to the relative
distance and velocity between the camera and the vehicles, as
well as interactions between vehicles, each timestamp is a unique
combination of visual and audio cues of the same event. Because
of the information bottleneck, the representation of this scene
might not contain all the visual information (police car and vehicle
stopping) with its audio modality (siren). In the case of Figure 2B,
when learning a minimal sufficient representation, part of the visual
information could be ignored (e.g., vehicle stopping), although this
information could be essential for downstream tasks. For example,
during an emergency, the audio of the siren and the visual cue of
other vehicles stopping are crucial for managing the traffic light
before the police car enters the camera’s view. Meanwhile, Figure 2D
shows a similar event occuring at another time, where a police car
approaches from a different road. By creating positive pairs using
samples from both events, the learned representations will contain
more comprehensive information, accommodating the complexities
of real-world scenarios.

To reduce false negatives as well as to learn representations
with sufficient information, semantically similar events should
be mapped together in the embedding space. In this paper, we
introduce the Embedding-based Pair Generation (EPG) mechanism
as an alternative for TPG to sample positive or negative pairs.
Our approach detects false negative pairs by calculating a distance
between the embeddings of two instances of the same modality.
Furthermore, we propose a new loss that considers multiple
positives simultaneously to learn representations that contain more
information, further improving the transferability of the learned
features to a variety of downstream tasks.We train a pseudo-Siamese
network to encode the audio segments and video frames to the same
embedding space. After training, the model has learnt what audio
typically corresponds to certain visual inputs and vice versa.The two
deep neural networks can then serve as feature extractors, jointly or
separately, for downstream tasks.

To summarize, our main contributions are as follows:

1. We identify the inherent flaws in applying the widely used
audio-visual correspondence to smart surveillance data. An

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2024.1490718
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Wang et al. 10.3389/frobt.2024.1490718

FIGURE 1
Sampling data from different timestamps may result in false negative pairs if both timestamps share a similar audio-visual context. (A) Visual frame at
00:31:52. (B) Visual frame at 01:39:40.

FIGURE 2
Example stills illustrating two instances of a police car passing an intersection with activated siren, forcing other vehicles to stop. The police car is
indicated in yellow. Stopped and moving cars are indicated with red signs and green arrows respectively. (A) Only the siren of the police car is audible.
(B) The police car enters the scene. (C) The police car leaves the scene but siren is still audible. (D) On a later time, a police car enters the scene with a
different view angle.

embedding-based pair generation is introduced to tackle
this problem;

2. We study the limitation of minimal sufficient representation
for audio-visual representation learning in surveillance. We
then propose a novel loss to encode richer task-relevant
information to improve the performance on downstream
tasks;

3. We evaluate our approach with supervised downstream
tasks and demonstrate the effectiveness of our improvement
comparing to the-state-of-the-art approaches on audio-visual
representation learning. We further qualitatively evaluate our
approach on two unsupervised tasks applied on real-world
surveillance data.

The remainder of this paper is structured as follows. Section 2
provides the related work of audio-visual representation learning,
self-supervised learning, and how positives and negatives are
generated for contrastive learning. In Section 3, we describe
the mechanism of embedding-based pair selection and how
we incorporate multiple positives in the contrastive loss. The
downstream tasks and datasets used to evaluate the learnt
representation are explained in Section 4. We then describe the
implementation details and the discussion on the experimental

results in Section 5. We conclude in Section 6 and give some
directions for further research.

2 Related work

Our work lies at the intersection of three domains: audio-visual
representation learning, self-supervised representation learning,
and pair generation for contrastive learning. In the following
subsections, we provide an overview of the approaches in each of
these fields that are most pertinent to our work.

2.1 Audio-visual representation learning

The analysis of audio-visual data is gaining popularity as
audio and visual information offer complementary insights on the
same content. The two modalities are expected to align, either
at the frame level or the instance level. Jointly considering both
modalities benefits the analysis of audio-visual tasks such as active
speaker detection (Afouras et al., 2020b), sound source localization
(Zhou et al., 2023), lip reading (Afouras et al., 2020a), or video
forensics (Feng et al., 2023).
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To encode audio-visual representation, most frameworks
employ three components: an audio encoder, a visual encoder,
and a projector. This modular design accounts for the distinct
characteristics of audio and visual data, requiring different
processing configurations, such as varying network architectures
and learning schedules. Once high-level information is extracted
by the encoders, the embeddings are connected by passing them
through the projector. This setup is especially useful for tasks like
anomaly event recognition (Gao et al., 2024), where labelled data is
easier to obtain, allowing for straightforward end-to-end training to
learn audio-visual representations.

However, in most real-world scenarios, audio-visual data is
collected continuously, making it challenging to obtain annotations.
To address this, self-supervised learning (SSL) is a promising
approach to leverage the semantic synchronization between audio
and video. The inherent correlation between audio and visual
elements serves as a natural indicator when designing the pretext
task in self-supervised learning. When applying SSL to audio-visual
data, the general concept involves training a model to differentiate
between matching and non-matching pairs of video segments and
audio excerpts. Negative pairs are constructed either by sampling
audio and video from different recordings, known as audio-visual
correspondence (AVC), or by sampling from different offsets in the
same recording, termed audio-visual synchronization (AVS).

AVC as pretext task was first introduced by Arandjelovic and
Zisserman (2017), who demonstrated that the learnt representations
obtained competitive results on both audio tasks, such as sound
classification, and visual tasks, such as image classification and
object detection. Subsequent works extended AVC to tasks such as
action recognition (Morgado et al., 2021), active speaker detection
(Afouras et al., 2020b) or sound source localization (Zhou et al.,
2023). More recently, Huang et al. (2024) proposed a hybrid
approach combining generative SSL objectives with contrastive
learning. With a joint loss function, both inter-modal and intra-
modal relationships can be considered by the model.

