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Collaborative robots (cobots) are increasingly integrated into Industry
4.0 dynamic manufacturing environments that require frequent system
reconfiguration due to changes in cobot paths and payloads. This necessitates
fast methods for identifying payload inertial parameters to compensate the
cobot controller and ensure precise and safe operation. Our prior work used
Incremental Ensemble Model (IEM) to identify payload parameters, eliminating
the need for an excitation path and thus removing the separate identification
step. However, this approach suffers from catastrophic forgetting. This paper
introduces a novel incremental ensemble learning method that addresses
the problem of catastrophic forgetting by adding a new weak learner to the
ensemble model for each new training bag. Moreover, it proposes a new
classification model that assists the ensemble model in identifying which
weak learner provides the most accurate estimation for new input data. The
proposed method incrementally updates the identification model while the
cobot navigates any task path, maintaining accuracy on old weak learner
even after updating with new data. Validation performed on the Franka Emika
cobot showcases the model’s superior accuracy and adaptability, effectively
eliminating the problem of catastrophic forgetting.

KEYWORDS

collaborative robots, payload dynamics identification, incremental learning, ensemble
learning, catastrophic forgetting

1 Introduction

Machine learning has become a pivotal tool in addressing various tasks in the
robotics field, offering accurate and reliable solutions to complex problems. Mimicking
the human ability to identify payload inertial parameters rapidly or without the
need for a separate identification process is one of the main goals in robotics, as
addressed by machine learning techniques (Taie et al., 2023; Taie et al., 2024). This
capability is crucial for cobots, as it allows them to adapt to dynamic manufacturing
environments. The payload inertial parameters include payload mass, center of mass, and
moment of inertia. Identifying these parameters is essential for achieving high-precision
manipulation tasks, ensuring effective collision detection (Gaz and De Luca, 2017), and
maintaining safety (Hamad et al., 2019), particularly in robots operated by model-based
controllers.
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Incremental ensemble machine learning that proposed in
(Taie et al., 2024) provides the payload identification model with
strong generalization abilities, enabling it to identify the payload
without the excitation path required for batch learning models and
traditional identificationmodels. However, the incremental learning
model suffers from the problem of forgetting old training data
after updating with new data, a challenge known as catastrophic
forgetting.

The key contributions of this work are:

• A novel incremental learning approach that addresses the
catastrophic forgetting problem.

• A new classification model that assists the ensemble
model in identifying which weak learner provides
the most accurate estimation for new input data,
thereby enhancing the overall accuracy of the
ensemble model.

• Getting strong generalization ability for payload inertial
parameter identification model by eliminating the need for
specific excitation path while handling the problem of the
catastrophic forgetting

The remainder of this work is structured as follows:
Section 2 illustrates the literature review, Section 3 presents
the proposed methodology, Section 4 explains payload
inertial parameters identification using the proposed method,
Section 5 illustrates the results, and Section 6 concludes
the paper.

2 Literature review

Accurate identification of payload inertia parameters is
critical across various robotic applications, significantly enhancing
performance and safety. In medical robotics, for instance, tasks like
Doppler sonography, minimally invasive surgery, and craniotomy
demand high-precision torque control. (Sandoval and Laribi,
2022). developed a recursive least squares model to identify
and compensate for tool inertia parameters, achieving an 80%
improvement in torque controller precision. The identification
process in this application follows an excitation trajectory
lasting approximately 40 s. Similarly, (Winiarski et al., 2021),
demonstrated that compensating payload parameters in a
service robot that uses the impedance control enhances position
error in the Z-axis by 70%, reducing the position error from
0.035 m to 0.01 m. In industrial applications, (Liu et al., 2024),
highlighted the importance of accurate payload identification
during slag removal processes, where tool parameter compensation
decreased the standard deviation of measured force values,
ensuring precise force reflection. The error in estimated tool
weight of the proposed method is about 1.64%. (Gaz and
De Luca, 2017). improved sensor less collision detection in
collaborative robots by implementing online payload inertia
parameter identification, achieving an estimation error of
approximately 1% with an excitation trajectory lasting over
15 s. These applications underscore the significance need for
advanced online identification techniques, such as ensemble
machine learning.

