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Global progress in competitive
co-evolution: a systematic
comparison of alternative
methods

Stefano Nolfi and Paolo Pagliuca*

Laboratory of Autonomous Robotics and Artificial Life (LARAL), Institute of Cognitive Sciences and
Technologies (ISTC), National Research Council (CNR), Rome, Italy

The usage of broad sets of training data is paramount to evolve adaptive
agents. In this respect, competitive co-evolution is a widespread technique
in which the coexistence of different learning agents fosters adaptation,
which in turn makes agents experience continuously varying environmental
conditions. However, a major pitfall is related to the emergence of endless limit
cycles where agents discover, forget and rediscover similar strategies during
evolution. In this work, we investigate the use of competitive co-evolution
for synthesizing progressively better solutions. Specifically, we introduce a
set of methods to measure historical and global progress. We discuss the
factors that facilitate genuine progress. Finally, we compare the efficacy of
four qualitatively different algorithms, including two newly introduced methods.
The selected algorithms promote genuine progress by creating an archive
of opponents used to evaluate evolving individuals, generating archives that
include high-performing and well-differentiated opponents, identifying and
discarding variations that lead to local progress only (i.e., progress against the
opponents experienced and retrogressing against others). The results obtained
in a predator-prey scenario, commonly used to study competitive evolution,
demonstrate that all the considered methods lead to global progress in the
long term. However, the rate of progress and the ratio of progress versus
retrogressions vary significantly among algorithms. In particular, our outcomes
indicate that the Generalist method introduced in this work outperforms the
other three considered methods and represents the only algorithm capable of
producing global progress during evolution.

KEYWORDS

competitive co-evolution, evolutionary robotics, local historical and global progress,
open-ended evolution, predator-prey robots

1 Introduction

Recent advances in machine learning have demonstrated the importance
of using large corpora of training data. In the context of embodied and
situated agents, this implies placing the agents in complex and diversified
environments. However, manually designing environments of this kind is
both challenging and costly. A convenient alternative is constituted by multi-
agent scenarios where adaptive agents are situated in environments with
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other adaptive agents with conflicting goals—a method known
as competitive co-evolution (Rosin and Belew, 1995) or self-
play (Bansal et al., 2017). In these settings, learning agents are
exposed to continuously varying environmental conditions due to
the behavioral changes of other adaptive agents. In other words,
these settings allow for the automatic generation of a large corpus
of training data.

Competitive settings also offer other important advantages.They
can spontaneously produce convenient learning curricula (Rosin
and Belew, 1997; Wang et al., 2021) in which the complexity
of the training conditions progressively increases while the skills
of the agents—and consequently their ability to master complex
conditions—also improve. Finally, such settings may naturally
generate a form of adversarial learning (Lowd and Meek, 2005),
where the training data are shaped to challenge the weaknesses of
the adaptive agents.

Unfortunately, competitive co-evolution does not necessarily
result in a progressive complexification of agents’ skills or
environmental conditions. As highlighted by Dawkins and Krebs
in the context of natural co-evolution (Dawkins and Krebs,
1979), the evolutionary process can lead to four distinct long-
term dynamics: (1) extinction: one side may drive the other
to extinction, (2) definable optimum: one side might reach a
definable optimum, preventing the other side from reaching
its own optimum, (3) mutual local optimum: both sides may
reach a mutual local optimum, and (4) endless limit cycle: the
race may persist in a theoretically endless limit cycle, in which
similar strategies are abandoned and rediscovered over and
over again.

Regrettably, pioneering attempts to evolve competing robots
consistently yield the last undesirable outcome described by
Dawkins andKrebs. Initially, there is true progress, but subsequently
agents modify their strategies, resulting in apparent progress. In
other words, they improve against the strategies exhibited by their
current opponents while retrogressing against other strategies that
are later adopted by opponents (Miconi, 2008). Consequently,
limit cycle dynamics emerge, where the same strategies are
abandoned and rediscovered repeatedly (Sinervo and Lively, 1996;
Miconi, 2009; Nolfi, 2012).

The generation of genuine progress requires the usage of
special algorithms that: (i) expose the adapting agents to both
current and ancient opponents (Rosin and Belew, 1997), (ii) expose
the adaptive agents to a diverse range of opponents (De Jong,
2005; Simione and Nolfi, 2021), and (iii) identify and retain
variations that lead to true progress only (Simione and Nolfi,
2021). Furthermore, analyzing competitive settings necessitates the
formulation of suitable measures to differentiate between true and
apparent progress and to evaluate the efficacy of the obtained
solutions.

