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We present WearMoCap, an open-source library to track the human pose
from smartwatch sensor data and leveraging pose predictions for ubiquitous
robot control. WearMoCap operates in three modes: 1) a Watch Only mode,
which uses a smartwatch only, 2) a novel Upper Arm mode, which utilizes
the smartphone strapped onto the upper arm and 3) a Pocket mode, which
determines body orientation from a smartphone in any pocket. We evaluate all
modes on large-scale datasets consisting of recordings from up to 8 human
subjects using a range of consumer-grade devices. Further, we discuss real-
robot applications of underlying works and evaluate WearMoCap in handover
and teleoperation tasks, resulting in performances that are within 2 cm of the
accuracy of the gold-standard motion capture system. Our Upper Arm mode
provides the most accurate wrist position estimates with a Root Mean Squared
prediction error of 6.79 cm. To evaluate WearMoCap in more scenarios and
investigate strategies tomitigate sensor drift, we publish theWearMoCap system
with thorough documentation as open source. The system is designed to foster
future research in smartwatch-based motion capture for robotics applications
where ubiquity matters. www.github.com/wearable-motion-capture.

KEYWORDS

motion capture, human-robot interaction, teleoperation, smartwatch,wearables, drone
control, IMU motion capture

1 Introduction

Tracking and estimating the human pose is essential for applications in teleoperation
(Hauser et al., 2024), imitation learning (Fu et al., 2024), and human-robot collaboration
(Robinson et al., 2023). To date, camera-based approaches are the gold standard for
capturing human position andmotion (Desmarais et al., 2021; Robinson et al., 2023).While
purely optical motion capture solutions provide a high degree of accuracy, they are also
subject to line-of-sight issues, which typically confines their use to controlled environments
(Fu et al., 2024; Darvish et al., 2023). This requirement of controlled environments is even
more prominent in human pose estimation advances in Virtual Reality (VR), and Mixed
Reality methods (Walker et al., 2023), which typically require the user to wear VR headsets,
or heavily rely on camera-based tracking.

The most prominent alternatives to optical solutions are based on Inertial Measurment
Unit (IMU) sensors (Noh et al., 2024; Hindle et al., 2021). These methods employ
customized IMU-based solutions (Prayudi and Kim, 2012; Beange et al., 2018; Li et al.,
2021) on low-cost wearable embedded system (Raghavendra et al., 2017), possibly in
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FIGURE 1
Our WearMoCap system features three modes: Watch Only requires a single smartwatch only. For Upper Arm we use a common fitness arm strap for
the connected smartphone. The Pocket mode tracks the arm pose and uses the phone to determine changes in body orientation. We evaluate all
modes in real-robot tasks, i.e., teleoperation, intervention (A), handovers (B) and drone piloting (C).

fusionwith opticalmethods for enhanceed accuracy (Malleson et al.,
2017; Shin et al., 2023). Unlike optical methods, IMUs do
not require a direct line of sight because they are directly
attached to the user’s body. Commercial IMU motion capture
systems incorporate up to 17 IMUs, enabling highly accurate
non-optical human pose estimation (Roetenberg et al., 2009).
Configurations with fewer sensors benefit from advances in deep-
learning to obtain reliable lower-fidelity human poses (Huang et al.,
2018). However, IMU-based motion capture systems typically
require specialized IMU units and calibration procedures, thereby
hindering their portability and applicability for inexperienced users
(Huang et al., 2018; Roetenberg et al., 2009).

With the constantly growing popularity of consumer wearables,
IMU-based motion capture from smartwatch and smartphone data
offers perhaps the most ubiquitous solution (Lee and Joo, 2024).The
recent IMUPoser (Mollyn et al., 2023) and SmartPoser (DeVrio et al.,
2023) demonstrate that, even though consumer wearables motion
capturemay be less accurate than their optical and specialized IMU-
based counterparts, these solutions are attractive because users tend

to have these devices on them most of the time, enabling pose
tracking at anytime and anywhere.

Despite these advances in ubiquitous pose tracking, smartwatch
applications in robotics often merely utilize roll, pitch, yaw and
gesture based control (Villani et al., 2020a), or on-body sensors for
cognitive stress and alertness (Lee et al., 2015; Villani et al., 2020b).
We have recently demonstrated the opportunities of motion capture
from smartwatches for ubiquitous robot control (Weigend et al.,
2023b; 2024). Under a fixed-body-orientation constraint, we
showed that a single smartwatch facilitates teleoperation tasks
(Weigend et al., 2023b). The additional sensor data from a
smartphone in the pocket allows for tracking body orientation as
well (Weigend et al., 2024; Weigend et al., 2023a). To foster future
research in ubiquitous motion capture for robotics, in this work,
we presentWearMoCap—a comprehensive wearables-basedmotion
capture system to unify and augment previous approaches in one
system. As depicted in Figure 1, WearMoCap has three modes of
operation for different levels of precision and portability. Improving
on previous works, we benchmarkWearMoCap extensively on three

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2024.1478016
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Weigend et al. 10.3389/frobt.2024.1478016

large-scale datasets, and show successful demonstration onmultiple
real-world robotics tasks.

WepublishWearMoCap as an open-source library, togetherwith
extensive documentation, as well as all our training and test data.
Specifically, our contributions are.

• We unify previous and new pose tracking modalities,
visualizations, and robot interfaces in one system under the
name WearMoCap.

• We introduce a more precise Upper Arm pose tracking mode
using an off-the-shelf fitness strap.

• We evaluate each system modality on large-scale datasets from
a range of consumer devices, up to 8 human subjects, and by
comparing them in real-robot tasks.

Overall, we envisage this paper to be a streamlined framework
for wearable motion capture with three modes, intended to facilitate
data collection and future research into human-robot interaction
through smartwatch and smartphone motion capture.

2 Methods

This section introduces the system architecture and operation.
Section 2.1 covers system modules and formalizes the data
flow. Section 2.2 describes calibration procedures, followed by
the methodology for each pose prediction mode described in
Section 2.3. Finally, Section 2.4 covers additional control modalities
that we use for our evaluation on real-robot tasks. Each section
defines our contributions and additions to the methodology
previous works.