AVS, as a more nuanced pretext task, leverages the temporal
synchronization between audio and video to pretrain the model.
This approach has been successfully applied to tasks such as lip
reading (Afouras et al., 2020a), video forensics (Feng et al., 2023)
and active speaker detection (Wuerkaixi et al., 2022).

2.2 Self-supervised representation learning

While supervised learning has made a great achievement in
many research domains, accessing reliable annotations for data is
sometimes expensive or impractical. Self-supervised learning aims
to learn a representative embedding by leveraging the information
within the data instead of relying on the supervision of annotations.
SSL introduces pretext tasks, which are auxiliary tasks designed to
train the model to learn representations that can later be applied to
downstream tasks. These pretext tasks may not directly relate to the
target task but serve as an effectivemeans of extracting generalizable
embeddings.

According to the type of the pretext task, SSL approaches can
be divided into three different categories (Wang Y. et al., 2022):
generative, predictive and contrastive. Below, we briefly describe all

three andwill then focus on the contrastive approaches as these form
the basis for our work.

Generative SSL employs generative models, such as
AutoEncoders (AEs) or Generative Adversarial Networks (GANs),
coupled with pixel-level reconstruction loss functions to learn
representative features. This approach is particularly popular in
the field of computer vision (He et al., 2022; Wu et al., 2022;
Wu et al., 2023). While pixel-level reconstruction is an intuitive
and effective pretext task, the generative SSL methods can be hard
to train. During the training of the generative model, model tend to
focus overly on background details at the expense of the foreground
content. This happens particularly when the foreground content is
relatively small in terms of frame ratio, known as the foreground-
background imbalance. Another common challenge is the object
scale imbalance, where the size of the objects varies when the
camera has a more oblique view, as discussed in (Sampath et al.,
2021). Both problems require additional mechanisms to focus on
specific semantic information.

Predictive SSL methods utilize self-generated labels derived
from predefined transformations of the input data to guide network
training. Pretext tasks such as classifying rotated versions of the
original image (Gidaris et al., 2018), or arranging image regions
within a jigsaw puzzle (Misra and Maaten, 2020) have been
demonstrated to result in high-level features of images. These
pretext tasks preserve the semantic meaning of the content. It is
however not trivial to design good pretext tasks for temporal data,
e.g., in surveillance applications, due to the added complexity of
sequence dynamics.

Finally, contrastive SSL aims to overcome the challenges
encountered in the aforementioned approaches. Contrastive SSL
compares pairs of data samples to learn representations that
maximize similarity for positive pairs (semantically similar samples)
and minimize similarity for negative pairs (semantically dissimilar
samples). Positive pairs typically consist of different augmentations
of the same input sample (Chen et al., 2020; Zbontar et al.,
2021), while negative pairs are created by randomly pairing
samples from the dataset. Both inputs are projected to a shared
embedding space. By training the model to maximize the mutual
information between embeddings of samples in positive pairs and
minimize that of samples in negative pairs, the model learns to
extract high-level features that can be used for downstream tasks.
Contrastive SSL extends to multimodal data by forming pairs
with samples from each modality. For instance, in audiovisual
representation learning, video fragments paired with corresponding
audio fragments represent positive pairs, while combinations of
video frames and randomly selected audio snippets serve as negative
pairs (Sun et al., 2023; Ran et al., 2022). Text is another modality
commonly used in conjunction with video, in particular to learn
language-video representations by pairing the video with its caption
(Zolfaghari et al., 2021; Zhang et al., 2023).

While contrastive learning has been proven to be effective
in many applications, there are two notable limitations, namely,
false negatives (Sun et al., 2023) and the minimal sufficient
representation (Tian et al., 2020a) problem. False negatives occur
when semantically similar pairs are mistakenly labelled as negative
due to the design of the pretext task. Zolfaghari et al. (2021)
describes the impact of false negatives and proposes identifying
influential samples. These samples, which are more likely to be
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false negative samples, have high feature similarity with other
samples and should be removed. Similarly, Sun et al. (2023) proposes
a statistical approach to locate false negatives by considering
the similarity between the same modality of different sample
pairs. The information bottleneck leading to minimal sufficient
representation, containing information that is sufficient for the
pretext task, is rather rare in scholarly discussions. Tian et al.
(2020a) thoroughly describes the concept with theoretical and
empirical proof, stating that when the downstream tasks are not
aligned with the pretext task, it might downgrade the representative
of learnt features. This issue is especially pronounced when
applying contrastive learning to surveillance data, where events
unfold over time and involve multiple stages. A minimal sufficient
representation may not be able to describe the different stages of
an event. To improve the usability of learned representations in
downstream tasks on such data, several works aim to incorporate
multiple positives in the objective function (Chuang et al., 2020;
Khosla et al., 2020; Tian et al., 2020a). By considering multiple
semantically related positives in the objective function, models
can better capture the diverse aspects, improving the richness and
generality of the learnt features.

2.3 Pair generation for contrastive learning

The selection of positive and negative pairs is a crucial
factor in contrastive learning (He et al., 2020; Shah et al.,
2022). Many works assume that randomly selected inputs
lack semantic similarity and can be used as negative pairs.
However, this assumption can introduce false negative pairs.
This issue, a phenomenon also referred to as sampling bias,
has been shown to hinder performance. Chuang et al. (2020)
empirically demonstrate significant performance gains across
multiple research domains when false negatives are avoided. Other
recent studies prove theoretically and empirically that the quality
of the negative samples is more important than their quantity
(Kalantidis et al., 2020; Zhu et al., 2021).