In this article, we present a systematic comparison of
alternative competitive co-evolutionary algorithms, including
novel variations of state-of-the-art algorithms. We describe
the measures that can be used to analyze the co-evolutionary
process, discriminate between apparent and true progress,
and compare the efficacy of alternative algorithms. Finally,
we analyze whether the proposed methods manage to avoid
limit-cycle dynamics.

2 Materials and methods

2.1 Measuring progress

In evolutionary experiments in which the evolving individuals
are situated in solitary environments, the fitness measured during
individuals’ evaluation provides a direct and absolute measure of
performance. Fitness evaluation typically includes a stochastic factor
due to random variations of the initial state of the robot and of the
environment. However, these variations are not adversarial in nature.
Consequently, their impact can be usually be mitigated by evolving
solutions that are robust to these variations and by averaging the
fitness obtained during multiple evaluation episodes (Jakobi et al.,
1995; Carvalho and Nolfi, 2023; Pagliuca and Nolfi, 2019).

In competitive social settings, instead, the fitness obtained
during individuals’ evaluation crucially depends on the opponent(s)
situated in the same environment. Consequently, the method used
to select opponents has a pivotal effect on the course of the co-
evolutionary process.

The dependency of the fitness measure on the characteristics of
the opponents also affects: (1) the identification of the best solution
generated during an evolutionary process, (2) the estimation of the
overall effectiveness of a solution, and (3) the comparison of the
efficacy of alternative experimental conditions.

The former two problems can be tackled by identifying a specific
representative set of opponents knownas “champions,”which typically
includethebestopponentsproducedduringindependentevolutionary
experiments. The third issue can be resolved through a technique
called “cross-test.” In a cross-test, the best solutions obtained from
N independent evolutionary experiments conducted under one
experimental condition are evaluated against the best opponents
obtained from N different independent evolutionary experiments.

The dependence of the fitness measure on the opponent
characteristics impacts the method used to measure evolutionary
progress. In non-competitive settings, progress and retrogression
can be straightforwardly measured by computing the variation
of fitness across generations. Instead, in competitive settings,
measuring progress becomes more challenging.

As highlighted by Miconi (2009), we need to differentiate
between three types of progress: (i) local progress, i.e., progress
against current opponents, (ii) historical progress, i.e., progress
against opponents of previous generations, and (iii) global progress,
i.e., progress against all possible opponents. Local progress can
be measured by evaluating agents against opponents from recent
preceding generations. Historical progress can be assessed by
evaluating agents against opponents from previous generations.
These data can be effectively visualized using the “Current Individual
against Ancestral Opponents” (CIAO) plots introduced by (Cliff and
Miller 1995; Cliff and Miller, 2006). Finally, global progress can
be estimated by evaluating agents against opponents generated in
independent evolutionary experiments—opponents that differ from
those encountered during the evolutionary process. Additionally,
an indication of global progress can be obtained by evaluating
agents against opponents from future generations.The data obtained
by post-evaluating agents against opponents of previous and
future generations can be conveniently visualized using the master
tournament plots introduced by Nolfi and Floreano (1998).

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2024.1470886
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Nolfi and Pagliuca 10.3389/frobt.2024.1470886

2.2 Competitive evolutionary algorithms

In this section we will review the most interesting co-
evolutionary algorithms described in the literature and the methods
that we will compare in our experiments. These algorithms can
be applied to the evolution of two species that reciprocally affect
each other.

We focus our analysis on evolutionary algorithms attempting
to maximize the expected utility, i.e., the expected fitness against
a randomly selected opponent or the average fitness against all
possible opponents. Other researchers have explored the use of
competitive evolution for synthesizing Nash equilibrium solutions
(Ficici and Pollack, 2003; Wiegand et al., 2002) and Pareto-optimal
solutions (De Jong, 2004).

As previously mentioned, achieving true progress necessitates
the utilization of specialized algorithms that: (i) expose adapting
agents to both current and ancient opponents, (ii) evaluate adaptive
agents against a diverse set of opponents, or (iii) identify and retain
variations that lead to genuine progress.

The first method we consider is the Archive algorithm, as
introduced by Rosin and Belew (1997), see also (Stolfi et al., 2021).
The pseudocode of the Archive algorithm is provided in Algorithm
1. In this algorithm, a copy of the best individual from each
generation is stored in a “hall-of-fame” archive. Opponents
are then randomly selected from this archive using a uniform
distribution. Evaluating evolving agents against opponents from
previous generations clearly promotes historical progress. While
the production of global progress is not guaranteed, it can be
expected as a form of generalization. Indeed, the need to defeat
an increasing number of ancient opponents should encourage the
development of strategies that generalize to opponents not yet
encountered.