2.1 System overview and architecture

WearMoCap streams sensor data from smartwatches and
phones, and computes pose estimates using them for robot control.
As depicted in Figure 1, the system operates in three modes: 1)
The Watch Only mode produces arm pose estimates using the
sensor data of a single smartwatch. 2) The Upper Armmode further
employs a smartphone strapped to the upper arm. The combined
sensor data of watch and phone allow for more precise arm pose
estimates. 3) The Pocket mode requires the user to wear the watch
on their wrist and place the phone in any of their pockets. This
allows for tracking both the body orientation and arm pose. While
the Watch Only mode is based on Weigend et al. (2023b) and the
Pocket mode on Weigend et al. (2024), the Upper Arm mode is
introduced by this paper.

WearMoCap unites all three modes in one framework.
To ensure that users can deploy and switch between
WearMoCap functionalities easily, we developed WearMoCap as
a modular system (Figure 2). The system consists of the following
components: i) apps to stream sensor data to a remote machine, ii)
a pose estimation module to transform received sensor data into
poses, iii) a visualization module that renders pose estimates and
distributions using a 3D avatar, and iv) an interface to the Robot
Operating System (ROS) for robot control. The apps are written in
Kotlin and require Wear OS and Android OS. Pose estimation and

theROS interface arewritten in Python, and the visualization utilizes
Unity3D and C# scripts. The communication between modules
is facilitated using UDP messages. The only exceptions are robot
control, which uses a ROS topic, and communication from the
watch to the phone app, which is realized via Bluetooth.

The user initiates the data stream by pressing a button on the
watch app. Messages from the watch app,mw, comprise:

mw = [Δtw, tw,θw,ϕw,vw,αw,ρw,γw,θw,init,ρinit]
⊤,

withmw ∈ ℝ
27. Δt is the time since the last message. The timestamp

t ∈ ℝ4 contains the current hour, minute, second and nanosecond.
The virtual rotation vector sensor θ by Android and Wear OS
provides a global orientation quaternion θ ∈ ℝ4. Angular velocities
are provided by the gyroscope ϕ ∈ ℝ3. Additionally, we integrate
linear accelerationmeasurements α ∈ ℝ3 over Δt to obtain velocities
v ∈ ℝ3. The value ρ is the atmospheric pressure sensor and the
measurements γ ∈ ℝ3 are readings from the gravity sensor. The
θw,init ∈ ℝ4 and ρinit ∈ ℝ are saved orientation and pressure readings
from the calibration (Section 2.2).

In the Upper Arm and Pocket modes, the watch streams mw
to the phone via Bluetooth. The phone then augments received
messages with its own sensor data, and forwards the combined
messagemw,p to the host machine, where:

mw,p = [m⊤w,Δtp, tp,θp,ϕp,vp,αp,ρp,γp,θp,init]
⊤,

withmw,p ∈ ℝ53.
The pose estimation module receivesmw,p ormw and computes

pose estimates. To this end, it calibrates orientation values according
to the procedure presented in Section 2.2 and makes predictions
according to the corresponding mode methodology in Section 2.3.
Then, it outputs a message summarizing the posemest as

mest = [
qha,pha⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
hand

, qla,pla⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
lower arm

,qua,pua⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
upper arm

,qhi⏟⏟⏟⏟⏟
hip ]
⊤
,

with mest ∈ ℝ
25, quaternions q ∈ ℝ4 and origin positions p ∈ ℝ3.

The pose estimation module can either record mest to a file, send
them to the visualization module, or, publish to a ROS topic for
robot control.

The reference frame for all final positions is relative to
the hip origin. For estimating joint positions through forward
kinematics, we facilitate default arm lengths and shoulder offsets.
As shown in Figure 3, the default left shoulder origin relative to
the hip was set to X: -17.01 cm, Y: 43.1 cm, Z: -0.67 cm, which
was determined as an average from our first three human subjects.
Moreover, the default upper arm and lower arm lengths were set
to 26 cm and 22 cm respectively. These settings worked well for all
our experiments but developers can easily adjust the defaults in the
bone_map.py script in our repository.

A localWiFi connection is sufficient to establish the connections
between the devices, there is no requirement for internet
connectivity. The device synchronization is maintained as follows:
First, the watch sends its data to the phone, along with the
associated timestamps. The phone maintains a queue to collect
the timestamped data from the watch, and then collects its own
sensor data at the fastest rate possible. Once the phone completes
the collection of a new array of its sensor values, it processes the
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FIGURE 2
A schematic of the data streams between modules. The pipeline from smartwatch to visualization defaults to UDP. The pose estimation module can
publish to the Robot Operating System (ROS).

FIGURE 3
(A) Possible wrist and elbow positions around the shoulder lie on spheres with the radii of our standard upper arm length 26 cm (lua) and lower arm
length 22 cm (lla). (B) We provide joint positions relative to the hip origin. If the forward-facing direction is not constrained, all possible shoulder
positions lie on a circle. The shoulder offset lsh from the hip is X: -17.01 cm, Y: 43.1 c, Z: -0.67 cm.

data in the queue from the watch. The phone integrates the watch
data over time and aligns it with its own data. This way, the final
output from the phone contains the most recent phone sensor data
along with the integrated watch data, accurately matched to the
corresponding time points.

2.2 Calibration

Motion capture requires a set of transformations to bring body
joints and IMUs into the same reference frame. Traditionally,
this involves calibration procedures like standing in a T-Pose
(Roetenberg et al., 2009; Mollyn et al., 2023). We implement a
seamless calibration pose for each mode, asking the user to hold a
respective pose (as depicted in Figure 4) for one second.

For theWatch Only and Pocket modes, the user starts streaming
with the watch app while holding their lower arm parallel to the
chest and hip. The watch verifies this position using the gravity and
magnetometer sensors.Then, it records the initial watch orientation
sensor reading θw,init, such that the pose estimation from then on

computes the calibrated orientation as

qw,cal = θw ⋅ θ
−1
w,init.

Further, the watch records the initial atmospheric pressure ρinit,
so that we can compute the relative atmospheric pressure:

ρcal = ρ− ρinit.

