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A comprehensive survey of space
robotic manipulators for
on-orbit servicing

Mohammad Alizadeh and Zheng H. Zhu*

Department of Mechanical Engineering, York University, Toronto, ON, Canada

On-Orbit Servicing (OOS) robots are transforming space exploration by enabling
vital maintenance and repair of spacecraft directly in space. However, achieving
precise and safe manipulation in microgravity necessitates overcoming
significant challenges. This survey delves into four crucial areas essential
for successful OOS manipulation: object state estimation, motion planning,
and feedback control. Techniques from traditional vision to advanced X-
ray and neural network methods are explored for object state estimation.
Strategies for fuel-optimized trajectories, docking maneuvers, and collision
avoidance are examined in motion planning. The survey also explores control
methods for various scenarios, including cooperativemanipulation and handling
uncertainties, in feedback control. Additionally, this survey examines how
Machine learning techniques can further propel OOS robots towards more
complex and delicate tasks in space.
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1 Introduction

Space exploration has captivated humanity for decades, propelling scientists to answer
fundamental questions about the universe. Robots have played a critical role in these
endeavors, venturing where humans cannot. However, despite the significant advancements
in robotic technology, the field of On-Orbit Servicing (OOS) still faces considerable
challenges that must be addressed to enable more complex and delicate tasks in space.
These challenges include the precise and safe manipulation of objects in the microgravity
environment of space, where uncertainties in object state estimation, motion planning,
and feedback control persist. Furthermore, the integration of Machine Learning (ML)
techniques in this domain is still in its infancy, presenting a substantial gap in the existing
research. This survey aims to fill these gaps by providing a comprehensive overview
of current techniques while critically evaluating their effectiveness and identifying the
limitations that hinder further progress.

The objectives of this survey are to systematically review the current state-
of-the-art techniques in object state estimation, motion planning, and feedback
control for OOS robots; to critically evaluate these techniques, highlighting
their strengths, weaknesses, and the specific challenges they address; and to
identify the areas where further research is needed, particularly in the integration
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FIGURE 1
On-orbit satellite servicing market by service. (Mate and Katare, 2024).

of ML techniques, to enhance the capabilities of OOS robots for
future space missions.

While the survey provides a broad overview of existing
techniques, it also emphasizes the need for a more nuanced
understanding of their limitations. For instance, traditional
methods for object state estimation may struggle under certain
space conditions, and current motion planning algorithms often
have difficulty making real-time adjustments when unexpected
obstacles are encountered. Furthermore, the integration of advanced
techniques, such as Machine Learning (ML), into the control
systems of space robots remains a significant challenge due to the
high computational demands and the need for reliable performance
in the harsh environment of space. Although various methods have
been developed to improve the robustness and accuracy of robotic
systems in space, gaps still exist, particularly in the handling of
dynamic and unpredictable scenarios. More research is needed to
address these gaps and to developmore reliable and efficient systems
for future space missions.

According to a recent market analysis (Mate and Katare, 2024),
the on-orbit satellite servicing market is expected to experience
significant growth, with robotic servicing projected to be the
dominant service.This trend underscores the increasing importance
of advanced technologies for manipulating and servicing spacecraft
in orbit. Figure 1 shows the on-orbit satellite servicing market by
service, where the different colors represent various services: Yellow
for Active Debris Removal (ADR) and Orbit Adjustment, Dark
Blue for Robotic Servicing, Light Grey for Refuelling, and Purple
for Assembly. The bars show the projected market size for each
service in 2022, 2023, and 2032. As illustrated in Figure 1, the
market sizes for various services, including Active Debris Removal
(ADR) and Orbit Adjustment, Refuelling, and Assembly, are

projected for the years 2022, 2023, and 2032, with Robotic Servicing
expected to lead.

The field of OOS robotics is rapidly evolving, demanding
a comprehensive understanding of the key technological
advancements driving its progress. This survey focuses on critical
areas like object state estimation,motion planning, feedback control,
and the integration of Machine Learning (ML) techniques. By
critically evaluating these advancements, it aims to provide a
deeper understanding of their synergistic relationship in propelling
OOS robot capabilities. This knowledge will be instrumental
in developing future robots capable of performing increasingly
complex and delicate tasks in the vast expanse of space.

2 A brief history

Space has been the new domain of exploration since the
1950s. Humans have explored space to answer many fundamental
questions about the universe. Space robotics has a significant role
in human exploration since space is a harsh environment, and
using robots to explore space would be much safer and more cost-
efficient. This historical exploration has laid the foundation for the
technologies that drive current and future on-orbit servicing (OOS)
missions, where robotics play an increasingly critical role.

“Two attributes are often deemed essential for a spacecraft to be
classified as a space robot, namely, locomotion and autonomy.” (Gao
and Chien, 2017) Locomotion or mobility is required for a space
robot to conduct the desired operation, like gripping and sample
collecting. In addition, it is expected that a space robot will have
autonomy at some level. For example, at the most basic level, a
space robot will work as a human proxy in space with direct
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FIGURE 2
Model of a Soviet Lunokhod program rover. (Credit: Milošević, 2023).

human control. These capabilities, developed through decades of
robotic missions, are now being adapted and enhanced to meet the
challenges of OOS. This survey will discuss the history of Space
Robotics in the past, present, and future.

2.1 Past and current space explorations
using robots

Robotic applications in space exploration have played a crucial
role in advancing the understanding of the space environment and
exploring the solar system.The initial exploration of Earth’s orbit and
the Moon led to the development of cost-effective robotic proxies
for space exploration. Various robotic missions with mobility
systems like rovers and arms were integral to these efforts. Notable
achievements include the successful operation of the first robotic
locomotion system on the Moon in 1967 (Surveyor 3), followed by
the first planetary robotic arm-mounted drill in 1970 (Luna 16) and
the deployment of the first planetary rover, “Lunokhod 1” (Figure 2),
in the same year. These milestones, achieved through persistent
launch attempts, resulted in significant mission successes and
scientific discoveries.

As of 2017, successful missions and robots in Earth’s orbit,
the Moon, Mars, and small celestial bodies highlight the pivotal
role of robotic arms in orbital mobility and the widespread use
of wheeled rovers and stationary landers with robotic arms in
planetary exploration. NASA’s Mars rover missions, including Mars
Pathfinder (MPF), Mars Exploration Rovers (MERs), and Mars
Science Laboratory (MSL), have significantly advanced scientific
understanding.Despite its small size, theMPF rover Sojournermade
crucial geological discoveries. Larger MER rovers carried advanced
science payloads and highlighted impressive mobility, with the
Opportunity rover covering over 44 km in more than 4,700 Martian
days by 2017.These missions contributed substantially to geological
and atmospheric sciences on Mars.

The largest among the three, the MSL rover Curiosity features
next-generation instruments for the study of Mars’ geology,
atmosphere, environmental conditions, and potential biosignatures.

Curiosity utilizes its robotic arm for close-in measurements,
including the use of Mars Hand Lens Imager, Alpha Particle X-
ray Spectrometer, and sample acquisition analysis. These robotic
advancements not only expanded our understanding of other
celestial bodies but also provided critical technologies and lessons
that are now being applied in OOS to enhance the precision and
autonomy of space manipulators.

In 2005, the Japanese Hayabusa robotic mission conducted
a comprehensive study of the near-Earth asteroid Itokawa and
successfully returned samples to Earth in 2010. This mission
garnered significant attention, resulting in special issues in the
journal Science, which focused on Itokawa and the analysis of
the returned samples. Following this, the Hayabusa-2 mission
was launched in 2014 to the asteroid Ryugu, where it successfully
collected samples and returned them to Earth in 2020, providing
further valuable insights into the composition of primitive
celestial bodies.

Another noteworthy project was the Rosetta mission conducted
by the European Space Agency (ESA), which was the first
mission to rendezvous with a comet, follow it on its orbit
around the Sun, and deploy a lander to its surface. The Rosetta
lander, named Philae, was equipped with remote sensing and
in situ instruments for compositional and gas analysis (e.g.,
Cometary Sampling and Composition and Ptolemy), drilling
and sample retrieval (i.e., SD2), and surface measurement (e.g.,
Surface Electrical Sounding and Acoustic Monitoring Experiment).
Unfortunately, the lander’s bounce upon landing and its subsequent
tilted resting position limited the application of its arm, sampler,
and drill, impacting its measurements and operational lifespan.
Despite these challenges, Philae achieved numerous scientific
milestones, including discovering organic molecules in the nucleus
of 67P/Churyumov-Gerasimenko. These missions underscore the
importance of robotic systems in performing complex, high-
precision tasks in space—an ability that is directly transferred to
OOS missions, where similar technologies are used to maintain and
extend the life of existing space assets. A list of successful space
robotic missions is presented in Table 1.

Beyond landers, robotic manipulators, also known as arms,
have played a crucial role in space exploration. The Canadarm
series (Canadarm1 and Canadarm2) on the Space Shuttle and the
International Space Station serve as prime examples, facilitating
various tasks like satellite deployment, retrieval, and on-orbit
maintenance. China’s Tiangong space station is also expected to
utilize robotic arms (CMM and EMM) for similar functions. The
European Space Agency’s Rosetta mission employed a robotic arm
on the Philae lander, though operational limitations hampered its
full potential.These advancements in roboticmanipulators highlight
their versatility and growing importance in space exploration
endeavors. This versatility is now being harnessed and expanded
in OOS missions, where the ability to perform diverse tasks
autonomously is increasingly critical. A comparison of some key
features of some of these arms is provided in Table 2.

2.2 Future space explorations using robots

From 2025 to 2035, various on-orbit applications will necessitate
advanced robotics capabilities, with potential mission operators
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TABLE 1 Successful space robotic missions as of 2023 (Gao and Chien, 2017).

Launch year Mission name Country Place of operation

1967 Surveyor 3 United States Moon

1970/1972/1976 Luna 16/20/24 Soviet Union Moon

1970/1973 Luna 17/21 Soviet Union Moon

1975 Viking United States Mars

1981/2001/2008 Canadarm1/2/Dextre Canada ISS

1993 Rotex Germany Earth’s Orbit

1996 MPF United States Mars

1997 ETS-VII Japan Earth’s Orbit

2003 Hayabusa Japan Asteroid

2003 MERs United States Mars

2004 ROKVISS Germany ISS

2004 Orbital Express United States Earth’s Orbit

2007 JEMRMS Japan ISS

2008 Phoenix United States Mars

2008 Robonaut United States ISS

2011 MSL United States Mars

2012 Chang’E 3 China Moon

2013 Rosetta Europe Comet

2014 Hayabusa-2 Japan Asteroid

2016 Aolong-1 China Earth’s Orbit

2018 Chang’E 4 China Moon

2019 Yutu-2 China Moon

2018 InSight United States Mars

2020 Perseverance United States Mars

2020 Ingenuity (Figure 3) United States Mars

2020 Zhurong China Mars

2021 CMM (Core Module Manipulator) China Earth’s Orbit

2022 EMM (Experimental Module Manipulator) China Earth’s Orbit

2023 Pragyan (Chandrayaan-3) India Moon

2023 SLIM Japan Moon
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TABLE 2 Key specifications of Candarm1/2 and Chinese Space Stations’ robotic arms (Canadian Space Agency, 2024a; Ellery, 2019; Liu, 2014).

Model Deployed In DOF Payload (kg) Position
accuracy
(mm)

Orientation
accuracy
(degree)

End effector
velocity,
Unloaded

(m/s)

End effector
velocity,
Loaded
(m/s)

Canadarm1 US Space Shuttle 6 30,000 50 1 0.6 0.06

Canadarm2 ISS 7 116,000 65 0.7 0.4 0.01

CMM (Core
Module

Manipulator)

CSS 7 25,000 45 1 0.3 0.02

EMM
(Experimental

Module
Manipulator)

CSS 7 3,000 10 1 0.2 0.03

FIGURE 3
Ingenuity: an autonomous NASA helicopter operated on Mars from
2021 to 2024 (Jet Propulsion Laboratory, 2023).

ranging from space administrations and national governments to
private businesses. Envisioned mission objectives encompass a wide
range, including space debris removal, rescue operations, planned
orbit elevation, inspection, support for deployment, deployment and
assembly assistance, repair, refueling, orbit maintenance, mission
evolution and adaptation, lifetime extension, and re- and deorbiting.
These future missions represent the next frontier in OOS, where
robotics will not only perform maintenance but also construct and
adapt space infrastructure in real time.