The second method that we will consider is the
Maxsolve∗algorithm (see Algorithm 2), a variation of the original
method introduced by De Jong (2005), see also (Samothrakis et al.,
2013; Liskowski and Krawiec, 2016). The Maxsolve algorithm

1. n_parents = 1, n_offspring = 40, mutation_range

= 0.02, learning_rate = 0.01, max_total_steps =

75 • 109

2. initializethe genotype of the parents (predator

and prey) randomly

3. initializethe archives (predator and prey) with

10 genotypes generated randomly

4. whiletot_steps < max_total_steps

5.   selected_opponents = select10 opponents

     randomly from the archive

6.   generateoffspring

7.   fitness = evaluateoffspring against

     selected_opponents

8.   computegradient

9.     updateparent

10.     appendthe fittest offspring to the

       archive

11.     current_generation + = 1

Algorithm 1. Archive algorithm.

1. n_parents = 1, n_offspring = 40,

max_archive_size = 25000, mutation_range = 0.02,

learning_rate = 0.01, max_total_steps = 75 • 109

2. initializethe genotype of the parents (predator

and prey) randomly

3. initializethe archives (predator and prey) with

10 genotypes generated randomly

4. whiletot_steps < max_total_steps

5.   selected_opponents = select10 opponents

     randomly from the archive

6.   generateoffspring

7.   fitness = evaluateoffspring against

     selected_opponents

8.   store fitness_data[agent][opponent]

9.   computegradient

10.   updateparent

11.   appendthe fittest offspring to the archive

12.   current_generation + = 1

13.   ifsize(archive) > 25000

14.     removea dominated agent from the archive

         (see text for details)

Algorithm 2. Maxsolve∗algorithm.

operates by using an archive containing a predetermined maximum
number of opponents. The size of the archive is kept bounded
by removing dominated and redundant opponents from it. The
domination criterion works for transitive problems, i.e., in problems
where agents A outperforming agents B, which in turn outperform
agents C, necessarily outperform agents C. To allow the algorithm to
operatewith non-transitive problems, like the predator and prey task
considered in this paper, we implemented the Maxsolve∗algorithm,
a variation of the original Maxsolve algorithm, which retains in
the archive the individuals achieving the highest performance,
on average, against the opponents of the 10 preceding phases,
where each phase corresponds to 1

10
of the total number of

generations. The method thus attempts to automatically select
high-quality champions that can promote the discovery of high-
quality solutions and minimize the time spent evaluating agents
against poor opponents (for a related approach, see Bari et al.,
2018). Clearly, the size of the archive plays an important role in this
method. Indeed, the smaller the size of the archive is, the smaller
the training data is. On the other hand, the smaller the size of the
archive is, the higher the minimization of the time spent against
poor opponents is. By systematically varying the size of the archive
(data not shown), we observed that the best results are obtained by
using relatively large archives, i.e., archives containing up to 25,000
opponents.

The third method is the Archive∗algorithm, a novel
approach introduced in this paper as a variation of the original
Archive algorithm described earlier. The Archive∗algorithm
operates by evolving N independent populations, each
contributing to the generation of a single archive. These evolving
populations are then evaluated against opponents selected
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1. n_parents = 10, n_offspring = 40,

mutation_range = 0.02, learning_rate = 0.01,

max_total_steps = 75 • 109

2. initializethe genotype of the parents (predator

and prey) randomly

3. initializethe archives (predator and prey) with

10 genotypes generated randomly

4. whiletot_steps < max_total_steps

5.   forp in range (n_parents)

6.     selected_opponents = select10 opponents

       randomly from the archive

7.     generateoffspring [p]

8.     fitness [p] = evaluateoffspring [p]

       against selected_opponents

9.     computegradient [p]

10.     updateparent [p]

11.     appendthe fittest offspring [p] to

       the archive

12.     current_generation + = 1

Algorithm 3. Archive∗algorithm.

from the shared archive. The pseudocode of the method is
reported in Algorithm 3.

The rationale behind this method lies in the use of multiple
populations, which enhances the diversification of opponents
included in the archive. Specifically, the Archive∗method
automatically generates multiple families of diversified champions,
representing alternative challenges for the evolving agent. The
Archive∗algorithm shares similarities with the population-based
reinforcement learning method proposed by Jaderberg et al. (2018).

Finally, the fourth method we propose is the Generalist
algorithm, introduced by Simione and Nolfi (2021) (see Algorithm
4). In this approach, agents are evaluated against a subset of
opponents, while the remaining opponents serve to discriminate
between agents who retained variations leading to global progress
and those who retained variations leading to local progress. This
information guides the preservation or discarding of individuals.
The subset of opponents used for agent evaluation is randomly
selected at regular intervals (every N generations) to maximize the
functional diversity of the subset. Unlike the previous algorithms,
the Generalist method does not rely on archives.