The calibration for the phone data operates similarly. In the
Pocket mode, the phone orientation qp,cal is calibrated in the
same way as the watch orientation qw,cal because the hip forward
direction aligns with the watch forward direction (Figure 4 on
the right). In the Upper Arm mode, the user stretches their arm
forward to put the upper arm into a known position relative to
the lower arm and hip (Figure 4 in the middle). Calibrating the
phone orientation in this position allows aligning qp,cal with the
upper arm orientation and hence remains unaffected by varying
body proportions. Figure 4 depicts the result: In the start pose,
the calibrated device orientations equate to identity quaternions,
i.e., no rotation.
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FIGURE 4
All modes start with a one-second calibration pose. For Watch Only and Pocket mode the user holds their arm parallel to the hip. In Upper Arm mode
the user stretches their arm forward.

We describe the detail of the calibration process along with the
average duration for each mode in the following subsection.

2.2.1 Watch Only
The user has to hold the watch in a calibration pose

as shown in Figure 4. The watch uses the gravity sensor to assess
if it is positioned with its screen parallel to the ground. If the z-
value of the gravity sensor is >9.75 m/s2 (perfect orientation would
be the gravity constant 9.81 m/s2), the watch indicates that it is
ready to calibrate. The user can then initiate the calibration by
triggering the start button. The app collects the watch orientation
and atmospheric pressure sensor values for 100 ms and averages
them.Thesemeasurements serve as the calibration values and future
measurements are set relative to this initial average. Therefore, the
calibration procedure requires the user to bring the watch into
the correct position and collects 100 ms of data. The procedure is
typically finished in 1 s.

2.2.2 Upper Arm
For this calibration procedure, the user has to complete two

steps. Both are depicted in Figure 4. Step 1 is the same as Watch
Only: If the z-value of the gravity sensor is >9.75 m/s2, the watch
indicates that it is ready to calibrate. Upon button trigger, the app
collects 100 ms of orientation measurements and saves the average
as the initial pose orientation. Subsequently, the watch vibrates to
signal the user to stretch their arm forward. The watch then keeps
track of orientation changes. As soon as the z-axis of the gravity
sensor is >9.75 m/s2 again and the global y-orientation changed
by more than 80°, the watch sends a message to the phone. Upon
receiving the message, the phone collects its own global orientation
for 1,000 ms. The average is the phone orientation calibration and
future orientations are estimated relative to the calibration value.
Altogether, the user has to stand in two poses and the devices collect
data for 1,100 ms.The procedure is typically finished in about 2–3 s.

2.2.3 Pocket
The user places the smartphone in their pocket. The user holds

the watch in front of their body as shown in Figure 4. Once the
z-value of the gravity sensor is >9.75 m/s2, the watch indicates
that it is ready to calibrate. The watch collects orientation and

pressure for 100 ms, then immediately sends amessage to the phone,
and the phone records its own orientation for 100 ms. Recorded
orientations serve as calibration measures. Typically, this procedure
is completed within 2 s.

2.3 Pose estimation in motion capture
modes

This section outlines the pose estimation methodology for
the three motion capture modes. All three modes employ neural
network-based approaches with stochastic forward passes to obtain
a distribution of solutions Gal and Ghahramani (2016). In Figure 5,
possible solutions are depicted as small cubes colored according to
their distance from the mean. Wide distributions are indicative of
unergonomic arm poses or fast jittering motions.

2.3.1 Watch only
For the Watch Only mode, we employ the derived optimal

neural network architecture from Weigend et al. (2023b). An
LSTM estimates the lower arm orientation qla and upper arm
orientation qua from a sequence of watch sensor data mw with
calibrated orientation and pressure.The outputmessagemest sets the
estimated hand orientation qha equal to qla, and subsequently, we
derive positional values through forward kinematics by assuming
an approximate lower arm length of 22 cm and upper arm length
of 26 cm. TheWatch Only mode requires a constant forward-facing
direction, i.e., the hip orientation estimate qhi is constant and arm
pose tracking is stable as long as the user does not change their
forward-facing direction after calibration. While the general inputs
and targets are the same as inWeigend et al. (2023b), we use slightly
altered hyperparameters: Our LSTM has 2 hidden layers with 256
neurons each and we use a sequence length of 12.

2.3.2 Upper arm
ThepreviousWatchOnlymode infers the upper arm orientation

from the smartwatch sensor data only. This is sparse data for arm
pose predictions.Therefore, we now introduce the additional Upper
Arm mode, which facilitates more sensor data to infer the entire
arm pose by placing the smartphone directly on the upper arm. As
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FIGURE 5
Stochastic forward passes produce ensembles of possible arm poses. Individual predicted wrist positions are shown as dots, colored based on their
distance from the ensemble mean—green indicates closer proximity to the mean, while red signifies greater deviation. High variance within the
ensemble reflects high uncertainty, which might occur in unergonomic poses or during rapid movements. The true wrist position is indicated as
ground truth (GT).

FIGURE 6
Euclidean Mean Absolute Error (MAE) of wrist and elbow position estimates in leave-one-subject-out cross validations. Specifically, we trained on data
from all the subjects except the Nth subject, and tested on the Nth subject.

described earlier, the user can use an off the shelf fitness strap. We
use an LSTM to predict qla and qua from the last four combined
watch and phone sensor data mw,p readings. Similar to the Watch
Only mode, we estimate positions through forward kinematics with
default arm lengths of 22 cm for the lower arm and upper arm length
of 26 cm. We determined our hyperparameters through gridsearch.
The best result was achieved with with three LSTM layers of 128
neurons applying a dropout of 0.2 on the last one. Further, a
sequence length of 4, batch size of 32 and learning rate of 0.0015 lead
to the best results. Our loss function was the L1 loss and we used the
Adam optimizer.

With this mode, after calibration, the user is free to turn around.
However, this mode does not provide body-orientation estimates,
which means the lower and upper arm orientations qla and qua
capture the correct arm pose in any forward-facing direction but the
hip orientation estimate qhi is constant.

2.3.3 Pocket
This mode is based on Weigend et al. (2024) and uses a

Differentiable Ensemble Kalman Filter to update an ensemble of
states from previous estimates and the watch and phone sensor data
mw,p. Each ensemble member describes the orientation of the lower

arm qla, upper arm qua, and the rotation around the up-axis of the
hip qhi. This allows us to compile the pose estimation mest and
determine joint positions pha, qla, qua through forward kinematics.
We retained the hyperparameter settings of Weigend et al. (2024)
but trained the filter anew on the larger dataset that we compiled
for this work.