Ensemble learning represents a robust machine learning
approach that improves estimation accuracy by integrating the
outputs of several models, or “learners,” leading to results that
are more precise and resilient than those produced by any single
model. The ensemble techniques discussed in (Ganaie et al.,
2022; Dasari et al., 2023) encompass strategies such as bagging,
boosting, and stacking, where models can function independently
or in a sequential manner to enhance the ultimate prediction.
According to data from the Scopus database, the number of
academic papers focusing on ensemble learning in all disciplines
has notably surged, increasing from 4,700 papers in 2010 to
88,350 papers in 2023 (Scopus, 2024). The utilization of ensemble
machine learning is evident in diverse industries including
healthcare for diagnosing diseases, finance for forecasting stock
market trends, and cybersecurity for identifying potential risks
(Dasari et al., 2023).

Ensemble learning techniques enhance the efficiency and
performance of robotic arm applications through the integration
of multiple algorithms for tasks such as movement control,
calibration, and sensory perception. By employing a bioinspired
model that utilizes ensemble learning, optimization of sensor
and actuator duty cycles is achieved, resulting in decreased
power consumption and improved control efficiency. Many
algorithms are used to reach this aim such as Support Vector
Machine, k-Nearest Neighbors, Naïve Bayes, Logistic Regression,
and Multilayer Perceptron (Karlekar et al., 2023). Moreover,
the application of ensemble learning contributes to enhancing
the accuracy of industrial robot calibration, essential for precise
positioning in intelligent manufacturing, by combining multiple
calibration methods to achieve higher accuracy and robust
generalization (Li et al., 2022). Additionally, ensemble learning
plays a significant role in advancing sensory systems in robots,
such as the electronic nose, which utilizes semiconductor and
electrochemical sensors to accurately differentiate odors, even with
limited training data, achieving an accuracy rate exceeding 90%
(Li et al., 2021).

Our prior research (Taie et al., 2023) utilizes the batch
ensemble learning method to tackle the challenge of identifying
payload inertial parameters by avoiding noisy acceleration data,
this approach enhances identification accuracy. It employs two
different weak learners: a single-layer neural network (NN) and a
basic decision tree (DT).The NN weak learner demonstrates higher
accuracy when tested with real cobot data. Both weak learners are
trained using the batch learning method with data measured by
cobot joint sensors, including joint position, velocity, and torque
measurements. During data collection, the cobot manipulates
various payloads with different dynamic parameters.

The batch ensemble method proposed in (Taie et al.,
2023) is similar to the conventional method described in
(Kurdas et al., 2022; Kubus, Kröger, and Wahl, 2008; 2007;
Salah et al., 2020; Sandoval and Laribi, 2022), which can only
estimate the payload parameters while the cobot follows a specific
excitation path. This ensures that the estimation process achieves
the highest accuracy when the cobot adheres to the same excitation
path. Deviations from this path excitation can lead to errors
in the estimation results. The requirement for an excitation
trajectory in both approaches causes delays in reconfiguring cobot
settings for new tasks with different payloads, as the identification
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FIGURE 1
Proposed incremental ensemble method that handle the catastrophic forgetting problem.

FIGURE 2
Experimental setup.

process must be conducted separately using the designated
excitation path.

In small-batch production industries, it is common for cobot
tasks to change frequently, with variations in both payload and task
trajectory (Álvarez and Væhrens, 2022). Consequently, there is a
need for a swift method to identify payload inertial parameters,

which facilitates the rapid reconfiguration of cobot settings to
match the unique requirements of each new payload. This agile
methodology for task adaptation not only boosts the efficiency of
cobot operations (Hu et al., 2020; Farsoni and Bonfè, 2022) but
also streamlines production time by reducing delays linked to task
transitions.
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FIGURE 3
Adjustable payload design.

