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Deep neural network-based
robotic visual servoing for
satellite target tracking
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1Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montréal,
QC, Canada, 2Department of Mechanical Engineering, Polytechnique Montréal, Montréal, QC, Canada

In response to the costly and error-prone manual satellite tracking on the
International Space Station (ISS), this paper presents a deep neural network
(DNN)-based robotic visual servoing solution to the automated tracking
operation. This innovative approach directly addresses the critical issue of
motion decoupling, which poses a significant challenge in current image
moment-based visual servoing. The proposed method uses DNNs to estimate
the manipulator’s pose, resulting in a significant reduction of coupling effects,
which enhances control performance and increases tracking precision. Real-
time experimental tests are carried out using a 6-DOF Denso manipulator
equipped with an RGB camera and an object, mimicking the targeting pin.
The test results demonstrate a 32.04% reduction in pose error and a 21.67%
improvement in velocity precision compared to conventional methods. These
findings demonstrate that the method has the potential to improve efficiency
and accuracy significantly in satellite target tracking and capturing.
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1 Introduction

In spite of the technological advancements of the International Space Station (ISS),
capturing incoming satellites using Canadarm2 relies heavily on manual operations. This
process involves a complex interaction with the grapple fixture (Figure 1), designed for
secure connection with the Canadarm21. Astronauts, leveraging their training and visual
cues, manually align and operate the robotic arm to successfully capture and berth these
satellites.

The manual process is highly dependent on the skill and operation precision of the
astronauts. Human error, inherent in any manual operation, poses significant risks in the
high-stakes environment of space. Misalignment, even minor ones, can lead to mission-
critical failures, jeopardizing expensive equipment and the overall success of the operation.
Furthermore, the extensive training and resources required for astronauts to perform these
tasks represent a significant financial and logistical investment.

Automation has proven to be an important response to the aforementioned risks
associated with the manual satellite capture processes. Unlike conventional methods that

1 https://bit.ly/47PzoHV
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FIGURE 1
The grapple fixture and the 3D targeting pin on a servicing satellite2.

rely on detailed pose information for the precise control of robot
end-effectors (EE), such as kinematic modelling (Jafarinasab et al.,
2019), and trajectory planning (Herrera-Aguilar and Sidobre, 2006),
Image-based Visual Servoing (IBVS) method demonstrated its
efficacy by obviating the need for a prior knowledge of poses. This
characteristic of IBVS is particularly advantageous because it avoids
the tedious task of pose estimation. Another noteworthy aspect of
IBVS is its eye-in-hand configuration, a configuration that mirrors
the existing setup on the Canadarm2 (Chang and Evans, 2009).This
setup is compatible with the operational requirements of capturing
satellites, where the capturing device must adjust its position and
orientation in real-time based on the visual input from the target
satellite. Furthermore, IBVS has been acknowledged for its robust
performance in unstructured environments (Ahlin et al., 2016).The
unpredictable and dynamically changing nature of space, with no
structured environment, requires a flexible and adaptive approach
such as IBVS. For instance, Shi et al. (2012) proposed a visual
servoing approach (switching between IBVS and position-based
visual servoing (PBVS)) for a space robot to capture a cooperative
target. However, this approach is limited by its requirement for
binocular vision, which makes it unsuitable for the Canadarm2
equipped with one camera. In addition, the low frame rate of four
frames per second (FPS) presented in their work may reduce the
accuracy required for successful target tracking.

In IBVS, the selection of an effective set of image features (s)
is vital for controlling the motions in robot’s degrees of freedoms
(DOF). Image features correspond to the projection of a physical
feature of some object onto the camera image plane (Corke et al.,
1996). The relationship between the change of a set of image
features over time ( ̇sk×1) and the camera velocity (v6×1c ) is given by
Equation 1 (Chaumette and Hutchinson, 2006):

̇s = Lsvc (1)

The matrix Ls of dimensions ℝk×6 is referred to as the
interaction matrix associated with the feature vector s (Chaumette
and Hutchinson, 2006).