Recent works have explored several strategies to refine the
process of generating positive and negative data pairs. At the level
of instance sampling, Kalantidis et al. (2020) enhance training
efficiency and the quality of the learned representations by
synthesizing hard negatives. These hard negatives closely resemble
positive pairs and are therefore challenging for the model to
distinguish. During the training process, novel hard negatives are
synthesized as feature-level linear combinations of the currently
hardest examples. Tian et al. (2020b) focus on enhancing the
diversity of the sampled positive pairs. They argue that improving
the diversity in positive pairs helps the model learn representations
that are invariant to nuisance variables, since the representations
are focused on the mutual information across all positive views.
Zhu et al. (2021) introduce a feature transformation technique
that manipulates features to create both hard positives and diverse
negatives. Beyond improving the pair selection, Chuang et al. (2020)
propose the debiased contrastive loss, a novel training objective
function that considers the approximated distribution of negative
samples instead of relying on explicit negative samples.

3 Proposed method

In the following sections, we will first explain the different
components of the framework. Then, we introduce the novel
embedding-based pair generation (EPG) mechanism designed to
reduce the number of false negatives. Finally, we introduce a novel
loss function and elaborate on how this loss function might address
the challenge of minimal sufficient representations.

3.1 Architecture

As illustrated in Figure 3, the audio-visual representation
learning block follows a pseudo-Siamese structure with two
encoders:Fv andFa. Both encoders are deep convolutional networks,
designed to process visual and audio information, respectively.
Where in conventional Siamese architectures, the parameters are
shared between the encoders, here the encoders have a different
structure, hence the name pseudo-Siamese.

The encoders project the audio and video onto a shared
embedding space Z . Surveillance data X is first split into short
clips, where each clip x comprises the sequence of frames xv and an
audio segment xa. By selecting from the frames and segments of X,
we first generate a data pair pm,n = (x

v
m,xan), consisting of the m-th

video segment and the n-th audio fragment. With Fv and Fa, pm,n
is encoded into Z , yielding (Fv(x

v
m),Fa(x

a
n)) = (z

v
m,z

a
n). By utilizing

(Fv(xv),Fa(xa)) and the pair generation mechanism, a contrastive
loss L is calculated to train the network. Once Fv and Fa are trained,
the encoders can be used as feature extractors for downstream tasks,
either jointly or independently.

3.2 Embedding-based pair generation

Recognizing the limitations of relying solely on time offsets to
ascertain semantic dissimilarity, we introduce an alternative solution
to identify temporally non-aligned but semantically similar data
pairs with the distance in the embedding space.

The set of possible pairs is denoted as P = {pm,n = (x
v
m,xan)}.

Instead of solely relying on the condition m = n to label the pair
pm,n pair as positive, we propose to calculate the mutual information
between xm and xn in the embedding space Z . The mutual
information I(zm,zn) can be computed using a distance metric dZ(⋅)
such as Euclidean distance or cosine similarity (Boudiaf et al., 2020).
If the mutual information between the video or audio embeddings,
I(zvm,zvn) or I(zam,zan), is higher than a threshold δ, we say xm
and xn are semantically similar, even though they are recorded at
different times.

To identify whether the two elements of the pair pm,n are
semantically similar, we calculate the label ye(m,n) with the
following equation:

ye (m,n) =
{
{
{

1, dZ (x
v
m,x

v
n) ≤ δ∨ dZ (x

a
m,x

a
n) ≤ δ

0, dZ (xvm,xvn) > δ∧ dZ (xam,xan) > δ
(1)

Intuitively, this definition ascertains that when two audio
fragments are semantically similar Fa(x

a
m) ≈ Fa(x

a
n), we assume

that the corresponding video fragments in time also should be
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FIGURE 3
Overview of the framework. A pair of video clip xv and audio segment xa are served as the input of a two stream pseudo-Siamese network. The network
consists of a visual encoder Fv and an audio encoder Fa to project the input into the same embedding space. A embedding-based label of the data pair
is calculated to determine whether the data pair is positive or negative. These labels are later used to compute the proposed loss and to update the
network. After the pseudo-Siamese network is trained, both encoders can be used as a feature extractor jointly or separately for downstream tasks.

semantically similar, and vice versa. Conversely, two video fragments
close in embedding space are hypothesized to have semantically
close audio fragments. Hence, positive pairs can be constructed by
mixing modalities of xm and xn. With mutual information between
the video or audio embeddings, we can further identify the false
negative pairs and consider them as positive. Consequently, these
positive pairs can also be used to reduce the limitation of minimal
sufficient representation.

3.3 Contrastive loss with multi-positive
pairs

Given that the encoders of bothmodalities are trained to predict
similar feature representations for temporally aligned audio and
video clips, they tend to focus on information present in both
modalities. Contrastive loss guides the training of the encoders such
that the video and audio embedding are close: Fv(xvm) ≈ Fa(xan) ∣m =
n. This means that Fv(xvm) learns to eliminate all information not
present in xam, and vice versa. As explained in the introduction, other
audio segments may contain complementary information, but this
will be eliminated in the representation of Fv(xvm).