Another potential approach involves using randomly generated
opponents (Chong et al., 2009; 2012; Jaśkowski et al., 2013). The
primary advantage of this technique lies in the direct promotion
of global progress because agents are consistently evaluated against
new opponents. However, there is a significant drawback: the
efficacy of these opponents does not improve over generations.
Consequently, this method does not allow for the development
of agents capable of defeating strong opponents. In fact, the
performance obtained using this approach by Samothrakis et al.
(2013) were considerably lower than the performance achieved with
a variation of the Maxsolve algorithm described earlier.

The methods described above are meta-algorithms that should
be combined with an evolutionary algorithm to determine how
populations of individuals vary across generations. In previous

1. n_parents = 80, n_offspring = 40,

mutation_range = 0.02, learning_rate = 0.01,

max_total_steps = 75 • 109

2. initializethe genotype of the parents (predator

and prey) randomly

3. whiletot_steps < max_total_steps

4.  every20 generations

5.   performance [n_parents] [n_parents] =

evaluate(all_parents, all_opponents)

6.   selected_parents = select10 parents randomly

7.   selected_opponents = selectthe 10 opponents

with the highest performance against the 10

selected parents

8.   candidate_parents []

create-a-copy-ofselected_parents []

9.  forp in range (candidate_parents)

10.   generateoffspring [p]

11.   fitness [p] = evaluateoffspring [p] against

selected selected_opponents

12.   computegradient [p]

13.   updatecandidate_parent [p]

14.   every20 generations

15.   performance [n_selected_parents] [n_parents]

= evaluate(selected_parents, all_opponents)

16.   replacethe worst parents with the best

candidate_parents which outperform them.

17.   current_generation + = 1

Algorithm 4. Generalist algorithm.

studies, standard evolutionary algorithms or evolutionary strategies
were employed. Instead, in this work, we utilize the OpenAI-ES
algorithm (Salimans et al., 2017), which represents a “modern”
evolutionary strategy (Pagliuca et al., 2020). The OpenAI-ES
algorithm leverages the matrix of variations introduced within
the population and the fitness values obtained by corresponding
individuals to estimate the gradient of fitness. It then guides the
population’s movement in the direction of this gradient using
a stochastic optimizer (Kingma and Ba, 2014). Importantly, this
algorithm is well-suited for non-stationary environments. This is
because the momentum vectors also guide the population in the
direction of previously estimated gradients, thereby enhancing
the possibility of generating solutions effective against opponents
encountered in previous generations.

Below we include the pseudo-code of the algorithms. In all
cases the connection weights of the controllers of the robots were
evolved by using the OpenAI-ES algorithm (Salimans et al., 2017)
and by using the hyperparameters indicated in the reference. More
specifically, observation vectors were normalized by using virtual
batch normalization (Salimans et al., 2016; Salimans et al., 2017),
the connections weights were normalized by using weight decay,
the distribution of the perturbations of parameters was set to
0.02, and the step size of the Adam optimizer was set to 0.01.
The fitness gradient was estimated by generating 40 offspring, i.e.,
40 perturbed versions of the parent. The fitness of the evolving
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individuals corresponds to the average fitness obtained during 10
episodes in which they are evaluated against 10 different opponents
in 10 corresponding evaluation episodes. The fitness and the
perturbation vectors are used to compute the gradient of the
expected fitness, which is used to update the parameters of the parent
through the Adam (Kingma, and Ba, 2014) stochastic optimizer.
The predator and prey robots evolved in parallel. The evolutionary
process is continued until the total number of evaluation steps
performed exceeds 75 • 109.

In the case of the Archive and Maxsolve∗algorithms, the
parameters of the evolving robots were generated from a single
parent (a parent for the predator and a parent for the prey robots).
In the case of the Archive∗algorithm, they are generated from 10
parents. The generalist algorithm, instead, uses a population of 80
parents, evolves 10 candidate parents generated by creating a copy
of 10 parents selected randomly every 20 generations, and replace
the worst parents with the candidate parents outperforming them.
The performance of parents and of candidate parents are computed
by evaluating the parents against the full set of 80 opponents, i.e.,
by evaluating the candidate parents also against opponents not
encountered in the preceding generations. The steps performed to
evaluate performance contribute to increase the total number of
steps performed.