The International Space Station (ISS) remains a valuable
platform for scientific experiments in the unique environment
of space. Simultaneously, China is actively advancing its space
station program, which is expected to be established over this
decade, providing a novel space platform for robotic solutions.
Additionally, NASA is partnering with CSA, ESA, JAXA, and
MBRSC to establish a space station in lunar orbit called “Lunar
Gateway”, which is planned to include a science laboratory, a testbed
for new technologies, a rendezvous location for exploration of the
surface of the Moon, a mission control center for operations on

the Moon, and eventually, a stepping stone for voyages to Mars
(Canadian Space Agency, 2024b). Lunar Gateway is also host of
Canadarm3 (Figure 4); This robotic system will employ advanced
software to autonomously carry out certain tasks on the Moon
without the need for human involvement (Canadian Space Agency,
2024). These developments are poised to extend the capabilities of
OOS by providing new platforms and technologies for autonomous
operations in increasingly distant and challenging environments.
These orbital robotic missions support scientific exploration both
directly and indirectly from Earth’s orbit.

Adding to the future landscape of on-orbit servicing, NASA’s
On-orbit Servicing, Assembly, and Manufacturing 1 (OSAM-
1) mission, set to launch no earlier than 2025, represents a
significant leap forward in robotic servicing technologies. OSAM-
1 (Figure 5) will be the first mission to robotically refuel a satellite
not originally designed for servicing and will also demonstrate
advanced in-space assembly and manufacturing capabilities. This
mission recently passed its mission critical design review (CDR),
confirming that all elements, including the spacecraft bus, servicing
payload, and the Space Infrastructure Dexterous Robot (SPIDER)
payload, are ready for the next phase of flight manufacturing,
assembly, and integration. OSAM-1 will use a robotic arm and
specialized tools to grapple Landsat 7, providing the Earth-
observing satellite with a refueling service, followed by the
construction of a functional communications antenna and a
spacecraft beam using in-space manufacturing techniques. This
mission not only showcases the potential of robotic servicing to
extend the life of existing satellites but also highlights the future
possibilities of constructing and maintaining space infrastructure
directly in orbit. This mission not only demonstrates the potential
for extending the life of satellites through robotic intervention
but also showcases how OOS technologies are evolving to include
in-orbit construction, potentially revolutionizing the way space
infrastructure is built and maintained. The successful execution of
OSAM-1 could pave the way for a more sustainable and versatile
approach to space exploration and satellite management in the
coming decades (Steigerwald, 2022).

“Space exploration and exploitation depend on tasks such as
inspecting, refueling, upgrading, repairing, or rescuing satellites,
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FIGURE 4
A conceptual illustration of Canadarm3’s robotic arm aboard the Lunar Gateway. (Canadian Space Agency, 2024).

FIGURE 5
An artistic depiction of OSAM-1 docking with a satellite. (Landsat
Science, 2022).

removing orbital debris, and construction and maintenance of large
orbital assets and infrastructures” (Papadopoulos et al., 2021). In
the past, servicing tasks in Low Earth Orbit (LEO) were primarily
conducted through astronaut extravehicular activities (EVAs), but
these operations are risky, costly, and time-consuming. For critical
assets in high-altitude orbits like Geosynchronous Orbits (GEO),
EVAs are not viable. This shift towards robotic on-orbit servicing
(OOS) represents a significant change in how these essential tasks are
performed, utilizing space manipulator systems (SMSs) that feature
satellite bases with robotic arms and vision systems.

Since the 1990s, research on SMSs has grown due to their
potential for repairing, rescuing, and refueling satellites, and
removing space debris. The increasing population of space
debris heightens the risk of collisions, making robotic servicing
missions crucial for safely capturing targets with robotic arms,
given operational constraints. These developments underline the
importance of continuing to advance OOS technologies to ensure

the sustainability and safety of space operations as the space
environment becomes more congested.

In addition to large-scale robotic systems like Canadarm,
ongoing research focuses on integrating small robotic mechanisms
into CubeSats for active space debris removal. These small
satellites, often designed to meet CubeSat standards, are equipped
with robotic manipulators intended to chase, capture, and de-
orbit non-cooperative debris in Low Earth Orbit (LEO). For
instance, debris chaser satellites can track nearby debris, perform
low-thrust rendezvous, and use their manipulators to grasp
and stabilize the debris before de-orbiting it to ensure safe
atmospheric burn-up. These smaller systems complement larger
OOS efforts by providing scalable solutions that can address specific
challenges, such as debris removal, in a cost-effective manner.
Innovations such as the REMORA CubeSat (McCormick et al.,
2018), equipped with miniature robotic arms and end-effectors
for debris attachment, demonstrate the potential of CubeSat-based
systems to mitigate collision risks from large debris objects. These
cost-effective, scalable solutions complement larger robotic systems
and enhance overall space debris mitigation efforts (Hakima et al.,
2018; McCormick et al., 2018; Nishida and Kawamoto, 2011;
Reintsema et al., 2010; Sah et al., 2022).

Moreover, the on-orbit servicing ecosystem has seen the
emergence of several innovative companies and start-ups that
are actively contributing to the development and deployment of
advanced OOS technologies. For example, French startup Infinite
Orbits, founded in 2017 and based in Toulouse, specializes in
life and mission extension services for satellites in geostationary
orbits (GEO). They utilize dedicated satellite servicers equipped
with optical sensors for target-agnostic guidance, navigation,
control (GNC), and docking systems, enabling them to extend
the operational life of GEO satellites by up to 5 years. Another
player, SpaceMachines Company fromAdelaide, Australia, founded
in 2018, focuses on in-orbit assembly of large space structures
using its space mobility platform, Optimus, which supports a
range of services including refueling, satellite repairs, and lifetime
extensions. In the U.S., Scout Aerospace, founded in 2017 in Atlanta,
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constructs orbital transfer vehicles (OTVs) for precise payload
deployment and servicing in orbit. Their AstroLabe platform
facilitates easier repairs and upgrades for multiple payloads. Lastly,
Russian startup Orbital Express, founded in 2020, builds space
tugs for small satellite orbital positioning and interplanetary
missions, offering services such as orbit phasing, deorbiting,
and life extension. These companies exemplify the growing
industrial interest in OOS and highlight the diverse capabilities
being developed to support the future of space operations,
reflecting the increasing commercialization and innovation in
this critical area (Infinite Orbits, 2024; Orbital Express, 2024;
Scout Aerospace LLC, 2024; Space Machine Company, 2024).

3 On-orbit servicing - An overview

Before delving into the intricacies of each On-Orbit Servicing
(OOS) subsystem, it is essential to establish a foundational
understanding of the general tasks, system-level requirements, and
overall composition of OOS robots. By doing so, we can better
appreciate how these subsystems work together to enable the
execution of complex tasks in the challenging environment of space.

OOS robots are designed to perform a variety of critical tasks in
space, including inspection, repair, refueling, assembly, and debris
removal. Each of these tasks demands a unique combination of
precision, dexterity, and reliability, which are achieved through
the careful integration of multiple subsystems. The following
subsections outline these tasks, the system-level requirements
that must be met to perform them effectively, and the general
composition of OOS robotic systems.

• OOS Tasks: OOS robots perform a variety of critical tasks in
space, including:

o Inspection: Meticulously examining spacecraft for
damage or malfunction.

o Repair: Fixing or replacing faulty components on
spacecraft

o Refueling: Replenishing a spacecraft’s propellant for
extended operation.

o Assembly: Constructing large structures in space from
prefabricated modules.

o Debris Removal: Deorbiting or safely disposing of defunct
satellites and space debris.

These tasks require not only advanced robotic technology but
also a deep understanding of the space environment and the
specific challenges associated with operating in microgravity. The
successful execution of these tasks is crucial for the sustainability
of space operations, as they enable the maintenance and extension
of spacecraft lifespans, the construction of new space infrastructure,
and the mitigation of space debris.

• System-Level Requirements: OOS robotic systems must be
designed to meet several demanding requirements:

o Precision and Dexterity: OOS robots need exceptional
precision and dexterity to handle delicate tasks in
microgravity.

FIGURE 6
On-orbit service or repair process (Choudhary, 2018).

o Safety and Reliability:The safety of the OOS robot and the
target spacecraft is paramount.

o Autonomy: OOS robots may need to operate with some
level of autonomy, especially during communication
delays with Earth.

o Efficiency: OOS operations should be completed
efficiently to minimize mission costs.

Meeting these requirements is essential for the success of OOS
missions, as even minor errors can have significant consequences
in the unforgiving environment of space.Therefore, each subsystem
must be meticulously designed and rigorously tested to ensure it can
perform reliably under these challenging conditions.

• General SystemComposition: AnOOS robotic system typically
comprises several key subsystems (Figure 6):

o Arm: A robotic arm with multiple joints enables reaching,
grasping, and manipulating objects in space.

o Sensors and Cameras: Vision systems and various sensors
provide crucial data about the surrounding environment
and the target spacecraft.

o Toolkits: OOS robots carry an array of specialized tools for
various repair and maintenance tasks.

o Computer Systems and Software: Onboard computers and
software process sensor data, control robot movements,
and execute mission plans.

o Power Source: A reliable power source ensures the robot
can function effectively throughout the mission.

These subsystems work in concert to provide OOS robots with
the capabilities they need to perform complex tasks autonomously or
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semi-autonomously. Understanding how these subsystems interact
and complement each other is key to appreciating the full capabilities
of OOS technologies.

By understanding these general aspects of OOS, we can better
appreciate the complexities involved and the critical role each
subsystem plays in enabling these remarkable robots to service
spacecraft in the harsh space environment.

3.1 Ground test facilities for on-orbit
servicing

A critical aspect of preparing On-Orbit Servicing (OOS) robots
for space missions involves rigorous ground testing in facilities
specifically designed to emulate on-orbit scenarios. These facilities
allow for experimentation with proximity operations, which are
crucial for tasks such as docking, capture, and manipulation
of spacecraft in space. Several leading facilities are equipped
to simulate the unique conditions and challenges of on-orbit
operations:

• ESTEC’s ORBIT Facility: The Orbital Robotics Bench for
Integrated Technology (ORBIT) at the European Space
Agency’s ESTEC is a premier facilitywithin theOrbital Robotics
Lab.This state-of-the-art setup features a flat floor environment
that simulates microgravity by providing frictionless motion in
three degrees of freedom (2D translation and 1D rotation).
It supports a variety of OOS experiments, including those
related to Active Debris Removal and satellite servicing. The
lab’sMANTIS (MANeuverable Testbed for In-orbit Simulation)
andREACSA (REcap+ACrobat + SAtsim) platforms enable the
simulation of orbiting systems and interactions between free-
floating bodies. Additionally, the GIMLI (Gripping Interface
for Manipulation, Locking, and Interaction) system facilitates
docking operations, allowing for the study of compliant
connections between robotic systems. These capabilities
make ORBIT an invaluable resource for testing and refining
proximity operations in OOS missions (Figure 7A) (ESA,
2024). The ability to simulate microgravity and proximity
operations in a controlled environment is critical for the
development of reliable and safe OOS systems. These tests
ensure that the robotic systems will function as expected
when deployed in space, where errors can be costly and
difficult to rectify.

• NASA’s Proximity Maneuver Simulators: NASA has developed
advanced proximity maneuver simulators, starting with the
Rendezvous Docking Simulator (RDS) at Langley Research
Center, originally designed for docking simulations between
Gemini and Agena spacecraft, and later retrofitted for Apollo
missions. This large-scale facility (Figure 7B) featured a 65 m
× 4.6 m × 12.2 m motion envelope, with the chaser vehicle
mounted in a 3 DOF gimbal frame, suspended by cables.
Today, NASA operates some of the largest air-bearing dynamics
simulation systems, including the 21.3 m × 29.9 m Air Bearing
Floor (ABF) at Johnson Space Center and the 13.4 m × 26.2 m
floor at the Flight Robotics Laboratory (FRL) at Marshall
Space Flight Center, which are used for testing rendezvous and
docking maneuvers. (Wilde et al., 2019).

These facilities play a crucial role in validating the proximity
maneuvering capabilities of OOS robots, ensuring that they can
execute docking procedures with precision and reliability, even in
the challenging environment of space.

• SPHERES atMIT Space Systems Laboratory:The Synchronized
Position Hold Engage and Reorient Experimental Satellite
(SPHERES) system, developed by the MIT Space Systems
Laboratory in collaboration with NASA, DARPA, and Aurora
Flight Sciences, is a pioneering facility designed to test sensor,
control, and autonomy technologies for satellites in a zero-
gravity environment. Operating aboard the International Space
Station (ISS), the SPHERES system consists of small satellites
capable of precise rotation and translation in all directions,
controlled by twelve carbon dioxide thrusters. These satellites
utilize ultrasound beacons and receivers to determine their
relative positions, enabling the testing of formation flight
technologies and other critical satellite functions. With over
one hundred test sessions conducted, current research using
SPHERES includes advanced investigations into factor graph-
based simultaneous localization and mapping (SLAM) and
the development of algorithms for real-time planning and
parameter estimation under uncertainty. This facility plays a
crucial role in advancing the capabilities of autonomous satellite
systems (Figure 7C) (MIT Space Systems Laboratory, 2024).