2.4 Additional control modalities

For teleoperation tasks that involve advanced gripper control
(see Section 3.4), we stream microphone data to issue voice
commands. This is done by transcribing the recorded audio signal
into voice commands utilizing the Google Cloud speech-to-text
service1. We also implement two positional control modalities
(A and B in Figure 7). Voice commands were used in our
previous works (Weigend et al., 2023b; 2024) and Modality A
was utilized in Weigend et al. (2023b), while Modality B was
proposed in Weigend et al. (2024). Typically, users expect to control

1 https://cloud.google.com/speech-to-text
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FIGURE 7
We use two control modalities to determine end-effector positions. Modality (A) leverages forward kinematics with default arm lengths to return the
wrist origin relative to the hip. Modality (B) estimates the wrist origin projected onto the sagittal plane.

the robot with their hand position. Therefore, both of our control
modalities translate wrist/hand positions into control commands, e.
g., end-effector positions.

With Modality A, we determine the wrist position relative to
the hip origin. This is then directly translated to the end-effector
position relative to its base. Modality B requires the dynamic hip
orientation estimates qhi in Pocket mode. Here, the local forward
direction (Z) aligns with the sagittal plane (red) given by the current
hip orientation. The projected wrist coordinates define the end-
effector position on that plane.

The main difference between Modality A and B is the reduction
in interacting degrees of freedom to reduce potential compounding
errors. With Modality A, the end-effector X-position is determined
by the complete kinematic chain qhi, qua, and then qla. In contrast,
Modality B determines the target X-position through the hip
orientation qhi and then the projected distance and elevation of
the wrist. This reduces potential compounding errors but makes it
more difficult to adjust the X-position without affecting Y and Z-
positions.Therefore, Modality B is more suitable for circular control
motions with the user at the center. On the other hand, Modality A
is more suitable for situations where the user has a more constant
forward facing direction. The evaluation of both control modalities
on real-robot tasks is discussed in Section 3.4.

3 Results

We evaluate the performance ofWearMoCap in real-robot tasks
and on large-scale datasets frommultiple studies and acrossmultiple
devices (smartwatches and smartphones). The first Section 3.1
covers the composition of our training and test datasets. Section 3.2
details prediction performance on our test datasets and compares
it to related work; Followed by Section 3.4, which describes the

evaluation on four real-robot tasks and concludes by summarizing
results and limitations.

3.1 Composition of datasets

We composed a large-scale dataset bymerging datasets collected
fromprevious studies (Weigend et al., 2023b; 2024), and augmenting
them with data collected for this study. We employed the following
devices for data collection: smartwatches—Fossil Gen 6 Men’s, and
Samsung Galaxy Watch 5 40 mm version (RM900) and 45 mm
version (RM910); smartphones—OnePlus N100, TCL 40XL and
Samsung Galaxy A23G. Out of these, only Samsung Galaxy A23G
and Samsung Galaxy Watch 5 were used in the datasets from
previous studies (Weigend et al., 2023b; Weigend et al., 2024). The
rest are new to this study. The OS version on the Samsung Watches
was WearOS 4 which is based on Android 13. The Fossil Gen 6
had WearOS3 based on Android 11. The sampling frequency of
newer phones such as Samsung A23 is 90 Hz, while phone such
as OnePlus N100 transmit data at 60 Hz sampling frequency. Since
our model input includes delta time, the model is able to account
for fluctuations and differences in frequency. For all previous and
new datasets, the ground truth was obtained with the optical
motion capture system OptiTrack (Nagymáté and Kiss, 2018). The
OptiTrack motion capture environment featured 12 cameras, which
were calibrated before data collection. Human subjects wore a
25-marker-upper-body suit along with the smartwatch on their
left wrist and phone on upper arm or in pocket. We collected
lower arm, upper arm, and hip orientations with time stamps. The
system recorded poses at 120 Hz. In post processing, we matched
WearMoCap data with the OptiTrack pose closest in time. All
human subjects (8 Males; Mean age: 25 ± 3) provided written
informed consent approved by the institutional review board (IRB)
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TABLE 1 Compiled dataset attributes for each WearMoCap mode.

Mode Data Augm. #Subj. Devices

Watch Only 0.6 M - 7 3

Upper Arm 0.4 M 1.2 M 5 3× 3

Pocket 0.9 M 2.6 M 8 3× 3

The column Augm. indicates the dataset volume post augmentation, #Subj. indicates the
number of subjects data was collected from, and Devices indicates the number of distinct
devices data was collected with. 3× 3 stands for three smartwatches and three smartphones.

of ASU under the ID STUDY00017558.The recruitment criteria for
the subjects were as outlined in the IRB: English-speaking adults
between the ages of 18 and 70 with no current physical impairments
that affect arm or body movements.

To collect data for the Watch Only mode, we asked subjects to
perform single-arm movements under a constant forward-facing
constraint. We combined this data with data from Weigend et al.
(2023b), which resulted in a dataset with 0.6 M observations. Here,
each observation refers to a collected data row.

For theUpperArmmode, we asked 5 subjects to perform similar
movements as above, but with a phone strapped on to their upper
arm. For the Upper Arm mode, we did not enforce a constant
forward direction. Additionally, subjects were encouraged to
occasionally perform teleoperation-typical motions, such asmoving
the wrist slowly in a straight line. We showed demonstrations of
writing English letters on an imaginary plane as examples of such
motions. However, subjects were not strictly instructed to perform
these movements and some chose not to or forgot.Therefore, not all
recordings contained these teleoperation-typical movements. This
resulted in a dataset with 0.4 M observations.

For the Pocket mode, subjects had to keep a smartphone in any
of their pockets. For data collection, subjects were free to move their
arm in any direction and without the forward-facing constraint.
Further, the pose estimation in Pocket mode only requires the
orientation sensor data θp of the phone (Weigend et al., 2024).
This allowed us to retrospectively simulate phone-in-pocket data for
collected Watch Only and Upper Arm data using the ground truth
hip orientation qhi as an approximate calibrated phone orientation.
All data combined compiled a dataset of 0.9 M observations.