The main purpose of including multiple modalities however, is
to complement each other, providing additional information when
an object or person can not be observed in one of the modalities.
This is particularly a problem for data pair generation that only
relies on temporal alignment since it allows only one positive pair
for each time frame:

∀xvn ∈ X,∃!xam ∣m = n. (2)

To address this limit of minimal sufficient representation, we
propose amodification to the conventional contrastive loss function
that uses multiple positive pairs identified through embedding-
based distance Equation 1.

Different from temporal-based pair generation, the embedding-
based pair generation mechanism does not solely rely on temporal
information to create positive pairs with xvm. With the semantic

similarity of the embedding space, the limitation due to Equation 2
may be reduced as there can be multiple positives for xvm:

| {xan ∈ X ∣ ye (m,n) = 1} | ≥ 1 (3)

The upper bound on the mutual information between xvm and
the union of all elements in the set in 3 is higher than the
mutual information between xvm and xam. As a result, including
multiple positives will likely retain more information on xvm
in the representation Fv(x

v
m), which will benefit downstream

task performance. Inspired by the loss function proposed in
(Hadsell et al., 2006), we proposed a modified loss function to fit
the multi-positive found by Equation 3.

LEPG (X) = ∑
xvm∈X
∑
xan∈X
(ye (m,n) ⋅ dZ(x

v
m,x

a
n)

2+

(1− ye (m,n) ⋅max(τ− dZ (xvm,xan) ,0)
2) .

(4)

The distance metric dZ(xvm,xan) measures the distance between
xvm and xan in the shared space Z , which is bounded by a predefined
constant τ in the second term of Equation 4. Note that, due to
the symmetry between each modality of two semantically similar
data pairs, Equation 4 is equivalent to pairing each visual modality
(xvm) within the dataset with each audio (xan). The distance function
dZ can represent any similarity metric. In this paper, we obtained
the best results using a weighted combination of the Euclidean
distance ‖ ⋅ ‖ and the cosine similarity Sc(⋅). As cosine similarity
yields larger values for higher similarity; the distance function dZ(⋅)
is defined as follows:

dZ (xvm,xan) = ω ⋅ ‖zvm − zan‖2 + (1−ω) ⋅ (2− (Sc (zvm,zan) + 1)) , (5)

where ω is a value between 0 and 1 to control the ratio between the
two distance functions. The use of ω is discussed in Section 5.4.

4 Experimental setup

In this section, we describe the experiments conducted to
evaluate the quality of the learned representations across various
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downstream tasks relevant to smart surveillance applications. The
evaluation includes one supervised downstream task, namely,
audio-visual event detection, and two unsupervised tasks: anomaly
detection and event query. For all tasks, the pseudo-Siamese network
is first pretrained on the audio-visual data using the objective
function of Equation 4 in a self-supervised manner. Subsequently,
the weights of the audio and/or visual encoders were frozen and
considered as fixed feature extractors while training a small network
for each of the downstream tasks.

4.1 Implementation details

For all experiments, we maintain consistent configurations for
data preprocessing, network architecture, and training procedure.
Task-specific variations are described in subsequent sections. The
audiovisual dataset is first segmented into 1-s, non-overlapping
recordings, each containing synchronized audio segments and
video frames.

Video recordings are downsampled to 5 fps, and each frame is
resized to 398× 224 pixels. To align with the visual encoder’s input
specifications, each frame is further divided into two overlapping
224× 224 crops. These two crops are treated as independent frames
that map to the same audio segment, and are then jointly considered
during the inference phase.

Audio segments are resampled to 44,100 Hz and transformed
into log-mel spectrograms, following the configuration
outlined by Adapa (2019). This transformation utilizes a window
size of 256, a hop length of 694, and a total of 128 bins.

The framework consists of a pseudo-Siamese network with a
visual encoder Fv and an audio encoder Fa. Fv is built based on X3D-
M (Feichtenhofer, 2020), featuring one convolutional layer, four
residual blocks, and a final classification layer. We take the
implementation from PyTorchVideo but replace its last layer with a
fully-connected layer with 512 neurons to align with the dimensions
of the audio representations. Fa is implemented as a ResNet18
model, taking the log-mel coefficients as input. The parameter
counts for Fv and Fa are 4.02 million and 4.16 million, respectively.
Training specifics differ: Fv trains with a learning rate of 2e− 4 and a
decay of 1e− 5, while Fa is trained with a learning rate of 1e− 3 and
a decay of 1e− 5.

For Fv, we take the pre-trained weights of X3D-M, which
is trained on Kinetics-400, provided by PyTorchVideo. As for
Fa, we train it from scratch by freezing the pre-trained Fv
and exclusively training Fa. Subsequently, using a layer-wise
learning approach (Belilovsky et al., 2019), both encoders undergo
iterative training.

The embedding space Z is designed to capture semantically
meaningful information, which may not be guaranteed when
training from scratch. To ensure robust initialization, we only
consider a pair as positive when the two modalities are sampled
from the same timestamps during the first epoch of training. In
all subsequent epochs, training shifts to the embedding-based label
ye(m,n), guided by the loss function L. Throughout training, the
weight parameter ω for the distance function in Equation 5 is
kept constant at 2.5, and σ is set to 0. An ablation study of these
parameters is provided in 5.4. As δ is the threshold to determine
whether the distance in embedding space of a temporallymisaligned

data pair is smaller than a temporally aligned pair, we set the δ as
the distance between the embeddings of the temporally aligned pair
(δ = dZ(xvm,xam)). Thus, the threshold δ adapts dynamically during
training based on the embedding space.