The Archive and Archive∗algorithms preserve the best robots
of each generation in archives that keep increasing in size during
the evolutionary process. The Maxsolve∗algorithm uses archives
that can grow up to a maximum size only. This is realized by: (i)
storing in a fitness_data [X][Y] matrix the average fitness obtained
by agents of generation X against opponents of generation Y, (ii)
computing the average fitness obtained by agents contained in the
archive against opponents of 10 subsequent evolutionary phases, and
(iii) eliminating one dominated agent selected randomly from the
archive in each generation. An agent is dominated when the average
fitness obtained against opponents of different phases is consistently
equal or lower than the average fitness obtained by another agent
included in the archive.

2.3 The predator and prey problem

We chose to compare alternative algorithms using a predator
and prey problem because it represents a challenging scenario
(Miller and Cliff, 1994). Additionally, this problem is widely
used for studying competitive evolutionary algorithms (Miller
and Cliff, 1994; Floreano and Nolfi, 1997a; Floreano and Nolfi,
1997b; Floreano et al., 1998; Nolfi and Floreano, 1998; Stanley
and Miikkulainen, 2002; Buason and Ziemke, 2003; Buason et al.,
2005; Jain et al., 2012; Palmer and Chou, 2012; Ito et al., 2013;
Georgiev et al., 2019; Lan et al., 2019; Lee et al., 2021; Simione and
Nolfi, 2021; Stolfi et al., 2021).

The predator and prey problem presents extremely dynamic,
highly unpredictable, and hostile environmental conditions.
Consequently, it necessitates the development of solutions that
are rapid, resilient and adaptable. Moreover, agents must exhibit
a range of integrated behavioral and cognitive capabilities,
including avoiding stationary and moving obstacles, optimizing
motion trajectories under multiple constraints, integrating sensory
information over time, anticipating opponent behavior, disorienting

FIGURE 1
The robots and the environment in simulation. The red and green
robots correspond to the predator and prey robots, respectively.

opponents, and adapting behavior in real time based on the
opponent’s actions (Humphries and Driver, 1970).

The robots in our study are simulated MarXbots (Bonani et al.,
2010) equipped with neural network controllers. The connection
strengths within the robots’ neural networks, which determine
their behavior, are encoded in artificial genotypes and evolved.
Specifically, predators are evolved to enhance their ability to capture
prey (i.e., reach and physically touch the prey) as quickly as possible,
while prey are evolved to maximize their ability to avoid being
captured for as long as possible.The fitness of predators corresponds
to the fraction of time required to capture the prey (see Equation 1).
The fitness of preys is the inverse of the fraction of time required by
the predator to capture them (see Equation 2).

Fpred =
NSteps −CStep

NSteps
(1)

Fprey = 1.0− Fpred (2)

In the equations above, NSteps denotes the maximum length of
the evaluation episode (1000 in our experimental scenarios), CStep
represents the step in which the predator succeeds in capturing the
prey, Fpred is the fitness of the predator, while Fprey indicates the
performance of the prey.

The simulated MarXbots are circular robots with a 17 cm
diameter.They are equipped with a differential drive motion system,
a ring of 24 color LEDs, 24 infrared sensors, 4 ground sensors, an
omnidirectional camera, and a traction sensor. In the experiments,
the LEDs of predator robots are set in red, while the LEDs of
prey robots are set in green. The robots were placed in a 3 ×
3 m square arena surrounded by black walls. The arena floor was
grayscale, varying from white to black from the center to the
periphery (see Figure 1).
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FIGURE 2
Performance of predators of different evolutionary phases evaluated against opponents of all phases. Results obtained with the Archive, Maxsolve∗,
Archive∗and Generalist algorithms. Data was collected by evaluating the predators of phase 0 (generation 0) and the subsequent 10 phases against
prey from phase 0 (generation 0) and the following 10 phases. The vertical and horizontal axes represent the phases of the predator and prey,
respectively. The color of each cell indicates the average performance of the predator against prey from the corresponding phases. The performance
of the prey is the inverse of the predator’s performance, i.e., it corresponds to 1.0 minus the predator’s performance (see Equation 2). The phases are
separated by 1

10
of the total generations. The results are averaged over 10 evolutionary experiments. Generally, the performance of predators from any

given phase (shown in any given row) improves (becomes redder) against opponents from previous generations (displayed in the first columns) and
declines (becomes bluer) against opponents from successive generations (displayed in the last columns). Similarly, the performance of prey from any
given phase (displayed in any given column) improves (becomes bluer) against opponents from previous phases (shown in the first rows) and worsens
(becomes less blue) against opponents from successive phases (displayed in the last rows).

The maximum wheel speed that the wheels of the differential
drive motion system could assume was 10 rad/s for the prey and
8.5 rad/s for the predators respectively. The relative speed of the two
robot types was adjusted to balance the overall complexity of the
problem faced by predators and preys, i.e., preventing one species
from reaching maximum or minimum fitness. The environment
state, robot sensors, motors, and neural network were updated at a
frequency of 10 Hz.