The commonly used image features are the coordinates of points,
straight lines or ellipses in the image plane. However, they are

2 http://iss.jaxa.jp/library/photo/iss022e020034.php

restricted to a limited set of objects (Khiabani et al., 2019), and they
may easily get out of the field of view (FOV) during servoing, and
losing any of the features would cause a failure in the visual servoing.
To tackle these issues, several researchers have proposed to use
imagemoments derived from the regions of the image (Huang et al.,
2022; Shaw et al., 2016; Li et al., 2015; Zhou et al., 2021), allowing
for the representation of arbitrary object shapes (He et al., 2019).
It is worth noting that an ideal image feature would associate
uniquely with the motion in a single DOF, leading to minimal
interference among the motions in other DOFs. In other terms, the
interaction matrix derived from the ideal image features will be an
identity matrix (He et al., 2019).

Nevertheless, as highlighted in both Tahri and Chaumette
(2005) and Chaumette (2004), it is challenging to achieve an ideal
interaction matrix (identity matrix) due to inherent nonlinearities
in Equation 3. To solve this problem, researchers have sought
two kinds of image features to achieve decoupling among the 6
DOFs, (i) Analytical function-based image features (Huang et al.,
2022; Wu et al., 2018; Liu et al., 2009) and (ii) Data-driven features
(Quaccia et al., 2024; Zhou et al., 2021; Zhao et al., 2012).

In the analytical function-based image features, the objective is
to create an analytical function corresponding to amotion in specific
DOF. These analytical functions are derived from image moments
and are ideally invariant to other DOFs, so they can accurately
represent their corresponding specific motion.The pioneering work
in this area by Chaumette (2004) presented an analytical basis for
image feature functions. Chaumette’s approach used the object’s
centroid to infer x and y positions, its area for depth z, two
innovative functions for β and γ based on Hu’s invariants (Hu,
1962), and the object’s orientation for α. However, the proposed set
of image features, while corresponding the movement in a single
degree of freedom of the end effector, unintentionally produced
unnecessary movements in other degrees, which is referred to
as coupling. For example, the image moments within β and γ
DOFs suffered from intrinsic coupling, resulting in an ineffective
control in practice. Furthermore, the proposed orientation features
were shape-dependent (Sx and Sy for symmetric and Px and
Py for asymmetric objects), which limits the generalizability of
this approach.

Subsequent studies have attempted to resolve these couplings.
For instance, Tahri and Chaumette (2005) used normalization
techniques to mitigate the coupling effects within the translational
DOFs. However, fully decoupled features remained unattainable. In
the search for shape-independent rotational features, Tamtsia et al.
(2013) proposed the features based on shifted moments with
invariant properties for both symmetric and asymmetric objects.
Although their approach was robust to some extent, it did not fully
solve the decoupling problem between β and γ.

The research work by Liu et al. (2009) further decoupled the
problematic rotational features and performed well in practice but
lacked generalizability as it distinctively proposed separate features
for small and large objects. Recent studies, including those by
Huang et al. (2022), Khiabani et al. (2019), andHe et al. (2019), have
continued using the analytical image feature functions. Nonetheless,
despite their applicability, the challenge of complete decoupling
remains unsolved. Furthermore, these improved features are subject
to limitations when confronted with a variety of object sizes
and shapes.
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Leveraging the machine learning techniques and the universal
approximation capabilities of neural networks, several studies
proposed data-driven features. Machine learning methods such as
support vector machine (SVM) is proposed by Li et al. (2015) to
learn the mapping model from four moment invariants to two
virtual moments in order to decouple β and γmotions.