• DLR’s European Proximity Operations Simulator (EPOS
2.0): Located at the DLR Space Operations and Astronaut
Training in Oberpfaffenhofen, EPOS 2.0 is a state-of-the-art
facility (Figure 7D) designed for the simulation of space-
based inspection and approach maneuvers, essential for
rendezvous operations. This large-scale facility is crucial for
missions involving orbital maintenance and towing services,
where complex rendezvous and docking procedures must
be extensively tested and verified. EPOS 2.0 features two
six-degree-of-freedom industrial robots, one mounted on
a 25-m-long rail, enabling real-time simulations of satellite
approaches. The facility is notable for its sub-millimeter
positioning accuracy over 25 m and its high command
rate of 250 Hz. Additionally, a high-performance solar
simulator provides realistic ambient lighting, which is critical
for testing optical sensors. EPOS 2.0 is instrumental in
developing and validating navigation and docking procedures,
particularly for non-cooperative, tumbling satellites, and
is at the forefront of research into robotic systems for the
deorbiting of space debris (DLR, 2024). EPOS 2.0’s capabilities
are vital for advancing OOS technologies, particularly in
scenarios involving non-cooperative targets, where precise
maneuvering and docking are required to successfully complete
servicing missions.

• 6DOF Hardware-in-The-Loop Testbed, York University:
Located at Space Engineering Lab at York University, the
hardware-in-the-loop ground testbed featuring active gravity
compensation via software-in-the-loop integration, specially
designed to support research in autonomous robotic OOS. It
is is designed to accurately simulate the dynamic behaviors
of free-floating robotic manipulators and spacecraft under
microgravity conditions. The testbed comprises two 6DOF
robotic manipulators, one 3-finger gripper, and sensors like
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FIGURE 7
(Continued).

cameras, force/torque sensors, and tactile tensors (Figure 7E).
It can test and validate technologies related to autonomous
tracking, capture, and post-capture stabilization in OOS.

• ASTROS, Georgia Tech Aerospace Engineering: The
Autonomous Spacecraft Testing of Robotic Operations in Space
(ASTROS) facility at Georgia Tech is a state-of-the-art 5-DoF
spacecraft simulator and frictionless motion experimental
platform. This facility is designed to validate and evaluate
guidance, navigation, and control (GNC) algorithms for in-
space rendezvous using dedicated hardware. The test arena
features a 4 m × 4 m flat epoxy floor where experimental
platforms can hover without friction, simulating space-like
conditions. The ASTROS platform is equipped with advanced
sensing, computation, and actuation systems, including air
thrusters and variable-speed controlmoment gyros (VSCMGs),
allowing for precise control of spacecraftmotion during testing.
This facility is critical for developing autonomous proximity
operations, which are essential for on-demand on-orbit
servicing and refueling of space assets (Figure 7F) (Dynamic
and Control Systems Laboratory, 2024).

• ADAMUS, University of Florida: The ADvanced Autonomous
MUltiple Spacecraft laboratory (ADAMUS) at the University
of Florida is a cutting-edge facility featuring a six-degree-of-
freedom hardware-in-the-loop simulator designed for small
spacecraft. This testbed allows for the testing and validation of
novel guidance, navigation, and control (GNC) algorithms in a
ground-based environment that closely mimics the conditions
of space. Unlike many other simulators that rely on simulated
dynamics and servo actuators, the ADAMUS testbed controls
all degrees of freedom using real thrusters, providing a highly
realistic simulation of spacecraft behavior. The facility is
particularly well-suited for rapid prototyping and experimental
validation of GNC methodologies, significantly reducing the
reliance on lengthy numerical simulations.Theunique design of
the ADAMUS platform also includes a matched variable-mass
counterbalance system to simulate near-gravity-free motion,
further enhancing the accuracy of the tests conducted at this
facility (Figure 7G) (Saulnier et al., 2014).

• Platform-art, GMV: Platform-art©, located at GMV’s Madrid
office, is an advanced robotic testbed designed for the testing
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FIGURE 7
(Continued).

and validation of space mission systems. This 20 × 6 × 5 m
facility is unique in Europe and incorporates state-of-the-
art mobile robotics technology. It is a key resource for the
development of guidance, navigation, and control (GNC)

systems for a wide range of space missions, including space
debris capture, formation flying, and planetary exploration.
The facility provides thorough ground validation, emulating
space conditions to ensure that GNC systems perform
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FIGURE 7
(Continued). (A) Illustration of GIMLI mounted on a KUKA robotic arm. (ESA, 2024). (B) Image o f NASA Rendezvous Docking Simulator. (NASA, 2024)
(C) Image of SPHERES aboard ISS (MIT Space Systems Laboratory, 2024). (D) A sample simulation scenario featuring Earth in the background. (DLR,
2024). (E) 6DOF Hardware-in-The-Loop Testbed for Autonomous Robotic OOS (Al Ali and Zhu, 2023). (F) Autonomous Spacecraft Testing of Robotic
Operations in Space (ASTROS) (Dynamic and Control Systems Laboratory, 2024). (G) ADAMUS testbed (Saulnier et al., 2014). (H) GMV’s platform-art©
advanced robotics laboratory (GMV, 2022). (I) Impage of 6-DOF spacecraft simulators at Caltech’s Aerospace Robotics and Control Laboratory
(Nakka et al., 2018). (J) AUDASS II vehicle (Tracy, 2005). (K) Maneuver kinematics and dynamics testbed (Florida Tech, 2024). (L) Planar air-bearing
microgravity simulator (Rybus et al., 2013). (M) ZeroG lab facility at University of Luxembourg (Muralidharan et al., 2022).
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reliably during actual missions, where in-flight testing is
often impractical due to cost and limited flight opportunities
(Figure 7H) (GMV, 2013).

• Spacecraft Dynamics Simulator Facility, Caltech Aerospace
Robotics and Control Lab: The Spacecraft Dynamics Simulator
Facility at Caltech’s Aerospace Robotics and Control Lab is
equipped with a high-precision epoxy flat floor, air-bearing
systems, and the M-STAR platform to simulate spacecraft
dynamics with full six degrees of freedom.The facility includes
an industrial air compressor and high-pressure storage tanks
to supply air to the flat air bearings and thrusters on the
simulator. The pose of the spacecraft is tracked using a
VICON Motion Capture system, enabling precise control and
simulation of spacecraft maneuvers. This facility is essential
for testing CubeSat dynamics and control algorithms in a
controlled environment that closely mimics the conditions of
space (Figure 7I) (Nakka et al., 2018).

• AUDASS, US Naval Postgraduate School: The Autonomous
Docking and Spacecraft Servicing Simulator (AUDASS) at the
US Naval Postgraduate School is designed for on-the-ground
testing of satellite servicing and proximity formation flight
technologies.The simulator comprises two independent robotic
vehicles, a chaser, and a target, which float on a polished granite
table via air pads, providing a frictionless support for simulating
zero-g dynamics in two dimensions. This facility allows for
the testing of autonomous rendezvous and docking procedures,
with a particular focus on fluid transfer between spacecraft.
AUDASS is an invaluable tool for developing and refining the
technologies required for satellite servicingmissions (Figure 7J)
(Naval Postgraduate School, 2024; Tracy, 2005).

• ORION, Florida Institute of Technology: The Orbital Robotics
Interaction On-Orbit Servicing and Navigation (ORION)
Laboratory at Florida Institute of Technology features a unique
combination of a Cartesian robot and an air-bearing flat-floor
system. The facility includes a 5.94 m × 3.60 m integrated flat
floor and a high-precision air-bearing table, allowing for the
study of the dynamics and kinematics of relative motion and
contact dynamics of space vehicles. This setup is ideal for
simulating and analyzing the complex interactions involved in
on-orbit servicing and navigation, contributing significantly to
the advancement of space robotics technologies (Figure 7K)
(Florida Tech, 2024; Wilde et al., 2019).

• Space Research Center, Polish Academy of Sciences (PAS):
The Space Research Centre of the Polish Academy of Sciences
(PAS) operates a planar air-bearing microgravity simulator
designed for the verification of space robotics numerical
simulations and control algorithms. This facility features a
2 × 3 meter granite table with air bearings that provide
negligible friction, allowing free planar motion of satellite-
manipulator systems. Each manipulator link is independently
supported, enabling the testing of long and heavy manipulators
that significantly influence the base position and orientation.
This simulator is crucial for developing control and trajectory
planning methods for free-floating systems, making it a key
resource for advancing space robotics research in Poland
(Figure 7L) (Rybus et al., 2013).

• Zero-G Lab, University of Luxembourg: The Zero-G Lab
at the University of Luxembourg’s Interdisciplinary Space

Master (ISM) program is designed to simulate a microgravity
environment for testing the movement of in-orbit robotics,
satellites, and other spacecraft. This facility functions similarly
to an air hockey platform, allowing researchers and students
to study how spacecraft and orbital robotics can be controlled
in a microgravity environment. The lab provides a unique
opportunity to understand and forecast the behavior of space
systems in the absence of gravity, which is essential for
successful in-orbit operations (Figure 7M) (Olivares-Mendez
and Aouada, 2024)

These ground test facilities are indispensable for the ongoing
development and refinement of OOS technologies. They provide a
controlled environment where critical subsystems and operations
can be thoroughly tested and validated, ensuring that when OOS
robots are deployed in space, they are capable of performing their
tasks with the required precision and reliability.

For more detailed information on these and other test
facilities, see (Wilde et al., 2019).

4 Sensing of pose and state

Accurate and fault-tolerant navigation systems are among the
most critical components of future on-orbit servicing missions.
The ability to precisely determine the pose and state of objects
in space is essential for tasks such as docking, capturing, and
repairing spacecraft. Failure to provide reliable pose and state
sensing could result in catastrophic failure or damage to neighboring
space objects, potentially jeopardizing entire missions. For instance,
reliable 6-DOF (Degrees of Freedom) pose information is crucial
when approaching and docking with the International Space
Station (ISS). As we explore the various methods and tools
used in pose and state sensing, we will see how advancements
in this area directly contribute to the safety and efficiency of
OOS missions.

A summary of methods and tools found in this section can
be found in Table 3.

4.1 Traditional techniques

Early solutions for determining an object’s pose and state
relied on well-established techniques, which laid the groundwork
for more advanced methods used in OOS today. One approach
involved using radar or altimeter data to remove bias errors in
Inertial Measurement Unit (IMU) readings through least squares
estimation (Kriegsman, 1966). Vision-based methods, such as
the Iterative Closest Point (ICP) algorithm, were also introduced
to obtain complete 6-DOF pose information (Besl and McKay,
1992). These techniques, though foundational, demonstrated
the importance of precise pose estimation in the context of
space operations, where even minor errors can have significant
consequences.

Other traditionalmethods focused on estimating and predicting
rotational motions, particularly for rigid bodies without external
forces or moments (Masutani et al., 1994). To improve the
convergence speed of ICP for 3D registration purposes, the
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TABLE 3 A Summary of methods and tools in sensing of pose and state.

Method/Tool Description Pros Cons

Radar or Altimeter (Kriegsman, 1966) Removes bias measurement errors in
IMU using least squares estimation

Improves accuracy of IMU data May require additional hardware

Vision-based method with ICP
(Iterative Closest Point) (Besl and

McKay, 1992)

Finds all 6-DOF pose information of an
object

Can be used for complex object shapes Can be computationally expensive

Approximate Nearest Neighbor (ANN)
with ICP (Greenspan and Yurick, 2003)

Improves ICP convergence speed for
3D registration

Reduces processing time May not improve accuracy significantly

Differential carrier phase GPS (Wolfe
and Speyer, 2004)

Estimates relative positions of satellites
in Low Earth Orbit (LEO)

Provides high accuracy for relative
positioning

Requires specialized GPS receivers
Only works in LEO

Rendezvous Laser Radar (RVR)
(Mokuno et al., 2004)

Effective for navigation during the final
approach phase of docking

High accuracy for short-range
measurements

May be expensive

Laser Camera System (LCS)
(Samson et al., 2004)

Estimates pose of an object accurately
and is immune to dynamic lighting

conditions

Robust to variations in lighting May require complex calibration
procedures

Range data-based motion estimation
(Hillenbrand and Lampariello, 2005)

Estimates the motion of free-floating
objects

May not require specialized cameras Accuracy may be limited by the range
of data quality

LIDAR sensor (Lu and Tomizuka, 2006) Used as a vehicle detection system Can provide high-resolution 3D data May be expensive

Kalman filter with laser-vision data
(Aghili and Parsa, 2007)

Estimates motion and predicts the
trajectory of satellites

Good at filtering out noise and
predicting future states

Performance depends on the quality of
the input data

Adaptive vision system (Aghili and
Parsa, 2008)

Used for guidance during satellite
interception and capture

Can handle variations in target
appearance

May require significant computational
resources

3D camera with Kalman filter and ICP
(Aghili et al., 2011)

Estimates pose of space objects Combines the strengths of different
techniques for improved accuracy and

robustness

May be more complex to implement

X-ray pulsars (Liu et al., 2015) Novel method for relative navigation
between spaceships using pulsars

Provides long-range navigation
capability

Requires specialized equipment to
detect X-ray pulsars

Probabilistic motion modeling
(Tweddle et al., 2015)

Creates a 3D map with position,
orientation, and motion details of a

spinning object

Can handle complex object dynamics Computational demands may increase
with map size

Optical sensor data with least squares
(Benninghoff and Boge, 2015)

Estimates center of mass and moments
of inertia of a non-cooperative satellite

Critical for safe maneuvering during
docking

May not be effective for all lighting
conditions

Laser scanner and IMU with ICP and
Kalman filter (Aghili and Su, 2016)

Provides robust relative navigation Combines the strengths of different
sensors and filters for high accuracy

Increased complexity due to multiple
sensors and algorithms

Camera-based tracking
(Nassir Workicho Oumer, 2016)

Offers a cheaper alternative to LiDAR
for close-range satellite servicing

Less expensive and lighter weight Performance can be affected by lighting
conditions

Approximate Nearest Neighbor (ANN) technique was implemented
(Greenspan and Yurick, 2003). This approach was used to register
range images of four toy objects collected using a Biris range scanner
mounted on the end-effector of a CRS A465 6-DOF articulated
manipulator, as illustrated in Figure 8. Additionally, differential
carrier phase GPS measurements were demonstrated as a method
for estimating the relative positions of widely separated satellites
in Low Earth Orbit (LEO) (Wolfe and Speyer, 2004). These early
techniques established a foundation upon which more advanced,
sensor-based methods were developed.