Both the Upper Arm and Pocket modes do not restrict body
orientation, which allowed us to augment the data. This was done
by rotating qla,qua,qhi as well as qw,cal and qp,cal around the globalY-
axis.The global rotation is possible because all other sensor readings
in mw,p are in the local device reference frame and, therefore,
unaffected by changes in global Y-axis-rotation. We augment the
data for the Upper Arm and Pocket modes two times by rotating
around a random Y-angle. The dataset composition details for each
mode are summarized in Table 1.

For all the datasets, we provided the subjects with verbal
instructions and brief demonstrations of motions that covered the
position space well, and asked the subjects to perform them. We
confirmed the variability of their motions by inspecting the 3D
plots of their movement trajectories, which revealed that the data
covers the position space. An example overview of all participant’s
combined wrist positions is depicted in Figure 8. Our training and

test data includes recording sessions of up to 10 min duration. The
mean duration and other statistics such as number of sessions,
average number of observations, etc. can be found in Table 2. Five
of the subjects that were used to collect data in previous studies
Weigend et al. (2023b), Weigend et al. (2024) were used again to
collect new data in this study.

3.2 Model accuracy

We employed our dataset to assess WearMoCap performance
in two ways: all-subjects validation and leave-one-out validation.
For the all-subjects validation, we utilized 3/4th of each subject’s
data for training, reserving the remaining portion for testing. We
train five models with randomly initialized weights and report
the average error. We consider these results to be indicative of
performance within controlled settings where the model can be
fine-tuned on a known population. In contrast, the leave-one-
out validation involves a cross-validation approach, where we
systematically reserved all the data from one subject at a time for
testing while training the model on the data from the remaining
subjects. The leave-one-out performance measures the ability of the
model to generalize to new subjects and is, hence more suitable
to assess performance in real-world applications. Our results are
summarized in Figure 6 and in Table 3 we compare against the
state-of-the-art baseline methods wherever applicable.

3.2.1 Watch only
As depicted in Figure 6 (Left), we trained seven distinct models

for theWatch Only leave-one-out validation corresponding to seven
different subjects. On average, the predicted wrist positions deviated
by 12.17± 1.03 cm and elbow positions by 10.09± 0.73 cm. In the
all-subjects validation, ourmodel achieved slightly better prediction
errors with 10.82± 0.04 cm for wrist and 9.45± 0.08 cm for elbow
positions. In Table 3, we show that these results do not deviate
strongly the works of Wei et al. (2021); Liu et al. (2023), which
also estimated the arm pose from a single smartwatch on the wrist.
The authors of Liu et al. (2023) evaluated their method using data
from all subjects in the training and test set. Their method is able to
estimate thewrist position in any forward-facing direction; however,
they require inference in the same environment where the training
data was collected. In our work, we enforce a constant forward-
facing direction but allow for inference to be performed anywhere.
The authors of Wei et al. (2021) evaluated their method using
leave-one-out validation against two ground truth measures–the
first using two IMUs (denoted as Wei et al. (2021). A in Table 3)
and the second from a Kinect sensor (Wei et al. (2021). B). Their
approach, akin to our Watch Only Mode, necessitates users to
maintain a constant forward-facing direction. Our leave-one-out
prediction error falls between the reported errors of Wei et al.
(2021). A and Wei et al. (2021).B.

3.2.2 Upper arm
Similar to our Upper Arm mode, Joukov et al. (2017) proposes

the use of one IMU on the lower arm and the second on the upper
arm. Their evaluation is based on all-subjects validation and uses
RMSE as the performance measure. Table 3 shows that our errors of
6.79± 0.57 cm for wrist and 4.24± 0.31 cm for elbow positions are
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FIGURE 8
Using wrist positions as an example, this figure shows that our collected data covers the space of possible arm poses (position space). Dots are data
points representing wrist positions relative to the hip obtained from the motion capture system, which also show differing arm lengths. Data points are
colored according to the sum of their coordinate magnitudes. Left: Data points collected under the fixed forward-facing constraint. Right: Wrist
positions collected without the fixed body orientation constraint form a full sphere.

TABLE 2 Statistics of dataset incorporated from previous works, and additional data collected in this work.

Data source Mean time (s) Sum time (s). Mean # obs. Sum # obs. # Sessions # Subj.

Weigend et al. (2023b) 227± 47 3,855 17± 3 k 287 k 17 6

Weigend et al. (2024)∗ 500± 100 5,501 17± 3 k 185 k 11 4

(New) Cnst. body orient.∗∗ 409± 116 5,323 24± 6 k 305 k 13 5

(New) Free body orient.∗∗∗ 378± 76 1,515 26± 10 k 103 k 4 3

The first two rows represent previous studies. The bottom two rows represent new data collected in this study where subjects were asked to perform movements with constant forward-facing
body orientation (Cnst. body orient.) and with free body orientation (Free body orient.). The asterisks indicate the modes for which the data was utilized (∗Pocket Mode only; ∗∗All
modes; ∗∗∗Upper arm and Pocket Mode).

TABLE 3 Model performance for each WearMoCap mode and comparison to baselines.

Watch Only baseline Evaluation Metric Wrist (cm) Elbow (cm) Hip (°)

Theirs Ours Theirs Ours Ours

Liu et al. (2023) All MAE 10.93 10.82± 0.04 - 9.45± 0.08 -

Wei et al. (2021).A 1out MAE 8.5 12.17± 1.03 8.5 10.09± 0.73 -

Wei et al. (2021).B 1out MAE 15 12.17± 1.03 11.5 10.09± 0.73 -

Upper Arm

Joukov et al. (2017) All RMSE 6.9± 2.7 6.79± 0.57 5.2± 2.6 4.24± 0.31 -

Pocket

DeVrio et al. (2023) 1out MAE 15.1± 1.42 11.4± 0.87 10.0± 0.9 10.01± 0.81 4.17± 0.5

The by the baseline chosen type of evaluation is characterized the by the Evaluations and Metrics columns. Abbreviations stand for: trained on data from all subjects (All), leave-one-out (1out),
Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). We reported standard deviations where available.
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TABLE 4 Model performance after removing individual sensors for sensitivity analysis.