Our previous study (Taie et al., 2024) introduces a novel
technique for determining the inertial parameters of payloads for
collaborative robots (cobots) operating in dynamic manufacturing
environments characterized by frequent reconfigurations. This
technique eliminates the need for predefined excitation paths during
the parameter identification process, enabling the cobot to identify
parameters while following any arbitrary task path. The strategy
utilizes an IEM that incorporates incremental neural networks
as weak learners. This model adapts to new task paths while
ensuring precise payload parameter estimations. Nevertheless, the
model exhibits a tendency to forget previously learned information
when updated with new task data, highlighting an area for further
enhancement. This work serves as preliminary research for the
current paper, where we address the problem of catastrophic
forgetting. Catastrophic forgetting poses a substantial challenge in
continual learning, where the performance of a model on previously
acquired tasks diminishes as it learns new tasks (Ven et al., 2024).

Various strategies have been devised to tackle the catastrophic
forgetting problem. Rehearsal-based approaches, which entail
storing and replaying data from prior tasks, are effective but
can lead to a task-recency bias. In this scenario, newer tasks
overshadow older ones, leading to a decline in accuracy on
earlier tasks (Wong, Koh, and Dobbie, 2023). Pseudorehearsal
mechanisms generate synthetic data to mimic past experiences,
alleviating data storage problems, yet they may not accurately
replicate the original data distribution (Robins, 2022). Gradient-
based optimization techniques demonstrate potential in retaining
knowledge over long sequences of tasks, particularly when tasks

reappear, but their effectiveness is constrained by the frequency of
data reoccurrence (Lesort et al., 2022). Federated Class-Continual
Learning (FCCL) strategies like TARGET employ exemplar-free
distillation to transfer knowledge from previous to new tasks
without storing actual data, thus preserving data privacy. However,
they may struggle with non-independent and identically distributed
data issues (Zhang et al., 2023). Transfer learning and knowledge
distillation methods translate new data to reconstruct old data
distributions and utilize old models to guide new ones, effectively
mitigating forgetting but requiring meticulous implementation to
prevent overfitting (Cheng et al., 2023).

Ensemble learning can effectively tackle the problem of
catastrophic forgetting, as demonstrated in (Shi, 2023). The
proposed ensemble model effectively prevents performance
degradation in neural machine translation by combining multiple
models and utilizing incremental learning techniques. Additionally,
the Dynamic Scalable Self-Attention Ensemble (DSSAE) model
introduced in (Ye and Bors, 2023), addresses catastrophic
forgetting in Task-Free Continual Learning by dynamically
adding Vision Transformer (ViT)-based experts based on sample
novelty, eliminating the need for task-specific labels and ensuring
optimal expert numbers. These methods collectively highlight the
potential of ensemble learning to effectively mitigate catastrophic
forgetting.

Despite the numerous techniques developed to address the
issue of catastrophic forgetting, no method has yet been able to
completely eliminate this problem, particularly in the context of
payload parameter identification applications.
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FIGURE 4
Classification process result for the cobot path in cartesian space.

TABLE 1 The inertial parameters of the real testing payload.

Parameters m mrx mry mrz

Unit (kg) (kg.m)

values 1.34011 −0.01608 0.01608 0.03654

Parameters Ixx Ixy Ixz Iyy Iyz Izz

Unit (kg.m2)

values 0.00742 0 −0.00108 0.00742 0.00108 0.00982

3 The proposed methodology

The proposed methodology presented in Figure 1 aims at
addressing the problem of catastrophic forgetting while performing
incremental learning process. The methodology is divided into
threemain processes: classification, incremental learning and online
estimation. The classification process checks if the new data point
Xnew belongs to the data range of the previously trained model.
The process moves to online estimation. If the point is outside the
trained data range, the incremental learning process is triggered
before estimation.

3.1 Classification process

The primary objective of the proposed classification process
presented in Algorithm 1 is to segment the input data into clusters,
or “bags,” based onpredefined thresholds. Each bag can be visualized
as a sphere, with the threshold representing its radius. These bags
are formed incrementally and used to incrementally train specific
weak learners, which are responsible for estimation process for any
new points that fall within their respective spaces. When the new
data point Xnew is given to the algorithm, it is classified online to
determine whether it belongs to or is distant from the space of the
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TABLE 2 Comparison of MAE of Estimation of Payload Inertial Parameters Between BEM, Old IEM and proposed IEM, all trained and tested by the
excitation path.