In addition, Neural Network (NN)-based methods have
demonstrated promising results in this area. Zhao et al. (2012)
and Zhou et al. (2021) proposed a method using shallow neural
networks to identify two rotational decoupled image features
about the x and y-axes (β and γ). However, the method’s sole
reliance on these two features resulted in an incomplete decoupling,
leaving non-zero elements in the interaction matrices of other
degrees of freedom (DOFs). This lack of decoupling potentially
introduces undesirable rotational velocities, vβ and vγ, which
affects the control in these axes. In addition, the study’s data
set was severely limited, consisting of only a narrow set of data
points from a fixed position. This lack of diversity undermines
the model’s applicability across the manipulator’s workspace,
limiting its effectiveness beyond the specific training conditions.
Furthermore, Liu and Li (2019) designed a convolution neural
network (CNN) to estimate parameters such as x, y, z, and α directly
from images. Nevertheless, it encounters a significant challenge
in terms of computing complexity. The computational intensity
required to compute the output significantly slows the processing
per control loop. This delay could potentially result in a longer
sampling time, which may introduce sluggish control response,
and hence decrease the precision and effectiveness of the robot
manipulation.

This study proposes a set of decoupled image features specifically
tailored to the unique geometry of the targeting pin used in satellite
capturing. By achieving a near-diagonal interaction matrix, we
aim to minimize the coupling effects, enhancing the accuracy and
efficiency of the target tracking. This decoupling is crucial for
smooth and precise operations, reducing the risk of errors and
improving overall system performance.

Our chosen method to identify and optimize these decoupled
features involves Deep Neural Network (DNN) training. DNNs
offer a sophisticated approach to model complex relationships and
patterns,making them ideal for extracting and refining the necessary
image features for effective visual servoing. Through extensive
training and optimization, we aim to develop a robust DNN model
capable of estimating the pose of the robot for the closed-loop visual
servoing. The experimental results on a Denso robot show that
the developed DNN-based visual servoing can accurately guide the
manipulator to track the targeting pin in real-time. The developed
method is expected to enhance the precision, safety, and efficiency
of space operations on the ISS.

This paper presents our research on DNN-based visual servoing
for satellite target tracking. Sections 2.1–2.4 explore the core of our
method, detailing image feature definition, hyperparameter tuning,
and the architecture of the DNN model. Section 2.5 describes the
generation of a comprehensive dataset, which is essential for training
the DNN model. Sections 3, 4 present a series of practical tests and
validations that demonstrate the effectiveness of our approach. The
paper concludes with Section 5, which summarizes our findings,
their significance for space robotics, and potential directions for
future research.

2 Materials and methods

2.1 DNN-based visual servoing

The choice of the set of visual features for decoupling the 6 DOF
motion has been a well-known challenge in visual servoing. The
commonly used point features introduce a non-diagonal interaction
matrix which usually contains the terms that involve the depth of the
point (Z), the image coordinate (x, y), and partial derivatives of the
projection equations. Using the appropriate combination of image
moments to estimate the pose may result in good decoupling and
linearizing properties.The power of a deep learning-based approach
is leveraged to propose a set of image features based on various
image moments that are almost perfectly decoupled for the specific
geometry of the targeting pin (see Figure 1). This section starts with
the feature definition and estimation approach and proceeds to the
detailed architecture of the proposed DNN model and fine-tuning
the hyperparameters of the model.

2.2 Image feature definition

Consider a 6-DOF manipulator with a camera installed on its
end-effector. The target object is assumed to be stationary with
respect to the robot’s reference frame. We choose the different
combinations of image moments as the input to the DNN model to
estimate the pose. The set of image features of the target object is
represented as Equation 2:

s =

[[[[[[[[[[[[[

[

cxx

cyy

czz

cββ

cγγ

cαα

]]]]]]]]]]]]]

]

, (2)

where cx, cy, cz, cβ, cγ, and cα are realized through DNN models.
When we take the derivative of the above feature with respect to
time, we would like to obtain a diagonal interaction matrix Ls which
relates the set of image features to the velocity vector vc:

̇s = Lsvc, (3)

where Ls and vc are defined in Equation 4:

Ls = diag(cx,cy,cz,cβ,cγ,cα) ,

vc = [ẋ, ẏ, ̇z, β̇, γ̇, α̇] .
(4)

It is noticed that Equation 3 is obtained under the conditions
that DNN models representing cx, cy, cz, cβ, cγ, cα are time invariant
and independent from each other, which poses challenge on training
DNN to realize. However, under ideal conditions where the camera
pose is precisely estimated, the interaction matrix becomes the
identity matrix (see Equation 5).