Prediction All No gyro No acc (vel, grav) No orientation No pressure

Hand 10.82  ±  0.04 11.06  ±  0.13 11.30  ±  0.10 19.26  ±  0.13 10.76  ±  0.09

Elbow 9.19  ±  0.08 9.45  ±  0.08 9.53  ±  0.07 12.41  ±  0.06 9.17  ±  0.06

For every condition, we trained 5 networks with randomly initialized weights, utilizing 75% of the data of every participant for training and 25% for testing. All numbers are in cm and are
averaged over the 5 random networks. Results are shown for Watch Only mode.

similar to those reported by Joukov et al. (2017), despite our mode
being evaluated across multiple commercial devices and a wider
range of motions. Figure 6 summarizes our leave-one-out validation
results, where prediction errors were slightly higher with MAEs of
7.93± 1.68 cm for wrist and 6.23± 1.28 cm for elbow positions.

3.2.3 Pocket
Similar to our Pocket mode, the authors of DeVrio et al. (2023)

also leveraged data from a smartwatch and additional sensor data
from a smartphone placed in the pocket. The authors conducted
a leave-one-out evaluation. A comparison of WearMoCap to their
reported results is shown in Table 3, and also here are comparable.
With an average wrist error of 11.4± 0.87 cm, WearMoCap appears
to be more accurate for the wrist on our data, but marginally less
accurate for the elbow with an error of 10.01± 0.81 cm. Further,
our method provides an additional hip orientation estimate with an
average error of 4.17± 05°.

All discussed methods are real-time capable. Our most
computationally demanding mode is the Pocket mode, which
achieves inference speeds of ∼62 Hz on a system equipped with an

Intel® Xeon(R) W-2125 CPU and NVIDIA GeForce RTX 2080 Ti.

3.3 Sensitivity analysis

To determine the relative importance of each input feature to
our models, we conducted a sensitivity analysis where we left each
sensor out, one at a time, in the Watch-Only mode. We noted
effect on the model performance for prediction of Hand and Elbow
positions in Table 4. The results show that leaving out the global
orientation harms the performance the most, followed by gyroscope
and accelerometer. While leaving out the atmospheric pressure
sensor did not affect the accuracy significantly, we retained the
sensor in our data.

3.4 Real-robot tasks

To assess the practical use of WearMoCap in robotics, we
evaluate its application in four human-robot experiments, namely,
Handover, Intervention, Teleoperation, and Drone Piloting tasks.
The Handover and Intervention tasks were conducted for this work
under the ASU IRB ID STUDY00018521. The Teleoperation and
Drone Piloting tasks were conducted inWeigend et al. (2024) under
the ASU IRB ID STUDY00018450. We picked these tasks such that
our evaluation covers the three WearMoCap pose tracking modes
Watch Only, Upper Arm, Pocket and control Modalities A and B

with at least two experiments each. Section 3.4.5 discusses the results
and compares them to the user performance with the OptiTrack
system where possible. OptiTrack provides sub-millimeter accurate
tracking and is therefore utilized as our state-of-the-art baseline
(Nagymáté and Kiss, 2018; Topley and Richards, 2020). All human
subjects (9 Males; 1 Female; Mean age: 25 ± 3) provided written
consent. 4 human subjects performed all the robotic tasks, 1 subject
performed teleoperation and drone tasks, 1 subject performed drone
and intervention tasks, and the remaining performed only the drone
task. While one subject had prior experience with drone piloting,
none of the other subjects had any prior experience with any
robotic tasks.

3.4.1 Handover
In the Handover Task, an arm robot picks up an object from

the table and hands it over to a human subject at a given location.
Subjects sat on a rotating chair at a fixed location in front of a
Universal Robot 5 (UR5). To do this task successfully, the robotmust
correctly track the human hand position. To this end, we provide the
robotwith the relative chair position, approximate sitting height, and
arm lengths, such that it can estimate handover positions relative
to its base.

As depicted in Step 1 on the left of Figure 9, the tabletop area
between the robot and the subject was divided into three areas. We
ask subjects to perform handovers in each of these areas to ensure a
range of diverse poses. With the subject’s hand in one of these areas,
the subject performed two handovers—once with the hand at a low
height and once with the hand at a higher height. The subjects then
repeated this task for all the other areas at random. The subject’s
orientation was fixed for Watch Only mode, but for the other two
modes, they could change their orientation by rotating the chair.

Figure 9 summarizes the steps for each handover task. From
the initial setup (Step 1), the subject raised their arm in one of the
three locations at random (Step 2). Then, the robot picked up the
green cube (Step 3). Given the known chair position and subject’s
sitting height, we tracked the hand position of the subject using
WearMoCap. The robot moved the cube toward the tracked hand
position (Step 4). The subject then issued a voice command (Step 5)
after which the robot released the cube (Step 6). Depending upon
the accuracy of hand tracking, the subject had to move their hand
by a certain “handover distance” to grab the cube.

Four human subjects performed 24 tasks each, comprising six
handovers with Watch Only, Upper Arm, Pocket modes and with
OptiTrack.We randomized the order of trackingmodes to eliminate
potential biases or learning effects. We computed the handover
distance, which is the difference between the hand position and the
cube at the time the participant triggered the voice command (Step
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FIGURE 9
Handover Task: Human subjects used WearMoCap to perform handovers with a UR5. A voice command completed the handover and the robot let go
of the cube. Intervention Task: The UR5 sorted the green and red cubes into the bin. Human subjects use WearMoCap to interrupt the robot and to
place the green cube at a target location.

5). To compute the handover distance, we located the center of the
user’s wrist and the center of the cube using Optitrack markers on
both. Then we took the euclidean difference between the two. We
also computed the handover time, which is the time that it takes for
the robot to move toward the hand and complete the handover task
(from Step 2 to Step 5).

3.4.2 Intervention
In the Intervention Task, the human subject interrupts the robot

during its routine when it makes a mistake, and performs corrective
action. For this task, a UR5 robot was supposed to autonomously
pick up a colored cube (green or red) and drop it at target locations of
the same color. However, the robot was not trained to correctly place
green cubes. As depicted in Step 1 on the right of Figure 9, the human
subject stood in front of the robot and there were three possible
target locations for the green cube. Whenever the robot picked up
a green cube, the subject stopped the robot with a voice command
and made it place the cube at the correct location.