Parameters m mrx mry mrz

Unit (kg) (kg.m)

MAE

BEM 0.00649 0.005377 0.004011 0.00301

Old IEM 0.00655 0.006354 0.004695 0.007396

Proposed IEM 0.00657 0.007127 0.00654 0.003422

Parameters Ixx Ixy Ixz Iyy Iyz Izz

Unit (kg.m2)

MAE

BEM 0.019836 0.006947 0.003738 0.00649 0.0047 0.00369

Old IEM 0.000662 0.000432 0.000637 0.000968 0.001538 0.000568

Proposed IEM 0.000382 0.00102 0.001033 0.00101 0.000364 0.000267

TABLE 3 The new task path start position and final position are represented in joint space.

Joint angles q0 q1 q2 q3 q4 q5 q6

Start position (degree) 0 −45 0 −135 0 90 45

Final position (degree) −12 52 −14 −96 19 146 8

TABLE 4 Comparison of MAE of estimation of payload inertial parameters between BEM, Old IEM and proposed IEM while the cobot follows
novel task path.

Parameters m mrx mry mrz

Unit (kg) (kg.m)

MAE

BEM 13.2357 5.6501 1.7456 2.8403

Old IEM 0.010036 0.005612 0.006282 0.008791

Proposed IEM 0.007293 0.0084387 0.009467 0.006906

Parameters Ixx Ixy Ixz Iyy Iyz Izz

Unit (kg.m2)

MAE

BEM 0.1606 0.0003 0.0053 0.1705 0.0113 0.2528

Old IEM 0.000662 0.000432 0.000637 0.000968 0.001538 0.000568

Proposed IEM 0.00056 0.000445 0.001164 0.000953 0.000674 0.00043

existing bags. If Xnew does not fit within any current bag, it will be
used to form a new bag.

3.2 Incremental learning process

The objective of the proposed incremental ensemble learning
process is to update the model with new data Xnew without

encountering the catastrophic forgetting problem. The proposed
method shown in Algorithm 2 consists of two steps. The first step
involves incremental learning by generating a new weak learner for
the new bag by copying the nearest bag’s weak learner. Once the
new bag and weak learner are established, the process proceeds
to the second step, in which incremental learning is performed
while the new bag is formed. Incremental learning during the
formation of a new bag is achieved by updating the weights

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2024.1470163
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Taie et al. 10.3389/frobt.2024.1470163

FIGURE 5
Comparison between MAE of the IEMs before and after the update process, the test is performed using the old excitation path data.

FIGURE 6
Identification time of the new task path.

of the weak learner based on the new data. The weak learners
in the proposed IEM are single-layer neural networks that are
incrementally trained with new data by the Stochastic Gradient
Descent (SGD) optimization algorithm. SGD is selected for its fast
computation speed (Zhou et al., 2021).

3.3 Estimation process

The proposed ensemble model comprises several weak learners,
the most accurate output is the output of the weak learner trained
with Xnew training data or the output of the weak learner that Xnew
falls into its bag space. So, the output vectorY of the ensemblemodel
is determined as follows in Equation 1:

Y =
I

∑
s=1

nsŶ s (1)

where Ys is the inertial parameters estimated from weak learner s.
The selection factor of the weak learner s, denoted as ns is defined as
follows in Equation 2:

ns =
{
{
{

1, if index(nearest bag) = s

0 , else
(2)

4 Payload inertial parameters
identification using the proposed
method

In this section, the proposed method is adapted to solve
the problem of payload inertial parameters identification. In
this framework, real cobot measurements are employed for
estimation, while cobot simulators with training payloads are
used for collecting data for incremental learning. Both real
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1. Inputs:New data point (Xnew),predetermined

thresholds (σ)

2. Outputs:list of bags (bags), vector of mean

value of each bag (V), nearest bag index (i)