4.2 Sensor-based techniques

As sensor technology advanced, new possibilities emerged for
more accurate and reliable pose and state sensing in space. These
sensor-based techniques have become instrumental in modern
OOS missions, where the need for precision and fault tolerance is
paramount.

For instance, during an experiment conducted by the National
Space Development Agency of Japan (NASDA), an uncrewed
autonomous rendezvous docking operation was performed using
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FIGURE 8
Biris range scanner on the end-effector of a CRS A465 6-DOF
articulated manipulator. (Greenspan and Yurick, 2003).

a rendezvous laser radar (RVR) as the primary navigation sensor
in the final approach phase. This experiment demonstrated the
effectiveness of laser-based sensing for critical docking tasks in
space (Mokuno et al., 2004). Similarly, the Laser Camera System
(LCS) was introduced as a tool capable of estimating object pose
accurately while being immune to dynamic lighting conditions,
a significant advantage in the challenging environment of space
(Samson et al., 2004). As shown in Figure 9, the LCS successfully
captured a two-dimensional projection of three-dimensional high-
resolution intensity data while in orbit, highlighting its versatility in
various space environments.

These sensor-based advancements are crucial for enhancing the
robustness and accuracy ofOOSoperations, ensuring that spacecraft
can perform complex maneuvers with the precision required for
successful mission outcomes.

4.3 Data fusion techniques

To further improve the accuracy and robustness of pose and state
sensing, many modern techniques leverage data fusion, combining
information from multiple sensors. This approach is particularly
valuable in complexOOS tasks, where relying on a single sensor type
may not provide sufficient reliability.

One notable example is the proposed architecture for estimating
the dynamic state, geometric shape, and model parameters of
objects in orbit using cooperative 3D vision sensors (Lichter and

FIGURE 9
Two-dimensional projection of the three-dimensional high-resolution
intensity data acquired by the LCS in orbit (Samson et al., 2004).

Dubowsky, 2004). This method illustrates the potential of using
multiple data streams for comprehensive object characterization, a
critical capability in OOS where understanding the target object’s
state is vital for successful interaction. Similarly, data from range
measurements was used to estimate motion for free-floating objects
(Hillenbrand and Lampariello, 2005), and LIDAR sensors were
explored as vehicle detection systems, demonstrating their potential
for enhancing space situational awareness (Lu and Tomizuka, 2006).

Data fusion is especially useful when dealing with dynamic and
unpredictable scenarios, such as intercepting and capturing non-
cooperative satellites. For example, a noise-adaptive Kalman filter
combined with laser-vision data was introduced to estimate motion
and predict the trajectory of a free-falling tumbling satellite (Aghili
and Parsa, 2007). This technique, along with an adaptive vision
system proposed as a guidance tool for capturing non-cooperative
satellites, showcases the system’s ability to handle variations in
target appearance (Aghili and Parsa, 2008). Moreover, combining
a 3D camera with a Kalman filter and ICP allowed for accurate
pose tracking of space objects even with temporary camera signal
loss (Aghili et al., 2011). More recently, a method combining a
laser scanner (Figure 10) and IMU with ICP and a Kalman filter
demonstrated robust relative navigation, reinforcing the importance
of integrating multiple sensors to achieve reliable performance
(Aghili and Su, 2016). A robust vision system for robots performing
grasping tasks was also proposed (Aghili, 2022). This system is
designed to handle temporary vision loss and optimize movements
under constraints.The systemcombines several techniques: 1) image
registration to track objects, 2) aKalmanfilter to estimate the object’s
state, 3) fault detection to identify vision issues, and 4) a path planner
to optimize robot movements. Simulations have shown that the
system can successfully grasp moving targets even with complete
vision loss for short periods.
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FIGURE 10
A Neptec laser rangefinder scanner captures the pose of a satellite
mockup, operated by a manipulator arm controlled through a
simulator based on orbital dynamics. (Aghili and Su, 2016).

4.4 Advanced techniques

Recent advancements in sensing technology have introduced
novel approaches that promise to further enhance the capabilities
of OOS robots. These advanced techniques are essential for
addressing the increasingly complex challenges faced in modern
space missions.

One such technique involves the use of X-ray pulsars for
relative navigation between spaceships venturing into deep space.
This method leverages the predictable nature of pulsar signals to
estimate a spacecraft’s position and velocity, offering a potential
solution for deep-space navigation challenges (Emadzadeh and
Speyer, 2011). Additionally, Convolutional Neural Networks
(CNNs) have emerged as a powerful tool for pose estimation.
They have been explored to provide faster and more reliable
initial estimates of a target’s orientation during spacecraft
docking procedures (Oestreich et al., 2020). Similarly, CNNs have
been implemented to directly predict the pose of a spacecraft
without requiring a 3D model, showing great promise for
tasks involving uncooperative spacecraft (Garcia et al., 2021;
Piazza et al., 2022).

These advanced techniques represent the future of
pose and state sensing in OOS, where the need for high
accuracy, robustness, and real-time processing is more critical
than ever.

4.5 Cooperative vs non-cooperative
targets

The level of cooperation from the target object significantly
impacts the choice of sensing methods, making it crucial to
tailor approaches based on whether the target is cooperative
or non-cooperative. Cooperative targets, which actively transmit
information, allow for the use of methods such as cooperative
3D vision systems (Lichter and Dubowsky, 2004). However, non-
cooperative targets, which do not provide such information, require
sensing techniques that rely solely on the capabilities of the
approaching spacecraft.

For non-cooperative objects, several methods have been explored
to overcome the challenges posed by their uncooperative nature:

• Cameras and LIDAR sensors: These sensors capture visual
and 3D data of the target, allowing for pose estimation and
motion tracking. Camera-based tracking offers a cheaper and
lighter alternative to LIDAR for close-range satellite servicing,
although its performance may be affected by variations in space
lighting conditions (Nassir Workicho Oumer, 2016).

• Estimating object properties: Researchers have developed
methods to estimate the properties of non-cooperative
satellites, such as mass, center of mass, and inertia,
without relying on information from the target itself.
One approach involves gently nudging the satellite with
a flexible rod while measuring its response using force-
moment sensors (Meng et al., 2019).

• Convolutional Neural Networks (CNNs): As previously
mentioned, CNNs are being explored for pose estimation of
uncooperative spacecraft. These networks can learn from large
datasets of images and point clouds to directly predict the pose
of a target, even without a pre-defined 3D model (Garcia et al.,
2021; Piazza et al., 2022). As demonstrated in Figure 11, CNNs
can detect the bounding box of a spacecraft using models like
LSPnet, enhancing the accuracy of the pose estimation process.

• Tactile Sensors: Recent advancements highlight the importance
of space-qualifiable tactile sensors for tasks like orbital debris
characterization and manipulation. These sensors enable non-
traditional grasping andmanipulation techniques, such as those
augmented by microspines or gecko-inspired adhesives. By
integrating tactile feedback with control systems, these sensors
can improve the accuracy and safety of in-orbit operations,
including debris handling and in-situ construction on celestial
bodies (Di, 2024; NASA, 2020).

The ongoing development of robust sensing methods tailored to
non-cooperative or unknown objects underscores the importance
of adaptability and innovation in OOS. These methods are critical
for ensuring the success of missions where traditional sensing
techniques may not be sufficient.

5 Motion planning

Manipulator motion planning provides trajectory and
attitude profiles essential for on-orbit servicing (OOS). As
depicted in Figure 12, the chaser satellite successfully captures the
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FIGURE 11
A spacecraft bounding box detection by LSPnet. (Garcia et al., 2021).

FIGURE 12
Concept of the chaser satellite captured the tumbling satellite (Ma et al., 2007).

tumbling satellite, demonstrating the critical role of precise motion
planning in ensuring stable and accurate docking, even when the
target satellite is in an uncontrolled tumbling state. This section will
explore the unique challenges of motion planning in space and the
strategies developed to overcome them, ultimately enabling the safe
and efficient operation of OOS missions.

A summary of challenges and their respective solutions in this
section can be found in Table 4.

5.1 Challenges of motion planning in space

Motion planning, the process of guiding a robot through its
environment, is particularly challenging in space due to several

unique factors. These challenges must be addressed to ensure
the success of OOS missions, where precise and reliable motion
planning is paramount.

• Microgravity: Unlike Earth, where gravity provides a constant
reference for planning, robots in space experience near-
weightlessness. This necessitates alternative methods for
determining orientation and accounting for the absence of
frictional forces (Papadopoulos, 1992). The lack of gravity
significantly impacts how robots move and orient themselves,
requiring planners to consider these factors when designing
trajectories.

• Unmodeled Environments: Space is vast and constantly
changing, with asteroids, debris, and unmapped regions
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TABLE 4 Summary of challenges and their respected solutions.

Challenges Solutions Pros Cons

Unpredictable motion of free-floating
robots

Safe zones to avoid unpredictable
motion (Papadopoulos, 1992)

Creates safe areas for robot operation May limit usable workspace

Dynamic singularities limiting
workspace

Workspace models considering
singularities (Papadopoulos and
Dubowsky, 1993)

Improves planning efficiency by
avoiding singularities

Requires additional computational
power for modeling

Shrinking workspace for robots
capturing large objects

Grasping postures for large objects
(Papadopoulos, 1993)

Enables manipulation of larger objects May require complex pre-programmed
grasping strategies

Bendy arms causing base vibrations Separate control systems for precise
arm movement and base minimization
(Nenchev et al., 1999)

Improves manipulation precision and
reduces spacecraft disturbances

Requires more complex control systems

Collision-free movement for multi-joint
robots

Planning algorithms with “trees”
exploring space (Kuffner and LaValle,
2000)

Efficiently finds collision-free paths Can be computationally expensive for
overly complex environments

Limited control for robots without
main engines

Smoother paths are designed directly in
joint space (Tortopidis and
Papadopoulos, 2007)

Achieves smoother motions without
requiring small, jerky movements

May limit flexibility for real-time
adjustments during the operation

Uncertainties about object properties Control methods without precise
knowledge of the object (Abiko et al.,
2006)

Functions even without perfect object
data

May require additional sensors or
assumptions about object properties

Capturing and stopping spinning
satellites

Reaction null space for controlling
robot orientation (Dimitrov and
Yoshida, 2004)

Maintains robot stability during the
capture of spinning objects

Requires advanced control systems and
precise thruster control

Smooth motions for robots with
limitations

Methods considering limitations and
avoiding singularities (Aghili, 2008;
Xu et al., 2008)

Achieves smooth and efficient
movements while respecting robot
limitations

May require more complex planning
algorithms compared to simpler
methods

Limited base movement for
under-actuated robots

A new method for simpler calculations
with smooth point-to-point movements
(Agrawal et al., 2009)

Reduces computational complexity for
under-actuated robots

May limit maneuverability for complex
tasks

Complex environments CHOMP method refining paths for
smoothness (Ratliff et al., 2009)

Improves smoothness of existing paths
for various robots

Can be computationally expensive for
highly cluttered environments

Force limitations while stopping a
spinning satellite

Two-step approach with the fastest
slowing method and control system
(Aghili, 2009)

Optimizes spin-stopping process for
efficiency and safety

Requires accurate modeling of satellite
properties and limitations

Re-orienting the base after docking Using only arm movements for docking
and re-orientation (Xu et al., 2009)

Reduces reliance on thruster fuel May require more complex arm
movements and planning

Uncertainties during object capture
with vision

Predicting object movement for smooth
capture path (Aghili, 2012)

Improves capture success rate in
uncertain environments

Requires robust vision systems and
processing power for real-time
prediction

Keeping the robot stable during the
capture of the spinning target

Minimizing capture disturbances for
smoother and safer capture
(Flores-Abad et al., 2014)

Reduces risks of instability during
capture

May require additional sensors or
advanced control algorithms

Stabilizing robot with tethered object Combining arm movements, tethers,
and jets for smooth stabilization
(Wang et al., 2015)

Enables manipulation of objects with
tethers

Requires complex control systems and
coordination between different
actuators

Unknown properties of the captured
object

Control method adjusting arm motions
for unknown objects (Nguyen-Huynh
and Sharf, 2013)

Functions even without detailed object
data

May require additional sensors or
assumptions about object properties

Momentum of large, captured objects Two-stage control method for reducing
momentum and distributing remaining
for stability (Zhang et al., 2017)

Mitigates risks from object momentum May require more complex control
algorithms and precise execution

(Continued on the following page)
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TABLE 4 (Continued) Summary of challenges and their respected solutions.