Figure 9 summarizes the steps. The subject watched the robot
(Step 2) and stopped it with a voice command from dropping
a green cube at the red location (Step 3). Then, the subject
instructed the robot to mirror their arm motion, i.e., move the
robot end-effector in the same way as the subject’s wrist movement
(Step 4). The WearMoCap algorithm, in conjunction with control
Modality A (Figure 7), tracked the hand position and converted
it into end-effector coordinates to control the robot (Step 5). The
subject then issued another voice command (“Open the gripper”)
to complete placing the cube at the correct location (Step 6).

Five subjects performed this task for each of the three green
target locations and with each WearMoCap mode at random. The
performance was evaluated with respect to the placement distance,
which is the distance between the position of the placed green
cube and the center of the target location. This was measured using

OptiTrack.We also computed the task completion time, which is the
time that elapsed between issuing the “Followme” command and the
“Open the gripper” command.

3.4.3 Teleoperation
As depicted on the left in Figure 10, subjects controlled a UR5

to pick and place cubes from a remote location through a live
camera feed on their smartphone. This was done as follows: the
subject initiated the task with a “Follow me” voice command,
which started the hand tracking. The subject maneuvered the robot
end-effector toward the cube to be picked up. The subject then
issued a “Close” voice command to grab the cube. Then, the
subject maneuvered the robot end-effector to the target location
and dropped the cube with “Open” voice command. We employed
the Pocket mode of WearMoCap, in conjunction with control
Modality B (Figure 7), to estimate the end-effector position for robot
control. This combination allowed the subject to control the robot
through changes in their body orientation, i.e., the robot turned left
(right) whenever the subject turned left (right).

This task was performed by five subjects for six different
configurations of pick-up and target locations of the cube. For one
instance using OptiTrack and two instances using WearMoCap, the
task execution failed because the subject knocked over the cube. For
all successful completions of the tasks, we computed the placement
accuracy, which is the distance between the placed cube and the
target location, as measured by OptiTrack. We also computed the
task completion time, which is the time elapsed between issuing the
“Follow me” and “Open” commands.

3.4.4 Drone piloting
In this task, subjects used motion capture to fly a commercial

Parrot Bebop 2 drone to three target locations. Drone control
via traditional remotes is hard to master while control through
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FIGURE 10
Teleoperation Task: Human subjects used WearMoCap to pick and place a cube. They were entirely removed from the robot and only watched the
end-effector through a camera feed on the phone. Drone Piloting Task: Human subjects piloted a drone to three target locations in random order.
Each location was marked with an AprilTag. If a tag was recognized through the drone camera feed the target was reached.

body motions can be more intuitive for inexperienced pilots
Macchini et al. (2020). As shown on the right in Figure 10, with
the subject at the center of a field, the three target locations were
at distances of 4 m, 5 m, and 6 m in three directions. The targets
were colored cardboard sheets with AprilTags (Wang and Olson,
2016). Subjects were instructed to fly the drone above these targets
in a randomized order. A target was considered to be reached
when its corresponding AprilTag ID was recognized through the
downward-facing drone camera. The subjects controlled the drone
withWearMoCap in Pocket mode, utilizing control Modality B.The
drone used GPS and internal IMUs to follow the control commands
in a stable trajectory.

Ten human subjects performed the task two times each:
first, with WearMoCap and then with the original remote called
SkyController.The performance was measured using drone piloting
time which is the time it took for the drone from reaching the first
target until reaching the third target.

3.4.5 Results summary
We summarize the objective task metrics in Table 5. For each

task, we compared the performance of WearMoCap against the
baseline control methods.

The Handover and Intervention tasks investigate all
WearMoCap pose estimation modes Watch Only, Upper Arm, and
Pocket when using control Modality A and compare to OptiTrack
as the baseline method. Expectedly, the Watch Only mode is more
error-prone than its counterparts, evidenced by its higher handover
distance (+4.5 cm) and intervention placement distance (+5.2 cm).
The Upper Arm mode is the most accurate with an increase below
+2 cm in both tasks. These results are consistent with the evaluation
on test data in Section 3.2. It is also noteworthy that the Pocket
mode too outperformed Watch Only mode in our distance metric.
This is because it offers an additional degree of freedom to fine-tune
positioning. However, due to this additional degree of freedom, the
Pocket mode also incurred longer task completion times, because
subjects had to balance changes in armmotion with changes in body
orientation.

The Teleoperation and Drone tasks applied control Modality
B, which relies on body orientation estimates in Pocket mode.
Pocket mode with Modality B was highly accurate in terms of
distance metric, with an increase of only 1.8± 6.7 cm from the
baseline OptiTrack for teleoperation. As in previous tasks, control
through body orientation caused an increase in the completion
times when compared to OptiTrack. However, when comparing to
the SkyController remote control operation with non-expert drone
pilots, WearMoCap incurred significantly shorter task completion
times (19.2± 24.16 s). This finding is limited to our specific
drone task but still complements the finding of Macchini et al.
(2020) that motion capture control can be more intuitive for
inexperienced pilots.

4 Discussion

Reflecting on our presented results, this section discusses
WearMoCap in detail: Section 4.1 contrasts all three WearMoCap
modalities with their benefits and limitations. Section 4.2 discusses
the broader significance of our framework, its limitations, and
future work. Section 4.3 concludes this paper.

4.1 Modality trade-offs

Given the observed differences in model accuracy on test data,
and varying real-robot task performance for each WearMoCap
mode, we discuss the following trade-offs for their application.

4.1.1 Watch only
Using only a smartwatch is the most convenient in terms of

availability and setup, but the real-robot task results demonstrate
a considerable increase in placement deviations and completion
times in contrast to other modes. The applicability of the Watch
Only mode depends on the task. If the application requires high-
fidelity teleoperation control to perform pick-and-place tasks, the
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TABLE 5 Summarized robot tasks results.

Task Method Dist. (cm) Time (s) Trials Modality

Handover

OptiTrack 6.8 ± 1.6 9.2 ± 3.2 24 A

Watch Only +4.5 ± 9.7 +3.3 ± 8.1 24 A

Pocket +2.2 ± 3.6 +3.4 ± 6.3 24 A

Upper Arm +1.9 ± 3.7 +0.5 ± 5.2 24 A

Intervent.