4.2 Supervised tasks

After pretraining the audio and video encoders, they can be used
as feature extractors for downstream tasks.The first task we consider
is event localization, which aims to pinpoint specific predefined
events within an audiovisual stream, such as the entry of a car. This
task can be cast as a supervised learning problem by following the
protocol outlined in (Ran et al., 2022). Long recordings are divided
into short clips, and the objective is to perform binary classification
to determine whether a given clip contains the target event.

4.2.1 Dataset
Finding real-world surveillance datasets that contain video,

audio and labels is challenging. Some established datasets, such as
those used in Benfold and Reid (2011); Ristani et al. (2016), have
been taken down due to privacy concerns. Other datasets primarily
consist of very short clips gathered from diverse locations, often
sourced from video-sharing platforms like YouTube (Aytar et al.,
2016; Perez et al., 2019; Danesh Pazho et al., 2023). While these
datasets suffice for certain supervised tasks, such as violence
detection, they fall short for our purpose of learning features in a
semi-supervised manner over long audiovisual streams.

We decided to use the Toulouse Campus Surveillance Dataset
(ToCaDa) (Malon et al., 2020) to validate our approach.TheToCaDa
dataset encompasses two distinct scenarios, each captured by
multiple cameras strategically positioned to record simultaneously
audio and video. Some cameras have overlapping fields of view.
The events in the videos are scripted to demonstrate a possible
burglary involving 20 actors playing roles as pedestrians or suspects.
Each video has an approximate duration of 300 s and comes with
detailed annotations for both audio and video events. Most videos
in this dataset contain only a limited number of events, making
a meaningful split of each video across train and test set difficult.
However, scenario one of the ToCaDa dataset contains a higher
number of cameras observing the same scene, including some with
slightly different viewpoints, see Figure 4. We therefore use the
footage of Camera 2 as the training set for learning representations,
and evaluate event localization on the audiovisual recordings from
all other cameras.

4.2.2 Evaluation procedure
We evaluate the transferability of the learned representations to

this supervised classification task by adopting the linear evaluation
protocol from Wang et al. (2022). After pretraining, the weights
of the feature extractors are frozen and a one-layer linear classifier
is trained using cross-entropy loss as the objective function. After
training the classifier, we evaluate performance using a segment-
wise classification accuracy matrix, again following the protocol
presented in (Ran et al., 2022).

4.2.3 Baseline methods
We first evaluate our method by comparing it with existing

audio-visual representation learning methods, as well as the TPG
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FIGURE 4
Camera setup for ToCaDa Scenario 1. The camera view used for training is marked in red, while the camera views that are used for similar are labelled
as yellow. The rest of the camera views are used as challenging. Note that both similar sets and challenging sets are used for testing.

baseline. Additionally, since the data contains both audio and video,
we compare the classification results of our method with visual-only
and audio-only methods.

For multi-modal audio-visual representation learning, we
compare our method with TACMA and MAVil. TACMA (Ran et al.,
2022) is a self-supervised representation learning technique
specifically designed for audio-visual event localization. TACMA
employs a Barlow-Twins architecture to learn representations
and includes a cross-modal attention module to enhance
audio-visual information capture. However, because the cross-
modal attention module is trained in a supervised manner, we
exclude it and use only the AV-BT module to generate the
representations. MAViL (Huang et al., 2024) is a recent method
that has demonstrated strong performance in event classification
tasks across general audio-visual datasets.

Both TACMA and MAViL are designed for datasets containing
short videos with diverse content and scenarios. To ensure
compatability with their training scheme, we segment the long
ToCaDa training videos into 10-s, non-overlapping subclips. Unlike
TACMA, MAViL relies on negative pairs to compute inter-modal
contrastive loss. To enable this, we pair the audio and video from
different subclips to create negative pairs for MAViL.

For the TPG baseline, we use the same training procedure as our
method, with the only difference being the pair generation strategy.

For visual-only benchmarks, we employ the EfficientNet (Tan
and Le, 2019) and X3D (Feichtenhofer, 2020) models. EfficientNet is
pretrained on the ImageNet dataset, and we select the EfficientNet-
B0 variant, which has 4.03million parameters,making it comparable
in scale to the Fv encoder in our method. For X3D, our choice
is the X3D-M variant pretrained on Kinetics-400, which contains
3.76 million parameters. Both models and their pretrained weights
are sourced from the PyTorch and PyTorchVideo repositories. To
use these models as baselines, we remove their final classification

layers and use the outputs of the remaining pretrained network as
representations.

TACMA and X3D-M process input frames at a resolution
of 256× 256, while EfficientNet-b0 operates at 224× 224. For fair
comparison, we first downsize all frames to 224 times224 and then
upsample them to 256× 256 for use with TACMA and X3D-M.

For all other configurations, we follow the original preprocessing
steps specified in the respective works, except for MAViL. Since the
authors ofMAViL did not release their code or the pretrainedmodel,
we follow the implementation details and the pretrained model of
the reproduction reported in (Tseng et al., 2024).

For the audio-only benchmarks, we use the best-performing
model from the DCASE19 urban sound tagging task (Adapa, 2019).
The official implementation and pretrained weights were obtained
from the author’s GitHub repository1. Similarly to the visual-only
benchmarks, we remove the classification layer from the pretrained
network and use its output as feature representation for downstream
evaluation.

4.3 Unsupervised tasks

We also evaluate our framework in two unsupervised tasks
commonly used in surveillance: anomaly detection and query-
guided event search. The task of anomaly detection involves
identifying inputs that deviate from normal behavior. Since the
behaviors of interest are not defined beforehand, anomaly detection
is a challenging task that requires high-quality input features to
discern subtle deviations. The query-guided event search task is to
locate events in a video similar to a given query event. For instance,

1 https://github.com/sainathadapa/dcase2019-task5-urban-sound-

tagging
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if the query is a clip containing a joyriding car with distinct audio or
visual characteristics, the task is to identify other timestamps in the
recording where similar events occur.