Challenges Solutions Pros Cons

Limited information about spinning
objects

Two-step optimization process for
controlling movement and rotation
(Virgili-Llop et al., 2017)

Improves planning for objects with
unknown spin characteristics

Requires advanced optimization
techniques and computational
resources

The energy use for robots with arms Planning method breaks down
planning into smaller problems (Misra
and Bai, 2017)

Optimizes energy consumption for
robots with arms

posing potential hazards. Planning algorithms must be
robust enough to handle unforeseen obstacles and limited
environmental data (Kuffner and LaValle, 2000). The
unpredictability of the space environment means that motion
planners need to be adaptive and resilient, capable of adjusting
to new information as it becomes available.

• Computational Constraints: Onboard computers on spacecraft
have limited processing power compared to ground-based
systems. Motion planning algorithms need to be efficient and
require relatively low computational resources to function in
real-time (Tortopidis and Papadopoulos, 2007).This constraint
makes it essential to develop algorithms that can operate within
these limitations while still providing reliable guidance for the
spacecraft.

These challenges necessitate specialized planning approaches
tailored to the unique conditions of space. The following sections
will delve into the strategies developed specifically for spacecraft
motion planning, highlighting how these techniques address the
challenges outlined above.

5.2 Strategies for spacecraft motion
planning

Given the challenges of motion planning in space, robust and
efficient strategies have been developed to guide spacecraft safely
and effectively. These strategies are critical for ensuring the success
of OOSmissions, where precision, safety, and resourcemanagement
are top priorities.

• Trajectory Optimization: Fuel efficiency is paramount in
space due to the high cost of propellant. Optimization
algorithms generate fuel-efficient paths by considering orbital
mechanics and thruster limitations (Misra andBai, 2017).These
algorithms break down complex maneuvers into smaller, more
manageable steps, optimizing fuel consumption throughout
the entire trajectory. Efficient fuel use is crucial for extending
mission lifespans and enabling more complex operations.

• Docking Maneuvers: Safely approaching and connecting with
another spacecraft requires precise planning. Algorithms factor
in relative positions, velocities, and potential thruster firings to
create collision-free trajectories for docking (Xu et al., 2009). In
some cases, these algorithms may even consider using only the
robot’s arms for docking and re-orienting the spacecraft after
attachment, minimizing thruster fuel usage. Effective docking

maneuvers are vital for the success of OOS missions, where
precision and safety are non-negotiable.

• Collision Avoidance: Spacecraft operate in environments with
micrometeoroids and orbital debris. Planning algorithms
incorporate sensor data and dynamic obstacle avoidance
techniques to ensure safe navigation (Kuffner and LaValle,
2000). This can involve rapidly replanning trajectories in
real-time to avoid unforeseen obstacles or creating safe
zones within the environment that the spacecraft should
avoid entirely (Papadopoulos, 1992). Collision avoidance is
essential for protecting both the spacecraft and its surroundings
during OOS operations.

These strategies form the foundation for the safe and efficient
movement of spacecraft. By addressing the specific challenges
of motion planning in space, these techniques ensure that OOS
missions can be carried out effectively, even in the most demanding
conditions.

5.3 Manipulation of objects in space

While spacecraft motion planning focuses on the vehicle itself,
a crucial aspect of space robotics involves the manipulation of
objects. Manipulation in space introduces additional challenges due
to the unique properties of the space environment and the objects
encountered.

• Uncertain Object Properties: Robots often encounter objects
with unknown mass, distribution, or material properties.
Planning algorithms need to be flexible and adapt to
unforeseen characteristics of the object during manipulation
(Abiko et al., 2006; Nguyen-Huynh and Sharf, 2013). This
flexibility is critical for ensuring successful capture and
manipulation, particularly when dealing with non-cooperative
or unknown objects.

• Spinning Objects: Grasping and maneuvering a spinning
object introduces gyroscopic forces that can destabilize the
robot. Planning methods incorporate spin dynamics and
control strategies to ensure safe capture and stabilization
(Aghili, 2009; Dimitrov and Yoshida, 2004). Techniques such
as approaching the object from a specific axis to minimize spin
or using reaction wheels or thrusters to counter the gyroscopic
effect are employed to handle these challenges. Effective
management of spinning objects is crucial for the success of
OOS missions involving debris capture or satellite repair.
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• Tethered Objects: Some tasks involve objects connected by
tethers to the spacecraft or robot. Planning algorithms need
to consider the tether’s dynamics and avoid entanglement
during manipulation (Wang et al., 2015). Coordinating arm
movements with tether deployment and retraction or using
control systems that account for the tether’s influence on the
overall system ensures safe and effective operations. Tether
management is particularly important for OOSmissions where
the safe retrieval or deployment of objects is required.

The ability to manipulate objects in space is a fundamental
capability for OOS missions. The strategies developed for handling
the unique challenges of space manipulation are essential for the
success of these missions, enabling robots to perform complex tasks
such as satellite repair, debris removal, and in-orbit assembly.

5.4 Optimization for performance

In space missions, efficiency and safety are paramount. Motion
planning algorithms must consider various performance metrics
to optimize robot maneuvers, balancing competing priorities to
achieve mission objectives.

• Fuel Consumption: As mentioned previously, propellant
is a precious resource in space. Optimization algorithms
can prioritize fuel efficiency by generating trajectories that
minimize thruster usage (Misra and Bai, 2017). This may
involve planning maneuvers that leverage orbital mechanics or
utilizing low-thrust, high-efficiency engines for specificmission
phases. Efficient fuel use is critical for extending the operational
lifespan of spacecraft and enabling more complex missions.

• Maneuvering Time: In some scenarios, completing a task
swiftly is crucial. Time-optimal motion planning algorithms
prioritize speed while ensuring safety (Kuffner and LaValle,
2000). This may be important for tasks such as satellite
collision avoidance or spacecraft reorientation before critical
events. Swift maneuvering is essential for responding to
dynamic situations in space, where delays can have significant
consequences.

• Smoothness and Stability: Minimizing jerky motions is
essential for delicate tasks or to reduce wear and tear on
the robot’s actuators. Smoothness-based planning algorithms
prioritize generating trajectories with minimal accelerations
and decelerations (Ratliff et al., 2009). This can improve the
precision of manipulation tasks or ensure a smoother ride
for astronauts onboard the spacecraft. Smooth and stable
operations are vital for maintaining the integrity of both the
spacecraft and its mission objectives.

These performance metrics are often competing priorities. For
instance, a fast trajectory movement might require more fuel or
introduce excessive jerks. The planning algorithm needs to be
configured to balance these objectives based on the specific mission
requirements. By optimizing for performance, motion planners
ensure that OOS missions can be carried out efficiently and safely,
meeting the stringent demands of space operations.

5.5 Real-time planning for unforeseen
situations

The environments robots operate in can be unpredictable,
and space is no exception. This section explores the challenges
and approaches for motion planning when encountering
unforeseen situations or when new information becomes available
during a mission.

• Limited Onboard Processing: Spacecraft computers have
limited computational resources compared to ground-
based systems. Planning algorithms need to be efficient
enough to replan trajectories in real-time without
excessive delays (Tortopidis and Papadopoulos, 2007). His
may involve breaking down complex planning problems into
smaller, more manageable chunks that can be solved quickly
onboard. Efficient real-time processing is crucial for adapting
to dynamic conditions in space, where rapid decision-making
is often required.

• Trade-off Between Optimality and Flexibility: While pre-
mission planning can optimize trajectories for anticipated
scenarios, real-time situationsmay demand flexibility. Planning
algorithms need to strike a balance between finding optimal
solutions and adapting to new information (Aghili, 2012).
As illustrated in Figure 13, the experimental setup with two
manipulator arms, one equipped with the SARAH robotic
hand, demonstrates the ability to autonomously capture a
satellite mockup, highlighting the need for adaptability in
response to dynamic conditions during on-orbit operations.
Flexibility in planning is essential for responding to unforeseen
challenges, ensuring that the mission can continue even when
conditions change.

• Sensor Integration and Feedback Control: Real-time planning
relies heavily on sensor data to perceive the environment and
adapt the plan. Algorithms need to integrate sensor data from
cameras, lidar, and other sensors to update the environment
model and replan the trajectory (Flores-Abad et al., 2014).
Feedback control systems can further refine the robot’s motion
based on real-time sensor readings, ensuring continued safety
and task achievement. Effective sensor integration and feedback
control are vital for maintaining the accuracy and reliability of
OOS operations, particularly in dynamic environments.

The development of robust real-time planning algorithms is
critical for autonomous space robotics. By ensuring that robots
can adapt to unforeseen situations, these algorithms enhance the
reliability and success of OOS missions, allowing for continued
operations even in the most challenging conditions.

6 Feedback control

This section explores various control methods used for robots
with manipulators (arms) operating in space. These methods
address the unique challenges of the space environment, such
as microgravity, object manipulation, and uncertainties. As
depicted in Figure 14, capturing a rotating target using a robotic arm
involves multiple steps, including approaching, tracking, capturing,
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FIGURE 13
Two manipulator arms mimic satellite motion and autonomously
capture the mockup satellite using SARAH (Laliberte and Gosselin,
2001) robotic hand (Aghili, 2012).

synchronizing, and detumbling, each of which must be carefully
controlled to manage the complexities of space operations. The
effectiveness of these control methods is critical for the success of
On-Orbit Servicing (OOS) missions, where precision and reliability
are paramount.

A summary of control tools and methods in this section can
be found in Table 5.

6.1 Motion planning and coordination for
spacecraft-robot systems

Coordinating robot arm movements with the stability of
the spacecraft is crucial for successful operations in space.
Traditional motion planning approaches often overlook the
potential disruption that a moving arm can cause to the spacecraft’s
center of mass. To address this challenge, researchers have
developed planning algorithms that consider both obstacle
avoidance and spacecraft stability during robot arm maneuvers
(Papadopoulos and Dubowsky, 1991). By separating the control of
the spacecraft’s center of mass, rotation, and arm position, these
strategies allow for more efficient fuel usage and smoother, more
coordinated movements for both the robot arm and the spacecraft
(Giordano, 2020; Giordano et al., 2020).

Recent advancements have further enhanced these approaches
by integrating model-based (MB) controllers with model predictive
controllers (MPC) to improve the robustness and accuracy of
motion planning for free-floating spacemanipulator systems (SMS).
This hybrid MB/MPC method is computationally efficient and
effective in handling parametric uncertainties, disturbances, and
sensor noise, as demonstrated in numerical simulations (Psomiadis
and Papadopoulos, 2022).The integration of these advanced control
strategies ensures that OOS missions can be conducted with greater
precision and reliability, even in the face of complex environmental
challenges.

Furthermore, the growing interest in autonomous multi-robot
systems for space applications has led to the exploration ofNonlinear
Model Predictive Control (NMPC) for kinematically redundant
space robots. Unlike traditional high-level planning methods,
NMPC can incorporate collision avoidance directly into the
control constraints, providing real-time optimization of the robot’s
trajectory within a constrained workspace. Simulation studies
have demonstrated the effectiveness of NMPC in maintaining
control over a 7-DOF manipulator mounted on a 6-DOF free-
floating spacecraft, highlighting its potential for complex space
operations (Kalaycioglu and De Ruiter, 2023a; Wang et al., 2016).
These developments are paving the way for more sophisticated and
autonomous OOS missions, where robots can perform tasks with
minimal human intervention.

6.2 Cooperative manipulation in space
robotics

Achieving smooth and stable manipulation with multiple robot
arms in space presents a unique challenge. Unlike terrestrial
environments, where robots can rely on a stable base and
predictable forces, space introduces additional complexities such
as microgravity and the need for precise coordination to prevent
collisions andmaintain object stability during tasks. To address these
challenges, researchers have developed control methods that focus
on the object being manipulated rather than the individual arm
movements (Schneider and Cannon, 1992).