3. Initialize an empty bag

4. Initialize an empty V

5. for each new data point Xnew do

6.   Xnewbelongs to bag space = False

7.   if V is not empty then

8.    for each mean value Vsin V do

9.     Calculate the Euclidian distance ds

10.     Add dsto Euclidian distance vector d

11.     if ds< σ then

12.      Add Xnewto bags

13.      Calculate the mean value of bags as Vs

14.      Update the value of Vs in V

15.      Xnewbelongs to bag space = True

16.      i= index (min (d))

17.     break

18.    end if

19.   end for

20.  end if

21. if Xnewbelongs to bag space = False then

22.   Create a new bag

23.   Add Xnewto this new bag

24.   Add the new bag to bags

25.   Calculate the mean value of the new bag as

Vnew

26.   Add Vnewto V

27.   Xnewbelongs to bag space = True

28.   i= index (V(Vnew))

29.  end if

30. end for

Algorithm 1. Data classification and online bags formation.

cobots and simulators work concurrently to perform the new
task path.

The Franka Emika Cobot, which features seven revolute joints
and a maximum payload capacity of 3 kg, serves as the test
platform for this methodology. The setup for both the simulation
and the real cobot is identical, as depicted in Figure 2. The
payload is securely mounted on the cobot’s end effector, ensuring
that the base frame, end effector frame, and payload center of
mass frame are consistent between the simulation and the real
cobot. This uniformity in setup allows the simulation environment
to accurately collect training data for the payload currently
attached to the real cobot’s end effector, with both the simulator
and the real cobot sharing the same configuration and moving
in tandem.

Thepayload used in the training process and testing experiments
is sourced from (Taie et al., 2023). It is designed to permit
independent adjustments of mass and center of mass components.
The setup, shown in Figure 3, features a container with four slots
for three metal weights each. Each weight is 0.275 kg, and the

container weighs 0.790 kg. Changing weight placement affects rx.,
ry, or both, while position shifts within one slot adjust rz. The
overall payload mass can vary by altering the number of weights
used. This design accommodates various payload configurations
for simulators. In the training data collected from the simulator,
the payload mass starts with the empty container’s weight and
increases by adding weights incrementally, up to five.The total mass
with five weights reaches 2.163 kg, staying within the maximum
payload limit. This method ensures operational safety and prevent
reflex errors in the cobot controller during variable trajectories.
A total of 77 unique payload are used to ensure diversity of the
training data.

4.1 Path classification

The input of our algorithm is new path points qnew in joint
space, denoted by Equation 3, which is used with the cobot’s forward
kinematic model to calculate the end effector’s position in Cartesian
space, as illustrated in Equation 4.

qnew = [q0new ,q1new ,q2new ,q3new ,q4new ,q5new ,q6new] (3)

Rnew = FK (qnew) = (Xnew,Ynew,Znew) (4)

In addition, the mean vectors of existing bags in joint space and
in cartesian space are stored as presented in Equations 5, 6 where s
refers to the training bag index.

qs = [q0s ,q1s ,q2s ,q3s ,q4s ,q5s ,q6s] (5)

Rs = (Xs,Y s,Zs) (6)

The Euclidean distance vectors in joint space (ds) and in
cartesian space (Ks) is calculated between the new point data (qnew
and Rnew) and the mean vectors (qs and Rs ) for every bag as shown
in Equations 7, 8.

ds(qnew,qis) =
√

j

∑
i=1
(qinew − qis)

2 (7)

K s(Rnew,Rs) = √(Xnew −Xs)
2 + (Ynew −Y s)

2 + (Znew −Zs)
2 (8)

The predetermined threshold in the joint space is (δ) and in
Cartesian space is (ρ). If (ds < δ) and (Ks < ρ), it means the qnew
belongs to the space of bag (s) at that time the measured data of
point qnew in the real cobot can be used directly with the estimation
process. If this condition is not true, the qnew and Rnew will be
used to form a new bag incrementally based on the predetermined
thresholds till the end of this task path.