4.3.1 Dataset
The ToCaDa dataset, while valuable for tasks like event

localization, is less suited for anomaly detection and query-guided
event search due to its limited video length and restricted diversity
of actions occuring. Similarly, widely-used datasets with annotated
anomalies, such as Avenue (Lu et al., 2013) and ShangHaiTech
(Liu et al., 2018), contain only visual cues. As an alternative,
we collected real-world audio-visual surveillance footage from
a publicly available live stream on YouTube2,3. This audiovisual
stream captures a main intersection in Tokyo’s Shinjuku district,
observed from a a high vantage point, providing a representative
setting for urban surveillance. Some stills from the recordings
are shown in Figure 1, showcasing different types of vehicles, bikes
and pedestrians with their accompanying sounds. For in-depth
evaluation, we recorded four 4-hour-long videos from two different
dates under different lighting conditions. The videos are recorded
during two time windows: 15:00 to 19:00 (daytime) and 19:00 to
23:00 (nighttime), on a Tuesday and a Thursday.

4.3.2 Evaluation procedure
Since the Tokyo dataset is not annotated, we conduct a

qualitative evaluation between different methods of anomaly
detection and query-guided event search.

The anomaly score for a clip xm = (xvm,xam) is calculated using the
distance function of Equation 5. A clip is flagged as anomalous if
the score is higher than a threshold. For each 4-hour-long video,
a separate model is trained to learn audio-visual representations.
The threshold for anomaly detection is dynamically adapted for
each video and set to μ+ 2σ where μ and σ represent the mean and
standard deviation of the anomaly score on the training set. This
threshold considers 95.45% of the training data as normal.

For query-guided event search, separate models are trained on
each video to extract features. Query events have been selected
manually. Events were searched in all recordings, but events within
a window of 1 min before and after the selected event are excluded
as search results. We rank the search results based on the distance
between the query and the results in the embedding space.

4.3.3 Baseline methods
For the anomaly detection task, we compare our method with

five other approaches: two multi-modal fusion models (Kumari
and Saini, 2022) (Fusion) and (Huang et al., 2024) (MAViL), one
vision-only approach based on the X3D-M model, one audio-only
baseline Adapa (Adapa, 2019) and the multi-modal TPG baseline.

As for the event search task, apart from the multi-modal TPG
andMAViL (Huang et al., 2024) baselines, we compare our approach
to a baseline that involves a straightforward fusion approach in
which video and audio features of separately trained encoders are

2 https://www.youtube.com/watch?v=2gZySUir8_w$

3 https://www.youtube.com/watch?v=xiLF6PmFZP4$

concatenated. Specifically, we concatenate visual features fromX3D-
M (Feichtenhofer, 2020) with audio features from Adapa (Adapa,
2019). We refer to this baseline as (A + V).

5 Experimental results

5.1 Audio-visual event localization

The experimental results for audio-visual event localization are
summarized in Table 1, which reports the accuracy score for each
method. The ToCaDa dataset consists of videos recorded from 18
different cameras. We trained on data from camera 2 and tested
on all other cameras. To better assess the robustness of the learned
features, we categorize the test cameras into two groups: (1) cameras
with a view similar to the training camera (labeled as “similar”),
and (2) cameras with distinct perspectives compared to the training
camera (labeled as “challenging”). By reporting results separately, we
ensure that the evaluation reflects the model’s generalization ability
without artificially inflating accuracy due to overlapping cameras.

The results highlight a significant performance gap between the
two camera sets, with all methods achieving considerably higher
accuracy on the “similar” set. These results corroborate findings in
earlier research on the advantages of using location-specificmethods
for analyzing surveillance data (Leroux et al., 2022).

When comparing our approach with the other audio-visual
techniques TACMA and MAViL, our approach demonstrates a
substantial performance advantage. This difference can likely be
attributed to the fact that these models are designed for more
general purposes that require training on large-scale datasets
with diverse content. Due to the more constrained nature of
the ToCaDa dataset, these models struggle to learn sufficiently
representative embeddings for event localization tasks. Examining
the performance difference between TACMA and MAViL, we
observe that while MAViL achieves great performance in general
representation learning, its reliance on both reconstruction and
contrastive loss with negative pairs defined based on temporal
alignment, pose limitations in this dataset. In contrast, TACMA
employs a Barlow-Twins architecture, which avoids the need for
negative pairs, and only consider limited positive pairs.

Notably, when our model architecture is trained using the TPG
pair generation strategy instead of the EPG strategy, a significant
drop in accuracy is observed. This results highlights the advantages
of accounting for semantic similarity in pair selection.

We also compare the classification results obtained using the
video representations learned by our approach, TACMA and
MAViL, with those from video-only based models. Our approach
performs similar to the EfficientNet model, which was pretrained
on the large scale ImageNet dataset. The best performance is
achieved by the pretrained X3D-M model, which is expected given
its architecture’s specific design for capturing motion information.
In contrast, the self-supervised methods TACMA, MAViL, and
TPG perform poorly in this task. MAViL’s weaker performance
can be attributed to its reliance on reconstruction loss, which is
susceptible to foreground-background imbalance. This imbalance
makes MAViL more sensitive to differences in the scene. These
results demonstrate that the feature representations obtained
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TABLE 1 Audio-visual event localization results on two subsets of ToCaDa dataset.