One significant advancement in this area is the development of
multiple impedance control (MIC) techniques, which consider the
object’s weight and external forces to ensure smoother interactions
between the robots and the manipulated object (Moosavian and
Papadopoulos, 2010). These advancements, along with recent
work on Optimal Control Allocation (OCA) and Nonlinear
Model Predictive Control (NMPC) for dual-arm coordination,
enable more sophisticated cooperative manipulation tasks in space
environments (Kalaycioglu and De Ruiter, 2023b).

Building on these advancements, new research has
demonstrated the effectiveness of NMPC strategies in real-time
trajectory tracking and collision avoidance for kinematically
redundant space robots. By translating collision avoidance into
control constraints, these strategies improve the system’s ability to
operate in complex environments with multiple obstacles, making
them highly suitable for OOS missions where precision and safety
are critical.

6.3 Overcoming challenges in object
simulation and interaction for space robots

Simulating and interacting with objects in space poses
unique challenges for robot control systems. Unlike controlled
environments on Earth, where objects and forces can be more
easily predicted andmanaged, space introduces complexities such as
irregular object shapes, multiple contact points, and the potential for
flexiblematerials.These factors can significantly impact the accuracy
and effectiveness of robot control systems during OOS missions.
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FIGURE 14
Phases of capturing a tumbling targe (Hirano et al., 2017).

To address these challenges, researchers have developed new
simulation methods capable of accurately modeling interactions in
the space environment. These advancements enable more precise
robot control during object manipulation tasks, ensuring that OOS
robots can perform their duties effectively even when dealing
with complex and unpredictable objects (Ma, 1995). The ability to
accurately simulate and manage these interactions is crucial for the
success of OOS missions, where precise control is required to safely
and efficiently manipulate objects in space.

6.4 Capturing moving objects with space
robots

Capturing objects in motion is one of the most critical tasks for
space robots, requiring precise control to avoid jerky movements
and ensure a smooth, stable grasp. This task is particularly
challenging in the space environment, where microgravity and the
lack of external reference points make it difficult to predict and
control the movement of both the robot and the target object.

Two key challenges in this area are coordinating movements
for a smooth grasp and matching gripper stiffness to the object’s
properties. Robots need to anticipate the object’s trajectory and
adjust their movements accordingly to avoid sudden stops or jerks
during capture (Ali et al., 1997).

Additionally, the gripper’s stiffness must be carefully controlled
to accommodate the object’s properties; a gripper that is too stiff can
cause the object to bounce away, while one that is too loose might
not secure the object properly (Yoshida et al., 2004).

Researchers have addressed these challenges by developing
control methods based on different mathematical models for
spacecraft with multiple robot arms (Ali et al., 1997). Additionally,
impedance control with “virtual mass” has been proposed to
dynamically adjust gripper stiffness, ensuring a secure and
smooth grasp of the moving object (Yoshida et al., 2004). These
advancements are critical for enabling space robots to effectively
capture and manipulate moving objects during OOS missions, as
demonstrated Figure 15, where a satellite capture experiment using
a nozzle cone is depicted.

Further advancements in this area include the development
of a control system that integrates trajectory planning with model
predictive control (MPC) for satellite-mounted manipulators. This

system improves the precision of capture maneuvers, particularly
in scenarios involving parametric uncertainties and disturbances
(Rybus et al., 2018). Additionally, the Modified Impedance Control
(MIC) concept, originally developed for real-time collision
avoidance and manipulation in unstructured environments, offers a
powerful approach for dynamically adjusting robot trajectories.This
concept allows the robot tomaintain collision-free trajectories while
incorporating the robot’s dynamics, constraints, and the avoidance
of singular configurations, making it highly suitable for real-time
applications in space (Kalaycioglu et al., 1993).

6.5 Sensor calibration and uncertainty
handling in space robotics

The unforgiving environment of space presents unique
challenges for robot sensor calibration and uncertainty handling.
Unlike their Earth-bound counterparts, robots in space often
lack the luxury of readily available calibration tools or controlled
environments, making it difficult to maintain the accuracy and
reliability of sensor data.

One major challenge is calibrating sensors without additional
tools. Traditional methods rely on specialized equipment that
is simply unavailable in the vast expanse of space (Aghili,
2000). To overcome this, researchers have developed innovative
approaches that allow robots to self-calibrate using their own
movements, effectively making them self-sufficient in maintaining
sensor accuracy.

Another significant hurdle is dealing with unexpected
forces during operation. Unforeseen disturbances during robot
arm movements can disrupt sensor readings, leading to
control errors (Aghili et al., 2001). Control system adjustments in
real-time can improve stability andminimize unwanted interactions
caused by these unexpected forces.

Finally, uncertainties about the robot or object’s properties
can also cause problems. Lack of precise information about
the robot’s characteristics or the target object’s properties can
lead to control errors (Abiko and Yoshida, 2010; Christidi-
Loumpasefski et al., 2020; Espinoza and Roascio, 2017).

Advanced control techniques based on “reaction dynamics” or
system identification with Kalman Filters can compensate for these
uncertainties, improving control accuracy despite the challenging
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TABLE 5 A Summary of methods and tools in feedback control.

Method/Tool Description Pros Cons

Planning Movements for Free-Flying
Robots (Papadopoulos and Dubowsky,

1991)

Considers both arm movement and
spacecraft stability for robots with

free-flying bases

-Enables coordinated motion for
complex tasks

-Requires complex modeling and
computational power

Multiple Impedance Control (MIC)
(Moosavian and Papadopoulos, 2010)

Improves cooperation between multiple
robot arms for object handling

- Ensures smooth and stable
interactions during manipulation. -
Adapts to object weight and forces

- Requires accurate object property
estimation

Simulation of Robot-Object Interaction
(Ma, 1995)

Develops simulations for complex
interactions between robots and objects

- Analyzes pre-mission for potential
challenges

- Considers complex shapes, contacts,
and materials

- May not perfectly replicate real-world
interactions

Impedance Control (Yoshida et al.,
2004)

Adjusts robot stiffness for object
handling tasks

- Enables smoother grasping and
manipulation

- Reduces risk of object damage

- Requires careful tuning of impedance
parameters

Neural Networks for Robust Control
(de et al., 2006)

Integrates neural networks with
traditional control for handling

uncertainties

- Improves robustness to unexpected
conditions

- Can be computationally expensive
- Requires training data

Model-Based Predictive Control with
Reaction Dynamics (Rekleitis and

Papadopoulos, 2014)

Analyzes a robot’s control system
beforehand for robustness to
unexpected object properties

- Predicts performance under changing
conditions

- Requires accurate robot and object
models

Sliding Mode Control (Ghosh Dastidar,
2010)

Maintains position and attitude control
during spacecraft maneuvers

- Simple and robust to uncertainties - May require high control effort and
fuel usage

Friction Compensation (CHEN et al.,
2011)

Reduces friction effects in complex
joints and gears for precise control

- Improves position and force control
accuracy

- Requires specialized hardware and
may increase complexity

Multiple Wrist Control for Soft Capture
(Uyama et al., 2012)

Uses a special wrist on the robot arm
for gentle object capture

- Minimizes impact forces during
grasping

- Requires additional hardware
complexity

Kalman Filter and Model Reference
Adaptive Control (Espinoza and

Roascio, 2017)

Estimates unknown robot properties
and adjusts control in real-time

- Adapts to unexpected situations - May require significant computational
resources

Dynamic Modularity (Wang et al.,
2017)

Adapts existing control systems for
free-flying robot arms with limited

modification possibilities

- Works with existing control systems - May not achieve optimal performance
compared to redesigned systems

Hardware-in-the-Loop (HIL) Testing
(Mou et al., 2018)

Allows testing and refining robot
designs before spaceflight in a
ground-based environment

- Reduces risks associated with space
missions

- Improves overall robot intelligence
and autonomy

- May not perfectly replicate all space
conditions

Spring-like Control for Safe Contact
(Flores-Abad et al., 2018)

Absorbs impact forces during
robot-object contact

- Reduces risk of damage to robots and
captured objects

- May introduce additional complexity
to the control system

Online Path Planning and Compliance
Control (Hirano et al., 2018a)

Combines real-time path adjustments
with compliant control for capturing

moving objects

- Enables grasping of moving targets
- Reduces contact forces

- Requires significant processing power
for real-time path adjustments

Learning Algorithm for Object
Identification (Zong et al., 2019)

Analyzes robot movements to identify
properties of a captured object

- Reduces need for prior object
information

- May require time to converge on
accurate identification

conditions (Abiko and Yoshida, 2010; Espinoza and Roascio,
2017). Additionally, new methods allow robots to quickly identify
their own properties without prior information, further enhancing
control accuracy (Christidi-Loumpasefski et al., 2020).

These advancements allow robots in space to operate effectively
despite the inherent uncertainties of their environment, ensuring
that OOS missions can be carried out with the necessary precision
and reliability.
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FIGURE 15
Satellite capture experiment with a nozzle cone (Yoshida et al., 2004).

6.6 Advanced control techniques for space
robotics

In addition to the conventional control techniques discussed
in previous sections, advanced methods such as Optimal Control
Allocation (OCA) and Nonlinear Model Predictive Control
(NMPC) are being explored to address the unique challenges
faced by space robotics. These techniques are particularly useful in
scenarios where the system is underdetermined or involves complex
dynamics, such as multi-rover systems with dual-armmanipulators.

The OCA technique focuses on minimizing a quadratic cost
function related to the torques, contact forces, and moments in the
system, ensuring that control inputs are optimized for efficiency
and effectiveness. Meanwhile, the NMPC approach accounts for
both current and future state estimates to optimize control inputs
over a specified prediction horizon. Recent research has shown that
while NMPC is computationallymore intensive, it provides superior
results in minimizing joint and wheel torques, as well as contact
moments and forces, especially when dealing with large payloads
in space (Kalaycioglu and Ruiter, 2023). Moreover, the introduction
of passivity-based NMPC (PNMPC) for multi-robot systems in
space offers a novel approach to ensure closed-loop stability while
maintaining high performance (Kalaycioglu and De Ruiter, 2023a).

These advanced control techniques are critical for addressing the
increasingly complex demands of space robotics, ensuring that OOS
missions can be conducted safely and efficiently, even in the most
challenging scenarios.

6.7 Specific applications of space Robot
Arm Control

Space robots play a crucial role in various tasks, and their control
systems need to be tailored to the specific application. Here are some
prominent examples:

• Space Stations (ISS): The Special Purpose Dexterous
Manipulator (SPDM) on the International Space Station

(ISS) is designed for delicate tasks requiring high
precision control (Mukherji and Rey, 2001).

• On-Orbit Servicing (OOS): Robots used for on-
orbit servicing of satellites require specialized features
and remote-control capabilities to handle complex
maintenance tasks (Landzettel et al., 2006).

• Docking Control: Minimizing unnecessary movements during
satellite docking maneuvers ensures a stable connection and
efficient fuel usage (Hiramatsu and Fitz-Coy, 2007).

• Building Large Space Structures: When constructing large
structures in space, control systems need to separate
the movements of fast-moving robots from the slower-
reacting structure itself to minimize vibrations (Boning and
Dubowsky, 2010).

• Satellite Capture: Capturing a satellite with a robot arm
presents a unique challenge. Control methods need to be
designed to prevent the robot from pushing the satellite away
during contact (Ma et al., 2015; Nakanishi and Yoshida, 2006;
Stolfi et al., 2017; Uyama et al., 2012).

• Tumbling Object Capture: Grasping a rapidly spinning object
requires advanced control systems that account for sensor
errors, delays, and the object’s unpredictable movements
(Hirano et al., 2017; 2018a; Wu et al., 2017).

• Robot Arm Control with Uncertainties: Analyzing the
control system’s ability to handle unexpected changes in the
environment is crucial for safe and reliable robot operation
(Rekleitis and Papadopoulos, 2014; Wang et al., 2017).

By tailoring control systems to the specific application, robots
can perform a wider range of complex tasks in the demanding
environment of space, ensuring thatOOSmissions can be conducted
safely and effectively.

7 Application of Machine Learning

Theburgeoning field of on-orbit servicing (OOS), encompassing
tasks like satellite repair and in-space assembly, promises to extend
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the life and capabilities of spacecraft. However, current approaches
often rely on rigid pre-programming and ground-based control,
limiting their ability to handle the complexities and uncertainties
of space operations. Machine learning (ML) offers a paradigm shift,
empowering spacecraft with the ability to learn, adapt, and make
real-time decisions autonomously. This section delves into how ML
is revolutionizing OOS, enhancing the precision, efficiency, and
adaptability of these missions. By exploring how ML algorithms are
applied in various aspects of OOS, we can glimpse a future where
intelligent spacecraft perform complex tasks with greater autonomy
and robustness.