The process of creating the initial training bags is applied by
using the excitation path sourced from (Taie et al., 2023). The
classification process results are presented in Figure 4.The path data
is automatically divided into 4 bags based on δ value that equal 30°
and ρ value that equal 0.2 m. The new bags can be added based on
the values of the thresholds. Each bag has its own mean value that
accurately representing that particular segment of the path. Only the
mean value of each bag will be stored to be used in classifying the
new coming points.
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4.2 The payload parameters identification
process

The identification process is initiated immediately after
the classification process, but only if the new path point
falls within the space of an existing training bag. The
proposed IEM is employed to estimate the payload inertial
parameters online, utilizing real cobot measurements. The
output vector of the estimation model is defined as follows in
Equation 9:

ϕ = [m,mrx,mry,mrz , Ixx, Ixy, Ixz , Iyy, Iyz , Izz] (9)

The input vector (X) of the proposed estimation
model consists of joint angles (qnew), joint velocities
(q̇new) and joint torques (τnew) as detailed in
Equations 10–12.

qnew = [q0new ,q1new ,q2new ,q3new ,q4new ,q5new ,q6new] (10)

q̇new = [q̇0new , q̇1new , q̇2new , q̇3new , q̇4new , q̇5new , q̇6new] (11)

τnew = [τ0new,τ1new,τ2new,τ3new,τ4new,τ5new,τ6new] (12)

The training process described by Algorithm 2 is repeated for
every task path point (qnew) that falls outside the space covered
by the old training dataset. Once the training is complete, the
input data for the path point (qnew) is measured from the real
cobot joints. This data is then used in the estimation process with
the updated model. The cobot simulators operate simultaneously
with the real cobot to provide training data for the point
(qnew). The training sample at this point consists of an array of
input data (X) and output data (ϕ) from 77 training payloads,
sourced from (Taie et al., 2023).Theoptimization of theweak learner
parameters is performed incrementally by iterating over the 77
training points.

5 Results

The results presented in this section evaluate the performance
of the proposed Incremental Ensemble Model (IEM) in
identifying payload inertial parameters, The real testing payload
parameters is shown in Table 1. The testing payload parameters
are entirely new. These unseen parameters are crucial in
assessing the model’s ability to generalize to previously unseen
data. The experiments were designed to test the model’s
accuracy and its ability to mitigate the problem of catastrophic
forgetting, comparing it against the Batch Ensemble Model
(BEM) and an older Incremental Ensemble Model. The key
metrics used to assess performance include the Mean Absolute
Error (MAE) for parameters such as mass, center of mass,
and moment of inertia The machine used to perform the
experiments operates on the Ubuntu operating system, boasting
8-core CPU running at 2.30 GHz, complemented by 16 GB
memory capacity.

1.  Inputs:New data point Xnew,the new training

Sample (X,Y), nearest bag index (i), weak learners

(W)

2.  Output:Estimated output ̂Y

3.  Initialize the nearest weak learner Wi = W(i)

4.  Create a new weak learner Wnew = copy(Wi)

5.  Wnew = Incrementallearning(Wnew, (X,Y))

6.   ̂Y = Wnew.predict(Xtest)

Function: Incrementallearning

7.  Inputs:weak learner Wnew, training sample (X,Y)

8.  Output:Updated weak learner Wupdated

9.  Initialize learning rate α

10.  Initialize activation function ReLU()

11.  Wnew →   ̂Y = ReLU(aX+b)

12.  L = 1

N

N

∑
k=1
(Yk − ̂Yk)

2

13.  ∇aL =
∂L
∂a
,∇bL =

∂L
∂b

14.  anew = aold −α∇aL

15.  bnew = bold −α∇bL

16.  Wupdated →   ̂Y = ReLU(anewX+bnew)

17.  End Function

Algorithm 2. The Proposed incremental learning algorithm.

5.1 Identification results comparison
between proposed IEM and prior models
using the excitation path data

The aim of this section is to ensure that the accuracy of
the proposed IEM matches that of the batch ensemble learning
model proposed in (Taie et al., 2023) and the previous incremental
model proposed in (Taie et al., 2024) in estimating payload
inertial parameters. The training and testing of the three models
were conducted using the same excitation path data shown in
Figure 3. The mean absolute error (MAE) for the three models
are compared in Table 2. Notably, all models demonstrated a
comparable level of accuracy across most inertial parameters.
However, the proposed IEM significantly outperforms the batch
ensemble model (BEM) and the old IEM in predicting some of
inertia tensors parameters such as Ixx , Iyz and Izz.