Method # Params.(M) Similar Challenging

Audio-Visual

TACMA (Ran et al., 2022) 150.46 77.41 67.20

MAViL (Huang et al., 2024) 185.66 72.69 62.34

TPG 15.2 71.33 60.47

EPG (Ours) 15.2 86.92 77.48

Visual

EfficientNeta 4.01 85.65 73.20

X3D-Ma 2.97 90.21 71.84

TACMA (Ran et al., 2022) 52.87 62.15 43.60

MAViL (Huang et al., 2024) 85.74 65.23 51.44

TPG 4.02 60.71 44.92

EPG (Ours) 4.02 85.42 70.02

Audio

Adapaa (Adapa, 2019) 4.16 85.22 82.47

TACMA (Ran et al., 2022) 97.58 76.43 65.61

MAViL (Huang et al., 2024) 85.74 77.24 62.30

TPG 4.16 70.66 60.43

EPG (Ours) 4.16 81.37 79.48

aDenotes the model is pretrained on a large-scale dataset without any fine-tuning. The numbers are segment-wise classification accuracy following the protocol in TACMA (Ran et al., 2022).

from our multimodal approach also transfer effectively to purely
visual tasks.

For audio-only event localization, we observe a smaller drop
in accuracy between the “similar” and “challenging” locations
compared to video-only localization. This underscores the
robustness of audio data, which is less sensitive to the exact
positioning of sensors. The best results in this setting are obtained
by the pretrained Adapa model. While our model performs slightly
worse than Adapa, it achieves this without the need for pretraining
on extensive labeled data. Furthermore, our proposed EPG
approach consistently outperforms the TPG baseline, reinforcing
the effectiveness of embedding-based pair selection in enhancing
the quality of learned representations.

5.2 Anomaly detection

Since the Tokyo dataset lacks annotations, we perform only a
qualitative evaluation of anomaly detection performance. Figure 5
presents examples of anomalous events and indicates which
methods were able to detect them. The shown events represent the
four semantically distinct events with the highest anomaly score.
These examples cover events with distinctive sounds, unique visual
appearance, or a combination of both. This diversity demonstrates
that the learned embedding space is semantically meaningful and
contains information to identify various anomaly events.

In example (A), an advertising truck waits at the crossroad
while an ambulance with wailing siren passes by. This anomaly
is clearly identifiable through both visual and audio data. In
example (B), a sports car speeds by with the engine roaring. While
the sound of the sports car is highly distinctive, the car’s visual
appearance is not particularly notable. The Fusion baseline (Kumari
and Saini, 2022), which relies on multimodal data, fails to flag
this event as an anomaly. In example (C), an ambulance arrives
from the topleft corner with sirens on, then turns right and
exits in the bottom left corner. In this case, the ambulance is
not visually prominent but is clearly audible. Example (D) shows
a yellow forklift passing through the intersection. There is no
distinctive engine sound, leading audio-only methods to miss
this anomaly.

These experiments show that bymapping audio and visual to the
same embedding space, we can learn representations that effectively
integrate information from both modalities. This enhances the
ability to detect anomalies that are challenging to identify using a
single modality.

5.3 Event search

In our last set of experiments, we present examples of event
search on the Tokyo dataset, as illustrated in Figure 6. The
top row shows still frames of the (manually selected) query
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FIGURE 5
Examples of anomalous events. Check marks indicate which models flagged this event as anomalous. (A) An advertising truck waits at the crossroad
while an ambulance passes with its siren wailing. (B) A sports car speeds by with the engine roaring. (C) An ambulance enters from the upper left
corner. (D) A forklift passes through without any distinct noise.

FIGURE 6
Examples of event query. The top row shows the query video, while the search results are shown in the 2–6 rows. The results of each methods are
shown in a decreasing order from left to right and top to down. (A) A pink bus. (B) An ambulance with sirens on. (C) A police car with broadcast and
siren on. We show the top 4 search results obtained with our method for each query events. For the other three methods, only the top two search
results are reported in order not to overload the figure.

clips, while the following rows showcase the most related events
identified by each method, shown in increasing order of embedding
distance. We excluded a 1-min window before and after each

query event from being searched. Similarly, for each method,
we show only search results that are at least 1 minute before or
after higher ranked search results.
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Example (A) shows a pink bus entering the scene while the
sound of a passing train can be heard in the background, though the
bus itself produces no distinctive sound. All methods successfully
locate a similar event where the same pink bus appears at a different
time, again accompanied by the sound of a train in the background.
Notably, the overlap between the bus’s visual presence and the
train’s audio is brief. While the other approaches prioritize frames
with visual similarity over audio similarity, MAViL selects a frame
emphasizing the distinct train sound. In contrast, ourmethod shows
only a 1% difference in preference between audio-similar and visual-
similar frames. Moreover, our approach identifies an additional
instance of the same bus later in the surveillance stream, this
time without a train in the background. Other detections from all
methods are quite diverse but typically contain either a bus, multiple
black cars or the sound of a train in the background.

In example (B), an ambulance enters with its siren wailing
accompanied by a broadcast announcement. Besides the passage
in the query clip, the ambulance appears at least six more times
during the night. All methods detect one particular instance where
the ambulance enters from the bottom right corner and heads in
the same direction as in the query clip. Interestingly, this event is
detected earlier byEPG than byTPG, even before the ambulancewas
visible. This shows that even though EPG and TPG both integrate
audio and video information, EPG is more adept at fusing both
modalities, likely due to its training with embedding-based pair
generation. By positively pairing segments where the ambulance is
audible with segments where it is visible, EPG improves its ability
to identify such events. Furthermore, in two other appearances the
ambulance follows a different trajectory, entering from the top left
and turning right.OnlyEPG andTPG successfully detect these cases.
Additionally, there is one other instance where the broadcast audio
is present, detected only by EPG and MAViL.