Executing neural network (NN)-based software on orbit
introduces significant energy demands, a challenge that is
particularly acute in the constrained environment of space. To
mitigate this issue, edge and cloud computing approaches are
increasingly being integrated into space missions. Edge computing
allows for processing data closer to where it is generated, reducing
the need for constant communication with Earth and conserving
energy. Meanwhile, cloud computing offers a scalable solution
for handling the immense computational loads associated with
NN algorithms, offloading some processing tasks to ground-
based servers or distributed networks in orbit. By leveraging these
technologies, spacecraft can maintain the high performance of
ML-driven operations while efficiently managing their energy
resources, enabling longer mission durations and enhanced
capabilities (Huang et al., 2020).

A summary of methods and tools found in this section can
be found in Table 6.

7.1 Sensing of pose and state

Accurate knowledge of a spacecraft’s pose (position and
orientation) and state (dynamics) is critical for various OOS tasks,
including docking, manipulation, and inspection. Traditionally, this
information is obtained through a combination of sensors (cameras,
LiDAR) and complex mathematical models. However, ML offers
a powerful alternative, particularly when dealing with complex or
unstructured data, such as images from space. The integration of
ML into pose and state estimation processes is transforming how
spacecraft perceive and interact with their environment, leading to
more reliable and efficient OOS operations.

This subsection explores recent advancements in using ML
for pose and state estimation in OOS. A key challenge in space
applications is the variability of lighting conditions, which can
significantly affect sensor readings. (Hirano et al., 2018b). addressed
this issue by employing a Convolutional Neural Network (CNN)
to directly estimate an object’s pose from a single image. Their
CNN was trained on simulated data encompassing various lighting
scenarios (Figure 16), demonstrating the effectiveness of simulation-
based training for real-world tasks. This approach exemplifies how
ML can overcome the limitations of traditional methods in dynamic
and unpredictable environments.

Another approach leverages a combination of ML and existing
3Dmodels. (Chen et al., 2019). presented a method that utilizes ML
to identify specific features on a satellite’s image, followed by pose
calculation based on a pre-built 3D model. This strategy achieved
high accuracy and highlights the potential of integrating ML with

established techniques to enhance the reliability of OOS tasks.
Such hybrid approaches are becoming increasingly important as the
complexity of space missions grows.

Uncooperative spacecraft, which may not emit identification
signals, pose additional challenges. (Park et al., 2019). tackled this
by developing a CNN that first locates the spacecraft in an image
and then identifies key points for pose estimation using a 3Dmodel.
Their method employed data augmentation techniques to improve
robustness against unseen images, demonstrating its applicability for
non-cooperative targets. This method underscores the adaptability
of ML in handling diverse and challenging scenarios in space.

Similar to (Park et al., 2019; Proenca and Gao, 2020) focused
on pose estimation during close-proximity maneuvers, where
challenging lighting and cluttered backgrounds can hinder
traditional methods. They proposed URSO, a system that generates
realistic simulated space images for training a deep learning model
to analyze real photos and estimate poses. This approach highlights
the value of simulated data generation for tasks with complex
environmental conditions, paving the way for more robust and
adaptable OOS operations.

Beyond pose estimation, ML can also improve the control of
space objects. (Huang and Sands, 2023). presented a method that
utilizes ML to address inaccurate initial assumptions about an
object’s properties.Their approach employs mathematical equations
to learn the object’s true properties over time, leading to more
precise control, especially when initial information is limited. This
dynamic learning capability is crucial for enhancing the autonomy
and effectiveness of OOS missions.

These studies highlight the significant potential of ML for pose
and state estimation in OOS. As ML algorithms continue to develop
and computational resources becomemore accessible on spacecraft,
we can expect even more innovative and robust solutions for future
space missions, making OOS operations safer and more efficient.

7.2 Feedback control

This subsection explores recent advancements in using ML
for feedback control in OOS. Feedback control is vital for
maintaining the stability and precision of spacecraft and robotic
systems, particularly in the unpredictable environment of space. ML
techniques are increasingly being applied to enhance the adaptability
and robustness of these control systems, enablingmore effective and
autonomous OOS missions.

One common challenge in space robotics is controlling flexible
robotic arms. (Newton R. T. and Xu Y., 1993; Newton R. Todd
and Xu Y., 1993). addressed this by employing a neural network
that learns directly on the robot during operation, significantly
improving accuracy compared to traditional methods. This real-
time learning capability is essential for dealing with the dynamic
conditions encountered in space, where pre-programmed solutions
may fall short.

Formation flying, where multiple spacecraft maintain a specific
configuration, requires robust control systems that can adapt to
uncertainties. (Zou and Kumar, 2011). proposed two adaptive
neural network controllers that outperform traditional methods by
adjusting to unforeseen conditions. This adaptability is crucial for
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TABLE 6 A Summary of methods and tools in Machine Learning.

Method/Tool Notes

Neural networks for controlling robot arms Trains the robot arm directly on the robot as it moves, leading to significant
improvement in accuracy and adaptability to unexpected situations (Newton and

Xu, 1993a; Newton and Xu, 1993b)

Adaptive NN controllers for formation flying Improves spacecraft control in formation flying by adapting to uncertainties. The
first system can be fooled, but the second system avoids this issue and reduces

control effort (Zou and Kumar, 2011)

Fuzzy logic control system for spacecraft Improves spacecraft control by using a new type of fuzzy membership function. This
function allows for better separation between the fuzzy logic’s core aspects and its
uncertainty handling. The method ensures stability and improves performance

(Khanesar et al., 2015)

Neural network combined with control system design for spacecraft Controls a spacecraft with weak thrusters by learning its properties during flight.
This allows the system to reuse the learned information for similar missions later,

saving time and effort (Zeng and Wang, 2015)

Learning system for small space robots Improves the precision of small space robots during delicate close-up tasks by
combining real-time adjustments with lessons learned from past movements (Ulrich

and Hovell, 2017)

Convolutional Neural Network (CNN) for spacecraft attitude control Handles unexpected problems like faulty thrusters, outside forces, and unpredictable
movements of the spacecraft itself. The neural network learns and adapts to these

issues in real-time (Cao et al., 2018)

Soft Q-learning for robot arm training Trains robots with one or two arms to capture objects in space without needing a
perfect model of the robot by rewarding them for success and encouraging random

exploration (Yan et al., 2018)

Convolutional Neural Network (CNN) for object pose estimation Estimates a 3D object’s position and orientation (pose) in space using just a single
image. This method is effective for space missions due to its ability to handle

constantly changing light conditions (Hirano et al., 2018b)

Two-layer control system for formation flying Controls multiple spacecraft flying together by first setting performance goals and
then adding a learning-based control system that adapts to unexpected issues. This
adaptation happens in real-time without needing any prior information about the

spacecraft themselves (Stolfi et al., 2019; Wei et al., 2019)

Deep Neural Networks for robot arm control on free-floating spacecraft Learns how to control the robot based on data, including the flexibility and friction
of the joints. This allows the robot to follow a planned path while considering these

complexities (Stolfi et al., 2019)

Deep Deterministic Policy Gradient for robot arm control Controls a free-flying robot arm to capture objects in space without needing a
complex model of the robot. It uses a pre-training step to improve learning efficiency

(Du et al., 2019)

Reinforcement Learning for spacecraft attitude control Controls a spacecraft’s orientation by using a machine learning technique called
Reinforcement Learning. This method avoids complex calculations and refines the
controls over time to further improve performance (Allison et al., 2019; Ramadan

and Younes, 2019)

Combining machine learning and 3D modeling for object pose estimation Determines a satellite’s position and orientation (pose) from a single image. A
machine learning program finds specific features on the satellite’s image, then uses a

pre-built 3D model to calculate the satellite’s exact pose (Chen et al., 2019)

Two-step convolutional neural network (CNN) for object pose estimation Finds a spacecraft’s position and direction (pose) from a single image, even if the
spacecraft is not cooperating. This program disguises the training images with

different textures to improve its generalizability (Park et al., 2019)

Combining control methods, artificial intelligence, and external bump estimation
for robot arm control

Controls a free-flying robot arm in space with uncertainties and external bumps by
combining three techniques: 1) a special control method to reduce jittering, 2)

artificial intelligence to handle uncertainties, and 3) a technique to estimate external
bumps (Xie et al., 2020)
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FIGURE 16
Hardware simulator using realistic pictures to evaluate the
trained model (Hirano et al., 2018b).

ensuring the success of complex OOS missions involving multiple
spacecraft.

Another approach utilizes fuzzy logic control systems, known
for handling imprecise data. (Khanesar et al., 2015). enhanced a
fuzzy logic control system for spacecraft by introducing a new type
of membership function. This function separates the core aspects of
fuzzy logic from uncertainty handling, leading to improved stability
and performance. Such improvements are vital for maintaining
reliable control under the uncertain and variable conditions of space.

Uncertainties can also arise from a spacecraft’s unknown
properties or weak thrusters. (Zeng and Wang, 2015). proposed
a method combining a neural network with a control system
design to address this challenge. The neural network observes
the spacecraft’s behavior and learns its characteristics, enabling
the control system to maintain stability and achieve the desired
trajectory. This learned information can be reused for similar future
missions, improving efficiency and reducing the need for extensive
pre-mission calculations.

Precise control during delicate close-up tasks is particularly
critical for small space robots with limited thruster power.
Santaguida and Zhu (2023) developed an air-bearing microgravity
testbed to validate autonomous control algorithms for spacecraft
rendezvous and robotic capture of a free-floating target (Figure 17).
(Ulrich and Hovell, 2017) designed a learning system that combines
real-time adjustments with past experiences, allowing the robot
to progressively improve accuracy without exceeding thruster
limitations. Simulations and experiments (Figure 18) confirmed the
effectiveness of this method for precise robotic inspection tasks,
demonstrating the potential of ML to enhance the capabilities of
small, resource-constrained spacecraft.

ML can also enhance spacecraft attitude control, which refers
to maintaining a specific orientation. (Cao et al., 2018). introduced
a neural network-based approach for attitude control that can
adapt to unexpected events like thruster failures, external forces,
or even the spacecraft’s own movements. Simulations demonstrated
the effectiveness of this method in regulating spacecraft attitude,

highlighting its potential for improving the reliability and autonomy
of OOS missions.

Training robots for tasks like object capture in space traditionally
requires a precise model of the robot’s dynamics. (Yan et al., 2018).
proposed a method utilizing soft Q-learning, a type of artificial
intelligence, to train robots through trial and error, eliminating
the need for a perfect model. Simulations showed that this
method allows robots to grasp objects in various configurations,
underscoring the flexibility and adaptability that ML can bring to
space robotics.

Wei et al. (2019) addressed the challenge of maintaining
formation flying amidst uncertainties using a two-layer control
system. This system combines predefined performance goals with
a learning-based controller that adapts to unexpected situations
in real-time, without prior knowledge about the spacecraft.
Simulations confirmed this method’s effectiveness in keeping the
formation stable, demonstrating the potential of ML to enhance the
robustness of complex space operations.

Another complexity arises when controlling robot arms
mounted on free-floating spacecraft. These robots can
introduce disturbances due to their lightweight and flexible
structures. (Stolfi et al., 2019). proposed a method using Deep
Neural Networks to learn how to control the robot based on data
about its flexibility and joint friction, allowing for precise movement
while considering these complexities. This approach is particularly
relevant for OOS tasks requiring high precision and stability.

Similar to capturing objects, controlling free-flying robot arms
for tasks like grasping also benefits from ML. (Du et al., 2019).
introduced a Deep Deterministic Policy Gradient method to train a
robot arm for object capture. They incorporated a pre-training step
to improve learning efficiency. Simulations confirmed this method’s
effectiveness for a 3-degree-of-freedom robot arm, highlighting the
advantages of ML in optimizing complex robotic tasks in space.

Unforeseen disturbances and external bumps can hinder the
smooth and accurate control of free-flying robot arms. (Xie et al.,
2020). addressed this by combining three techniques: a control
method for reducing jittering, ML to handle uncertainties, and
a technique to estimate external bumps. Simulations validated
this method’s ability to achieve smooth and accurate control,
demonstrating the value of integrating ML into feedback
control systems.

Docking maneuvers can significantly alter a spacecraft’s
properties. (Zhao and Duan, 2020). proposed a method that
utilizes post-docking data to learn about the new combined
system and adjust controls accordingly. This method is particularly
useful because it works even with imprecise measurements and
unexpected external forces. Simulations confirmed its effectiveness
for controlling docked spacecraft, illustrating the adaptability of
ML-based control systems in dynamic and complex environments.

Precise spacecraft attitude control is crucial for various
missions. (Yao, 2021). proposed a method combining a basic
control system with a learning function and a safety net for
handling unexpected events. This method offers adaptability while
maintaining precise spacecraft orientation, as confirmed through
simulations. Such hybrid approaches are becoming increasingly
important as space missions grow in complexity.