5.2 Identification results comparison
between proposed IEM and prior models
using the novel path data

The objective of this section is to compare the MAE of the
proposed IEM, old incremental model and the batch learningmodel
when the cobot follows a novel linear path. The start and final
positions of this path are shown in Table 3. Unlike the sinusoidal
excitation path used during training, this task path is planned to
move all cobot joint angles linearly to reach the final position. The
estimation results in Table 4 show that the BEM totally fails to
identify any of the payload parameters with a large value of the
mean absolute error through the path. The proposed and the old
incremental ensemble methods succeeded in adapting the model
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with the new path data and giving accurate estimations for the
payload parameters. The MAE of the proposed method estimations
for mass, center of mass and the moment of inertia parameters are
0.007 (kg), 0.008 (kg.m) and 0.0007 (kg.m2) respectively.

5.3 Evaluating the forgetting problem in
the proposed IEM and prior models

In this section, we evaluate the proposed algorithm’s ability to
address the problem of catastrophic forgetting. A comparison is
made between the old IEM and the proposed IEM. Both models are
tested twice using the old excitation path data: once before updating
with new path data and once after. The results in Figure 5 show
that the MAE of the mass, center of mass, and moment of inertia
parameters for the old IEM increases to 0.037 (kg), 0.025 (kg.m),
and 0.0022 (kg.m2), respectively, after the update. In contrast, the
proposed IEMmaintains the same level of accuracy in estimating all
parameters both before and after the update.

A limitation of the proposed method is its tendency to increase
the size of the ensemble model. Specifically, the number of bags and
weak learners will continue to grow until the entire cobot working
space is covered. Experimental results indicate that the time (T)
required to determine whether a new point belongs to a specific
bag is approximately 0.001 s. Consequently, as the number of bags
increases, the total classification time increases linearly without
affecting the accuracy of themodel. However, storing only the center
of each bag will reduce the amount of data required to be stored.
Also, the threshold value can reduce the number of formed bags.

5.4 Identification time for the proposed
IEM

In this section, we evaluate the identification time. According
to the classification process, if a new point belongs to one of the
existing bag spaces, it is sent directly to the identification process,
which is performed instantaneously. This instantaneous response
is one of the advantages of ensemble learning identification, as
explained by (Taie et al., 2023). Our experiment verifies this, with
the identification time for each single new point being just 0.003 s.

However, if the new point does not belong to an existing bag, a
new bag begins to form, and a new weak learner is updated with the
new data. In this case, the process of online estimation is performed
for each point, with each new point taking about 0.012 s to identify
the payload parameters. Figure 6 shows the absolute error of the
online estimation of the payloadmass and center ofmass versus time
as the cobot follows the new task path.The total task path time is 6 s.
The convergence time for the estimation of the mass and center of
mass parameters is approximately 2 s, while the convergence time
for the moment of inertia parameters is around 1 s.

6 Conclusion

The proposed IEM effectively adapts to new task paths,
maintaining a low MAE for parameters such as mass, center
of mass, and moment of inertia, even with the introduction of

new task data. Furthermore, the proposed IEM mitigates the
catastrophic forgetting problem more effectively than old IEM by
incorporating new weak learners updated with the new task data,
rather than merely adjusting the weights of the original weak
learners. Old IEM experienced increased MAEs for all parameters
after updating, whereas the proposedmethodmaintained consistent
accuracy levels.

Additionally, while the BEM struggled to accurately identify
payload parameters along new task paths, resulting in high MAE
values, the incremental models achieved significantly lower MAEs,
ensuring better performance and reliability.

However, a notable limitation of the proposed method is the
potential for continuous growth of the ensemblemodel, as newweak
learners are added with each new task path until the entire cobot
working space is covered, leading to increased computational and
storage demands over time. Despite this limitation, the proposed
IEM offers substantial improvements in adapting to new tasks and
maintaining accuracy without experiencing catastrophic forgetting.
Future work may focus on optimizing the model’s size to balance
accuracy and resource efficiency.
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