The neural network controller of the robot consists of
a LSTM (Long Short-Term Memory, see Hochreiter and
Schmidhuber, 1997; Gers and Schmidhuber, 2001) recurrent neural
network with 23 sensory neurons, 25 internal units, and 2 motor
neurons. The sensory layer includes 8 sensory neurons encoding
the average activation state of eight groups of three adjacent
infrared sensors, 8 neurons that encode the fraction of green or

red light perceived in the eight 45° sectors of the visual field of
the camera, 1 neuron that encodes the average amount of green
or red light detected in the entire visual field of the camera, 4
neurons encoding the state of the four ground sensors, 1 neuron
that encodes the average activation of the four ground sensors, 1
neuron that encodes whether the robot collides with an obstacle
(i.e., whether the traction force detected by the traction sensor
exceeds a threshold). The sensory neuron states are normalized in
the range [0.0, 1.0]. The motor layer includes two neurons encoding
the desired translational and rotational motion of the robot in the
range [0.0, 1.0].

To compare the relative effectiveness of the consideredmethods,
we continued the evolutionary process until a total of 75 billion
evaluation steps were performed. This ensures that the comparison
of the different techniques is fair.
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FIGURE 3
Performance of predators (red lines) and prey (green lines) from the last generation against opponents from the same generation (0) and opponents
from the 10 preceding phases (1–10), where 10 corresponds to opponents from the initial generation. The 10 phases are separated by 1

10
of the total

generations. The vertical axes represent the average performance while the horizontal axes represent the preceding phase of the opponents, where 0
correspond to opponents from the last generation and 10 corresponds to opponent from generation 0. Results were obtained using the Archive,
Maxsolve∗, Archive∗, and Generalist algorithms. Each plot represents the average results of 10 evolutionary experiments. These plots display the same
data as shown in the last row and last column of the matrices presented in Figure 2.

The experiments included in this article can be replicated
using the Evorobotpy2 tool which is available from the Github
repository https://github.com/snolfi/evorobotpy2. The source
code of the co-evolutionary algorithms and of the associated
experiments is available from the Github repository https://github.
com/snolfi/competitive-evolution.

3 Results

In this section, we present the results obtained using theArchive,
Maxsolve∗, Archive∗, and Generalist algorithms.The results include
data collected from 10 replication experiments conducted with each
algorithm, resulting in a total of 40 experiments.

Figure 2 displays master tournament data, i.e., the performance
of predator andprey robots of different generations evaluated against

opponents of previous, current, and future generations. The results
demonstrate that all considered methods exhibit historical progress
overall. Notably, the robots perform better against opponents from
previous generations than against those from successive generations
in most cases. Additionally, these data provide an indication of
global progress, as the robots of generation X + N perform
better against opponents from future generations than robots of
generation X in most of the cases. However, it is worth noting
that only the Generalist algorithm consistently produces progress
across all phases, resulting in monotonically better robots. The
other algorithms also exhibit retrogressions, albeit less frequently
than progress.

This qualitative difference is confirmed by Figure 3, which
illustrates the performance of the robots from last generation against
opponents from both the current and previous generations. The
Archive and Maxsolve∗robots of the last generations consistently
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TABLE 1 The cross-test of champion agents conducted using the
Archive, Maxsolve∗, Archive∗, and Generalist algorithms.

Predators

Archive Maxsolve∗ Archive∗ Generalist

Archive

MaxSolve∗ 0.05, p = .270

Archive∗ 0.15, p = .001 0.04, p = .112

Generalist 0.12, p = .007 0.13, p = .001 0.14, p = .001

Preys

Archive Maxsolve∗ Archive∗ Generalist

Archive

MaxSolve∗ 0.04, p = .933

Archive∗ 0.17, p = .003 0.12, p = .044

Generalist 0.27, p = .001 0.23, p = .001 0.24 p = 0.001

In each row, we evaluate the performance of agents evolved under the condition indicated in
that row against opponents evolved under the condition indicated in the corresponding
column. We then subtract the performance obtained by evaluating the agents against the
opponents indicated in the same row. Positive values indicate that the condition indicated in
the row outperforms the condition indicated in the column. The numbers denoted by “p = ”
represent the probability that the performance obtained against the two sets of opponents
belongs to the same distribution. Values in bold indicate cases where the difference in
performance is statistically significant (Mann–Whitney U-test with Bonferroni correction,
p-value <0.0167). The table is divided into two parts: the top section displays cross-tests using
predators as agents and preys as opponents, while the bottom section reverses the roles.

exhibit better and better performance against opponents of
the last four preceding phases only. The Archive∗robots of
the last generations consistently display better and better
performance against opponents of the last 3 phases (for predator
robots) and the last 5 phases (for prey robots) only. Only
robots evolved with the Generalist algorithm consistently
exhibit improved performance against older opponents across
all phases.