When a spacecraft captures another object with robotic arms,
determining the combinedmass andmovement properties becomes
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FIGURE 17
Air-bearing microgravity testbed for autonomous spacecraft rendezvous and robotic capture at York University space Engineering lab (Santaguida and
Zhu, 2023).

FIGURE 18
Spacecraft proximity operation testbed at Carleton University. (Ulrich and Hovell, 2017).
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critical for maintaining control. (Zhao and Duan, 2021). proposed
two methods that “learn” these properties and adjust the controls
in real time. One method assumes a limit for external forces, while
the other even learns about the forces themselves. Both methods
work without needing prior knowledge about the captured object
and can handle limitations in thruster power. Simulations confirmed
that these methods are effective for controlling this newly formed
spacecraft combination.

Maintaining spacecraft attitude stability amidst external
disturbances is another challenge addressed by ML. (Zhang et al.,
2021). proposed an “online-learning control” method that
incorporates past control actions into its calculations, allowing for a
simpler andmore efficient system that achieves good performance in
simulations.This approach is particularly valuable for long-duration
missions where adaptability and efficiency are crucial.

Zheng et al. (2021) focused on keeping a spacecraft precisely
pointed (attitude tracking) during missions with uncertainties.
Their method combines a learning component that identifies these
uncertainties with a controller that uses both traditional methods
and this learning to maintain precise aiming. This method adapts
automatically and performswell in simulations,making it promising
for various observation missions.

Complex maneuvers, such as attaching to another object,
can be challenging to predict mathematically for control
purposes. (Liu et al., 2022). proposed amethod using reinforcement
learning, a type of AI that can learn the best control strategy
through trial and error, without a complex mathematical model.
This method is promising because it does not require extensive
upfront calculations. Simulations confirmed its effectiveness
for complex spacecraft maneuvers, demonstrating the potential
of ML to simplify and enhance the planning of intricate
space missions.

Elkins et al. (2022) explored using reinforcement learning for
real-time spacecraft attitude control. This approach allows the
spacecraft to “learn” and improve its movements over time, unlike
traditionalmethodswith fixed controls.Their research paves theway
for more adaptable spacecraft control, potentially leading to more
efficient and successful space missions.

Most recently, (Wei et al., 2023), addressed the challenges
of maintaining attitude tracking for a rigid spacecraft
with uncertainties and thruster limitations. Their method
combines two parts:

1. An Inertial-Free Base Controller: This part handles basic
attitude control without needing to know the exact properties
of the spacecraft.

2. Reinforcement Learning for Tuning: This part fine-tunes the
control system for better performance and robustness, even
with thruster limitations.

This method offers a simpler implementation than traditional
approaches and achieves good performance in simulations,
making it promising for real-world spacecraft applications.
As evident from these studies, ML offers a powerful toolkit
for feedback control in OOS. By adapting to uncertainties
and learning from experience, ML-based control systems can
enhance the precision, robustness, and efficiency of various space
operations.

7.3 Spacecraft guidance and navigation

This subsection explores recent advancements in using ML
for spacecraft guidance and navigation. ML has the potential to
revolutionize these areas by enabling spacecraft to “learn” control
strategies through trial and error, leading to more autonomous and
resilient systems. As missions become more complex, the ability to
adapt andmake real-time decisions becomes increasingly critical for
the success of OOS.

A key advantage of ML is its ability to learn from experience,
which is particularly useful in guidance andnavigation tasks. (Hovell
and Ulrich, 2020). investigated a deep reinforcement learning
method for spacecraft guidance. Unlike traditional methods that
require pre-defined strategies, this approach allows the spacecraft
to learn the optimal guidance strategy in a simulated environment.
Their findings with a simulated docking scenario show promise for
developing more autonomous spacecraft guidance systems in the
future, where adaptability and real-time decision-making are key.

Uncertainties in spacecraft location data can pose challenges for
navigation, particularly during complex maneuvers. (Boone et al.,
2022). addressed this issue by training a reinforcement learning
program to guide a spacecraft between Earth and the Moon. Their
approach incorporates these uncertainties into the training process,
equipping the programwith information about the range of possible
location errors. This allows the program to adapt to unexpected
situations during the transfer, making it a more robust solution for
spacecraft navigation.

Tipaldi et al. (2022) explored the broader potential of
reinforcement learning for various spacecraft control tasks,
including landing on other celestial bodies, managing formations
of multiple spacecraft, and planning efficient trajectories.
Reinforcement learning allows the spacecraft to learn the best
control strategies through trial and error, making it adaptable to
unforeseen circumstances. Their work highlights the importance of
designing effective training simulations and establishing safety and
reliability verification methods for AI-based control in spacecraft.
Overall, their research suggests that reinforcement learning has the
potential to equip future spacecraft with more onboard decision-
making capabilities, enhancing the autonomy and resilience of
space missions.

This subsection highlights the growing promise of ML for
spacecraft guidance and navigation. As these ML algorithms
mature and computational resources become more readily available
onboard spacecraft, we can expect even more innovative and
adaptable control systems for future space exploration endeavors.

7.4 Robot motion planning and control

This subsection explores recent advancements in using ML for
robot motion planning and control in space. Motion planning is
critical for robots operating in the challenging environment of
space, where they must perform complex tasks like debris capture,
inspection, and assembly. ML provides a way to enhance these
capabilities, allowing robots to plan and execute motions with
greater precision and adaptability.

A significant challenge involves planning motions for robots
with multiple arms operating on a free-flying spacecraft. (Wu et al.,
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FIGURE 19
Schematic diagram of (A) single arm robot, (B) double arm robot (Wu et al., 2020).

2020). addressed this by employing reinforcement learning to
train a two-armed robot to plan its movements in a simulated
environment. This approach allows the robot to react to moving
targets, unlike traditional offline planning methods that would
not work in this scenario. The robot learns through trial and
error without requiring a complex model, making it adaptable to
unforeseen situations. Figure 19 illustrates the schematic diagrams
of single-arm and dual-arm space robots.

Smooth motion planning is crucial for robots with multiple
arms, especially in free-floating environments. (Li Y. et al., 2021).
tackled this challenge using deep reinforcement learning. Their
method allows the robot to learn optimal paths while considering
joint limitations and avoiding collisions between the arms. This
method proved effective in simulations for both stationary and
spinning robots, showcasing the potential of ML to enhance the
safety and efficiency of robotic operations in space.

Another challenge involves controlling multiple robot arms for
tasks like debris capture. (Jiang et al., 2021). proposed a multi-agent
reinforcement learning approachwhere the arms learn to collaborate
and avoid collisions with each other and the target debris during
the capture process. Simulations showed this method to be more
accurate than traditional methods, making it promising for real-
world capture missions and highlighting the collaborative potential
of ML in multi-robot systems.

Robots can also learn from human demonstrations, but directly
imitating human motions can be inefficient for robots due to their
different physical capabilities. (Li C. et al., 2021). proposed amethod
that combines learning from demonstrations with robot-specific
limitations. This method also optimizes the movement plan to
reduce jitters and energy use.The authors validated this approach on
a ground-based robot imitating a bolt-screwing task, demonstrating
the value of combining human expertise withML to improve robotic
performance.

Planning smooth paths for a spacecraft with a robotic arm
requires considering various factors like arm movement, torque
limitations, and collision avoidance. (Santos et al., 2022). proposed
a method that incorporates these factors and utilizes ML to
improve planning accuracy and speed. Simulations confirmed
that this method is versatile and effective for various scenarios,

illustrating the broad applicability of ML in enhancing robotic
motion planning in space.

Finally, (Wang et al., 2023), addressed the challenge of
controlling a robot arm during object capture in space. The sudden
impact when the robot grabs the object can disrupt control. They
proposed a method that combines a special control technique to
handle the impact with a neural network that adjusts to the captured
object’s properties. This method ensures the robot can track the
desired motion while adapting to the captured object, underscoring
the importance of ML in maintaining precision and stability during
dynamic operations.

These studies showcase the significant potential of ML for robot
motion planning and control in OOS. As ML algorithms continue
to develop and computational resources become more accessible on
spacecraft, we can expect evenmore innovative and robust solutions
for robots performing complex tasks in space, ultimately enhancing
the autonomy and effectiveness of OOS missions.

7.5 Spacecraft learning and autonomy

The ability of spacecraft to learn and operate autonomously is
a critical frontier in space exploration. Traditionally, spacecraft rely
on pre-programmed commands and predefined control systems.
However, ML offers a promising approach for enabling onboard
decision-making and adaptation to unforeseen circumstances. As
spacecraft become more autonomous, they can perform more
complexmissionswith greater efficiency and resilience, reducing the
need for constant human intervention.

This subsection explores recent advancements in using ML to
enhance spacecraft autonomy. A key challenge involves controlling
a spacecraft’s orientation (attitude) in real time. (Ramadan and
Younes, 2019). proposed a method using reinforcement learning,
a type of ML that allows the spacecraft to learn through trial and
error. This method utilizes simpler models as a foundation for
initial control, followed by refinement through ML to optimize
performance. This approach holds promise for real-time control
of complex systems, as demonstrated in their spacecraft attitude
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control simulation, highlighting the potential of ML to enhance the
autonomy and adaptability of space missions.

Another approach to spacecraft attitude control with ML
is explored by (Allison et al., 2019). They investigated using
reinforcement learning to train an agent that can consider various
scenarios with limitations on the spacecraft’s thrusters or reaction
wheels. This method offers adaptability to various spacecraft
sizes without reprogramming, unlike traditional methods that
require specific spacecraft information. Their findings revealed
that reinforcement learning performs slightly better for spacecraft
with uncertain properties and achieves similar performance
for well-defined spacecraft compared to traditional methods.
This suggests that reinforcement learning is a promising new
approach for controlling complex spacecraft systems, particularly in
unpredictable environments.

Deep space missions pose unique challenges due to
unpredictable conditions. (Elkins et al., 2020). addressed this by
proposing a deep reinforcement learning method for spacecraft
attitude control. This method allows the spacecraft to “learn”
how to adjust its movements in real time in response to
unexpected forces and disturbances, even if they were not
encountered during training. A significant benefit is that
this controller can handle various spacecraft designs without
needing individual reprogramming. Simulations confirmed
the method’s effectiveness for large maneuvers and achieving
high pointing accuracy. This research paves the way for more
adaptable and robust spacecraft control systems in deep space
exploration.

Elkins et al. (2020) also explored developing a reinforcement
learning method suitable for less powerful computers, commonly
found on many spacecraft. Their system utilizes trial and error
to discover the most efficient ways to move the spacecraft,
even for large maneuvers. This method achieves pointing
accuracy exceeding typical standards. The study demonstrates
this concept in a simulated environment and proposes directions
for future research to make this system even more practical for
real-world spacecraft.

Harris et al. (2022) explored the concept of self-learning
spacecraft using deep reinforcement learning for complex missions.
Traditionally, spacecraft rely on pre-programmed commands. This
new approach allows the spacecraft to learn and adapt its decisions
in real time, potentially reducing mission costs. The authors
examined various challenges, including translating mission goals
into a language the AI understands, managing the complexity of vast
amounts of data, and ensuring the safety of these systems. Testing
this concept in simulations for tasks like maintaining position
and controlling orientation, their findings suggest this method is
promising and comparable to other solutions. This research lays the
groundwork forAI-powered decision-making becoming a reality for
future spacecraft.

In conclusion, these studies highlight the significant potential
of ML for enhancing spacecraft learning and autonomy.
As ML algorithms mature and computational power on
spacecraft increases, we can expect even more innovative
approaches for intelligent and adaptable spacecraft operations
in the future, leading to more successful and cost-effective
space missions.

8 Conclusion

This survey has provided a comprehensive overview of the
current state-of-the-art techniques in object state estimation,
motion planning, and feedback control for On-Orbit Servicing
(OOS) robots. By systematically reviewing these areas, we have
highlighted the strengths and limitations of existing approaches,
particularly in the context of the unique challenges posed by the
space environment.

One of the critical findings of this survey is the persistent
challenge of ensuring precise and safe manipulation inmicrogravity,
where traditional methods often struggle with uncertainties and
dynamic conditions. The integration of Machine Learning (ML)
into space robotics, while promising, remains underexplored,
with significant computational and reliability challenges that must
be addressed before these techniques can be fully leveraged in
operational environments.

This survey has identified several key areas where further
research is needed. These include improving the robustness of
object state estimation under varying space conditions, enhancing
motion planning algorithms to better handle real-time adjustments,
and advancing the integration of ML techniques into feedback
control systems. Addressing these gaps will be crucial for the
development of more autonomous and reliable robotic systems
capable of performing complex tasks in space.

In conclusion, this survey not only maps out the current
landscape of OOS robotic technologies but also provides critical
insights into the limitations and areas for future exploration.
By identifying these gaps and suggesting directions for further
research, we hope to contribute to the ongoing development of space
robotics, ultimately enablingmore sophisticated and reliable robotic
operations in the demanding environment of space.
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