In example (C), a police car enters the scene with loud sirens
and flashing warning lights. Although the car itself is rather small,
its visual and auditory features make it distinct from other vehicles.
EPG, TPG, and MVAiL all locate another similar event. Again, EPG
detects the event earlier, even before the car is visible. All three
methods also successfully identify other occurrences where police
cars drive by or sirens are audible in the background. However, the
baseline method (A + V) is unable to find a matching event for
this example. The examples of the ambulance and the police car
demonstrate that our proposed embedding based pair generation
and custom loss function help to keep more information and cover
more aspects of the event, which benefits the real-world application.

Although this qualitative evaluation is limited in scope, it is
important to emphasize that these results are derived using the
same representations applied in the anomaly detection task. This
highlights the versatility and robustness of the learned embeddings
across multiple tasks.

5.4 Ablation study

To have a better understanding of our method, we analyze
the results for different values of the hyperparameters used in
our approach, namely, δ,σ, and ω. Since δ adapts based on the
similarity of positive pairs, we focus our evaluation on σ and ω,
which represent the temporal constraints and the weight between

TABLE 2 Ablation study on different σ. The impact of different σ on
audio-visual event localization results.

σ(sec) 0 1 10 30 60 120

Similar 86.92 86.21 85.32 87.41 87.92 86.31

Challenging 77.48 78.62 77.33 79.82 79.82 78.32

TABLE 3 Ablation study on different ω. DNC stands for Did not converge.
The impact of different ω on audio-visual event localization results.

ω 0 0.25 0.5 0.75 1

Similar DNC 85.21 86.92 85.44 DNC

Challenging DNC 75.16 77.48 76.83 DNC

the distance functions, respectively. Since the only annotated task in
our experiments is audio-visual event localization, we restrict our
ablation study to this task.

5.4.1 Temporal constraint σ
As shown in Table 2, the value of the temporal constraint σ has

minimal impact on our approach. Starting from the second epoch,
the embedding-based pairmechanism is introduced, which does not
solely rely on the time difference but also considers the semantic
similarity in selecting pairs. This dual mechanism offers flexibility,
as the optimal temporal constraint σ can vary based on the content
of the data. For instances, two frames that are 1 min apart in a scene
depicting a sidewalk might contain very similar content, whereas
the same time gap in a highway scene could result in significantly
different content. Given this variability, the robustness of EPG shows
another advantage in the real-world scenario.

5.4.2 Weight in distance function ω
Table 3 shows the effect of different values for ω, which is

used in Equation 5. Both cosine similarity and Euclidean distance
are commonly used as distance metrics in contrastive learning
(Hadsell et al., 2006; Zeng et al., 2020). When ω is set to 0.25,
0.5, or 0.75, there is no significant impact on the performance
of audio-visual event localization. However, when only one of
the distance metrics is used (ω = 0,ω = 1), we observe that the
model sometimes fails to converge. We investigated the learning
process and hypothesize why the instability arises when using only
Euclidean distance or cosine similarity. On the one hand, as the
pre-trained visual encoder Fv is not normalized to a unit vector,
we did not normalize the output of Fa either. In the early stages of
the training, using only cosine similarity occasionally leads to the
model collapsing or diverging. Cosine similarity does not reflect the
magnitude of the vector, which can be a crucial factor in measuring
the spatial correlation between two data points in a non-unified
embedding space.

In contrast, Euclidean distance provides more efficient guidance
in training the Fa more efficiently. However, we found that a poor
choice of the margin constant also leads to model collapse or
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divergence when using only Euclidean distance. Since the optimal
margin for Euclidean distance can vary depending on the data,
incorporating cosine similarity helps balance the loss function,
leading to more stable training. Moreover, Euclidean distance
complements cosine similarity by considering the absolute
difference between two vectors. The combination of both metrics
helps in identifying semantically similar events in the embedding
space, as it captures both directional and magnitude-based
relationships.

6 Conclusion and future work

In this paper, we discussed the challenges of learning audio-
visual representations from multi-modal surveillance data. We
addressed the limitations of relying solely on temporal alignment
as pretext task, as well as the minimal sufficient representation
bottleneck inherent in contrastive learning. To the best of our
knowledge, this is the first study to explore these issues in the context
of surveillance data.

We introduced a novel embedding-based pair generation
mechanism that mitigates the problem of false negative pair
generation while promoting more diversity in positive pairs. Our
pseudo-Siamese network, enhanced by a new contrastive loss
function that accounts for multiple positive pairs, learns more
effective audio-visual representations.

We evaluated the generalization of the learned representations
across various downstream tasks and compared our approach
to state-of-the-art approaches using a publicly available dataset.
Additionally, we demonstrated the effectiveness of our method on a
more challenging dataset of real-world surveillance data. Our results
show that our approach performs similar or better than existing
state-of-the-art techniques.

In future work, we will further explore how the learned
representations perform on different downstream tasks. We will
also investigate techniques to make the model smaller and faster.
Both audio and video data are potentially privacy sensitive and
should not leave the local edge device unless absolutely necessary. To
facilitate this, we aim to optimize the model for real-time operation
on resource-constrained platforms, enabling scalable deployment
while preserving privacy.
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