To identify the best performing method, we conducted cross-
tests comparing the champions of each algorithm against those of
each other algorithms. Each champion was selected from the best
predators and prey of the last 40 generations of the corresponding
replication. Consequently, we have 10 champion predators and
10 champion prey for each experimental condition. The cross-
tests were conducted by comparing the performance of a set of
10 champion agents evolved under one experimental condition
against champion opponents evolved under the same or a different
experimental condition. More specifically, cross-tests values were
computed according to Equation 3:

c12 =
10

∑
i=1,j=1

F(A1
i |O

1
j ) − F(A

1
i |O

2
j ) (3)

where c is the cross-test value, 1 and 2 denote the experimental
conditions being compared, F() indicates the performance (fitness),
A represents the agents, O represents the opponents, i and j are
indices for the 10 champion agents and opponents, respectively. The

FIGURE 4
Post-evaluation of the 40 predator champions obtained using four
different methods against the 40 prey champions obtained using the
same methods. The table consists of four sets of 10 rows and columns,
representing the performance of predator and prey champions from
the Archive (rows 0–9 and columns 0–9), Maxsolve∗(rows 10–19 and
columns 10–19), Archive∗(rows 20–29 and columns 20–29), and
Generalist (rows 30–39 and columns 30–39) methods. Each
champion is selected from a corresponding replication. Each pixel’s
color indicates the predator’s performance, while the prey’s
performance corresponds to the inverse of the predator’s one.

notation (x |y) indicates the evaluation of an individual x against the
opponent y. The symbol xki denotes the i-th individual (x) evolved
under the experimental condition k. Positive and negative cross-test
values indicate the superiority and inferiority, respectively, of the
first experimental condition over the second.

Table 1 presents the results of cross-tests conducted among
the four experimental conditions. Notably, agents evolved using
the Archive∗method significantly outperform those evolved with
the Archive method, for both predators and preys. Furthermore,
agents evolved using the Generalist method significantly
outperform agents from the other three methods, again for both
predators and preys.

To further validate the effectiveness of the alternative methods
and assess the generality of the solutions, we conducted an
additional analysis. Specifically, we evaluated the 40 champion
predators (obtained from each method in corresponding 10
replications) against the 40 champion preys. The results, displayed
in Figures 4, 5 and Table 2, reveal significant differences.
Notably, Generalist predator and prey champions outperform
the champions obtained with all other methods (Mann–Whitney
U-test with Bonferroni correction, p-value <0.0167). Moreover,
Archive∗predator and prey champions outperform Archive
predators and preys (Mann–Whitney U-test with Bonferroni
correction, p-value <0.0167). Instead, the performances of
Maxsolve∗and Archive predator and prey champions do not
significantly differ (Mann–Whitney U-test with Bonferroni
correction, p-value >0.0167).

As shown in Figure 4, the predators and preys obtained using
the Generalist method (displayed in rows and columns 30–39,
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FIGURE 5
The performance achieved by the 40 predator champions (top figure) and the 40 prey champions (bottom figure), evolved using the four different
methods across 10 replications of the experiments. The data refer to the post-evaluation phase (see also Figure 4). Boxes denote the interquartile range
of the data. The horizontal line inside the boxes represents the median value, while the green triangle in each box indicates the average fitness
value (see also Table 2). The whiskers extend to the most extreme data points within 1.5 times the interquartile range from the.

TABLE 2 Average performance achieved by the champion agents
evolved with the four different methods.

Predators

Archive Maxsolve∗ Archive∗ Generalist

0.282 [0.382] 0.335 [0.401] 0.415 [0.414] 0.572 [0.381]

Preys

Archive Maxsolve∗ Archive∗ Generalist

0.511 [0.415] 0.552 [0.419] 0.613 [0.403] 0.720 [0.369]

Data refer to the cross-test (green triangles in Figure 4). Data within squared brackets denote
the standard deviations. Bold values indicate the best results. The table is split in two parts:
the top section shows the performance obtained by the predator champions, while the
bottom one displays the fitness achieved by the prey champions.

respectively) achieve the best performance. Notably, the fifth and
sixth predator champions obtained with the Generalist algorithm
(Figure 4, rows 34 and 35) achieve a performance of at least
0.5 against 29 out of the 30 prey champions obtained using
the other three methods. Additionally, the seventh and eighth
prey champions obtained with the generalist algorithm (Figure 4,
columns 36 and 37) also achieve a performance of at least 0.5

against 29 out of 30 predator champions obtained using the other
three methods.