OptiTrack 2.4 ± 1.5 17.5 ± 4.5 15 A

Watch Only +5.2 ± 6.0 +10.5 ± 7.8 15 A

Pocket +2.9 ± 4.3 +11.4 ± 10.7 15 A

Upper Arm +1.7 ± 5.2 +4.0 ± 5.6 15 A

Tele.
OptiTrack 4.5 ± 2.9 59.8 ± 16.5 29 B

Pocket +1.8 ± 6.7 +13.6 ± 28.9 28 B

Drone
SkyController - 59.7 ± 27.8 10 B

Pocket - - 19.2 ± 24.16 10 B

Distance errors and time differences are denoted in relation to the baseline. For example, the handover distance in Watch Only mode was on average +4.5± 9.7 cm larger than when performing
the same task with OptiTrack for motion capture. The Modality column indicates the utilized control modality from Figure 7.

prediction deviations of about 10 cm are too large to be practical.
Even though users were able to complete the Intervention task in
Watch Only mode, the teleoperation required patience and users
were not in full control. On the contrary, in a handover task, the
human can compensate for the final centimeters by reaching. In
such lower-fidelity applications, being able to replace an optical
motion capture system with a single smartwatch is promising for
future work.

4.1.2 Upper arm
While an upper-arm fitness strap is widely used and available, it

adds an extra step compared to the other two modes. Nevertheless,
the increase in accuracy of arm pose tracking with two IMUs has
previously been assessed in Yang et al. (2016); Joukov et al. (2017),
and is confirmed by our results. Out of all WearMoCap modes,
the Upper Arm mode is the most accurate on the test data and
incurs the smallest deviations in our real-robot task completion
times and placement accuracy compared to baselines. The relatively
small placement deviations of below 2 cm suggest that this mode
can be a viable alternative to robot control through motion capture
from OptiTrack or Virtual Reality hardware when ease-of-setup is a
concern and ubiquity matters.

4.1.3 Pocket
The Pocket mode allows for the most seamless experience

because users simply put the phone in their pocket and are free
to turn their body. This is in contrast to the Watch Only mode,
where users have to maintain a constant forward-facing direction.
Our Handover and Intervention real-robot tasks indicate that the
additional tracking of body orientation enables users to exert
more precise control. However, this mode is less precise than

the arm pose estimates in the Upper Arm mode. The Pocket
mode, therefore, balances the precision and convenience of the
other two modes.

4.2 Significance and limitations

WearMoCap enables motion capture from smartwatches and
smartphones. Apart from the atmospheric pressure sensor and
microphone data, collected measurements are identical to those
provided by other IMU devices designed for motion capture
purposes, e.g., Movella’s XSens Suite (Roetenberg et al., 2009).
The significant difference between WearMoCap and established
IMU solutions like XSens lies in the ubiquity and familiarity of
smart devices for the average user. Smartphones and smartwatches
are more widespread than customized IMU units, and a large
population is familiar with starting and using apps on Android
OS. While our motion capture methodology would perform
equally well with customized IMUs (Prayudi and Kim, 2012;
Beange et al., 2018; Li et al., 2021), it is the ubiquity of smart
devices that makes WearMoCap attractive for future research into
low-barrier robot control interfaces.

A limitation of WearMoCap is that, because of their reliance
on IMUs, the global orientation estimates of smartwatches and
smartphones can be subject to sensor drift. While the virtual
orientation sensors of Android orWear OS are robust to short-lived
disturbances, e.g., moving a magnet past the device, slower long-
term shifts can cause considerable offsets.TheAndroidOS estimates
device orientations through sensor fusion from accelerometer,
magnetometer, and gyroscope using an Extended Kalman filter.
Gyroscope drift is compensated by the gravity estimate from the
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accelerometer and the magnetic North from the magnetometer. As
a result, the orientation is mostly subject to drift around the yaw axis
due to shifts in the measured magnetic North. Our training and test
data includes recording sessions of up to 10 min duration. Further,
during the real-robot tasks, pose estimations typically stayed robust
for 15 min or longer, but we had to ask subjects to recalibrate in
about 10% or the instances. To mitigate sensor drift during longer
sessions, a promising direction for future work involves utilizing
our employed stochastic forward passes, which result in widening
solution distributions when unrealistic changes or unergonomic
angles occur (also depicted in Figure 5). This way of recognizing
unergonomic or impossible angles from wide distributions
can help mitigating sensor drift by automatically triggering
recalibration.

Another source of drift is the sensor-to-segment misalignment,
i.e., if the watch is loosely worn and slips post-calibration, we expect
the tracking accuracy to be affected. In our experiments, we fitted the
subjects with tightly strapped watches and phones to minimize this
issue.However, in the future, we can look at better understanding the
impact of sensor-to-segment misalignment and adopt techniques to
correct it.

A further potential limitation common to phone-based apps is
that major Operating System (OS) update, e.g., Android 12 to 13,
could break our application if not updated properly to handle the
OS change. However, some of our older tested devices, e.g., the
OnePlus N100, do not receive long-term support anymore and will
not undergo major updates in the future. It is unlikely WearMoCap
will break on such older devices. Android OS updates for newer
devices are rolled out slowly. To handle these updates in the long
run, we have enabled the Issue Tracking function in the Github
repository.

Another limitation is that our method assumes default arm
lengths. While this is representative of the population that we tested
with, unusually long or short arm lengths might adversely affect
the tracking performance. Future work will investigate the effects
of large variations in anthropometry. We publish WearMoCap as
open source with this work to facilitate such future investigations.
Lastly, we expect that we can improve the tracking performance
by adding more subjects with varied motions and differing
limb lengths.

4.3 Conclusion

This work presented WearMoCap, an extensively documented
open-source library for ubiquitousmotion capture and robot control
from a smartwatch and smartphone. It features threemotion capture
modes: Watch Only requires the least setup; Upper Arm is the
most precise; and Pocket is the most flexible. We benchmarked
these modes on large-scale datasets collected from experiments
with multiple human subjects and devices. To evaluate their
practical use, we demonstrated and discussed their application
in four real-robot tasks. Results show that, when chosen for the
appropriate task, WearMoCap serves as an ubiquitous and viable
alternative to the costly state-of-the-art motion capture systems.
Future work involves evaluating the applicability of WearMoCap in
more scenarios and implementing strategies for mitigating sensor
drift. To this end, the WearMoCap library is published as open

source together with step-by-step instructions and all training
and test data.
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