The analysis of the behavior displayed by the champions reveals
their acquisition of sophisticated behavioral skills. Specifically, some
of the champions demonstrate the ability to move both toward the
front and rear directions, skillfully alternating their direction of
motion based on the circumstances (as shown in Video 1, Appendix).
They exhibit the capability to capture and evade a wide range of
opponents.Moreover, theyremainrobustagainstadversarialbehaviors
exhibited by opponents in most cases; in other words, they are rarely
fooled by opponent strategies, despite those strategies have been fine-
tuned against them. The ability to alternate their direction of motion
dependingonthecircumstances ismorecommonlyobserved inagents
evolved using the Generalist algorithm.

An illustrative example of an agent vulnerable to specific
opponent behavior is the 8th champion predator obtained using
the Generalist method. While this predator is generally effective,
it proves fragile when confronted with the adversarial strategy
employed by the 7th champion prey. This prey displays an
oscillatory behavior that triggers a harmless spinning-in-place
response from the predator (see Video 2, Appendix). Another
instance of an agent vulnerable to specific opponent behavior is the
predator shown in Video 3 (Appendix). The 4th prey champion,
obtained through the Archive∗algorithm, effectively neutralizes
this specific predator by moving counterclockwise around it,
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consistently eliciting the same avoidable attacking behavior in
the opponent.

4 Conclusion

In this article, we delve into the conditions that drive competitive
evolution toward genuine progress, i.e., toward solutions that
become better and better against all possible opponents. Specifically,
we introduced a set of methods for measuring historical and global
progress, we discussed factors that facilitate genuine progress, and
we compared the efficacy of four algorithms.

The methods considered were the follows: (1) the Archive
algorithm (Rosin and Belew, 1997) that promotes global progress
by maintaining an archive of the best individuals from
previous generations. This permits to evaluate evolving individuals
against opponents of current and previous generations. (2) The
Maxsolve∗algorithm,i.e.,avariationoftheoriginalDeJong’salgorithm
(De Jong, 2005) adapted for both transitive and non-transitive
problems.This method also relies on an archive that, however, is used
to preserve only diversified individuals. (3) The Archive∗algorithm,
introduced in this paper, which extends the vanillaArchivemethodby
leveragingmultiple evolvingpopulations.This extensionallows for the
inclusion ofmore diverse individuals in the archive. (4)TheGeneralist
algorithm (Simione and Nolfi, 2021) that does not use an archive but
incorporates a mechanism for identifying and discarding variations
leadingto localprogressonly.Toanalyze the long-termdynamicsof the
co-evolutionary process, the methods were compared by performing
long-lasting experiments.

The results obtained in a predator-prey scenario, commonly
used to study competitive co-evolution, demonstrate that all the
considered methods lead to global progress in the long term.
However, the rate of progress and the ratio of progress versus
retrogressions vary significantly.

The Generalist method outperforms the other three methods
and is the only one capable of producing solutions that consistently
score better and better across generations against previous and
future opponents in successive evolutionary phases. The other three
methods also exhibit retrogression phases, although less frequently
than progression phases. Additionally, the Archive∗algorithm,
introduced in this paper, outperforms both the vanilla Archive
Algorithm and the MaxSolve∗algorithm. Overall, our results
demonstrate the utilization of proper methods can prevent the
convergence of the evolutionary process in limit-cycle dynamics,
which jeopardizes the appealing properties of competitive co-
evolution.

The superiority of the Generalist algorithm is also demonstrated
through visual comparisons of the behavior exhibited by the
evolving robots. Indeed, the ability to move bi-directionally and
appropriately alternate the direction of motion depending on the
circumstances, providing a significant advantage, ismore commonly

observed among the robots evolved with the Generalist algorithm
than among the robots evolved with other algorithms.

Future research should verify whether our results generalize
to other competitive settings and whether the continuation of
evolutionary progress can lead to an open-ended dynamic in which
the efficacy of the evolved solutions keeps increasing in anunbounded
manner.Theremarkableresults recentlyachievedwithLargeLanguage
Models also open the possibility to leverage the knowledge acquired
by these systems and their online learning capabilities to select useful
opponents. Pioneering attempts in this direction are reported in
Jorgensen et al. (2024) and Zala et al. (2024).
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Appendix

Video 1. Available from https://youtube.com/shorts/prpFwtN-
v3Y?feature=share

Video 2. Available from https://youtube.com/shorts/77mYMT
6CKnI?feature=share

Video 3. Available from https://youtube.com/shorts/hvrs2rcJV
dU?feature=share
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