Ls = I6. (5)

Deep neural networks (DNNs) prove to be a robust approach
for this type of estimation. In this study, the proposed network’s
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FIGURE 2
DNN architecture for camera pose estimation from image moments.

input is a set of moments, central moments, and a few engineered
features and the output aims to predict the camera’s six-dimensional
(6D) pose. Its specific architecture will be discussed in the next
subsection.

2.3 Architecture

The DNN-based visual servoing approach has an architecture
designed to estimate the camera’s pose effectively with respect to the
targeting pin. Designing an optimal DNN architecture is an iterative
process that requires extensive evaluations in different scenarios to
identify the architecture that best solves the problem. The initial
network used an architecture with shared neurons to estimate both
the rotational and translational poses of the camera. However,
experimental results showed that the complexity of translational
poses required a deeper network, while rotational poses could be
successfully obtained from a shallower network. It is worth noting
that experimenting with deeper networks resulted in overfitting
during training for rotational poses.

Translational and orientational poses differ fundamentally,
requiring unique approaches for their accurate estimation. Thus,
we proposed an architecture in which the initial two layers are
shared for rotational and translational DOFs, while the subsequent
layers operate in parallel. For translational elements (x,y,z), this
network consists of six hidden layers, with node distributions of
80, 224, 112, 64, 80, and 176. For the rotational elements (β,γ,α),
four hidden layers are employed with distributions of 80, 224, 128,
and 80 nodes. Figure 2 illustrates the proposed architecture.

The model’s input includes the image moments up to the third
order (μ00,m10,m01,μ11,μ20,μ02,μ21,μ12,μ30,μ03) and five additional
engineered features. These engineered features encompass four
invariants (c1,c2,c3,c4), derived from moment invariants as
suggested by Tahri and Chaumette (2005), and α. These engineered
features enhance the rotational degrees of freedom estimations,

due to the invariance of c1,c2,c3, and c4 to 2D translation and 2D
rotation, as well as the correlation between α (α = 1

2
arctan ( 2μ11

μ20−μ02
))

and the Rz component. c1 through c4 are defined in Equation 6:

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

I1 = −μ20μ02 + μ
2
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c1 =
I1
I2

c2 =
I3
I4

c3 =
I5
I6

c4 =
I7
I6

(6)

By employing this architecture, we aim to achieve high accuracy
in both translational and rotational pose predictions.

2.4 Hyperparameter tuning

In the search for optimal model performance, we explored
several hyperparameters:

• Activation Functions:These are mathematical expressions that
determine the output of a node in our network.We considered
various options, including ‘Relu’, ‘Leaky Relu’, ‘Tanh’, and
‘Sigmoid’.
• Batch Size:This refers to the number of training examples used
in one iteration. We explored a range from 32 to 512.
• Learning Rate: This hyperparameter determines the step size
at each iteration while moving towards a minimum of the loss
function. We considered values of 10−2, 10−3, and 10−4.
• Optimizers: These are algorithms or methods used to
adjust model parameters to minimize the model error.
We looked into two options: Adam and Adamw (Adam
weight decay).
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TABLE 1 Optimal hyperparameter values from random search.

Hyperparameter Optimal value

Activation Function ReLU

Batch Size 512

Learning Rate 1× 10−3

Optimizer Adam

Given the vast hyperparameter space, an efficient strategy of
Random Search was used to circumvent the computational cost
associated with exhaustively exploring every combination. Random
Search samples a fixed number of hyperparameter combinations
from the total pool to balance computational efficiency and the
broadness of exploration, and increase the probability of finding a
near-optimal set of hyperparameters.

Table 1 summarizes the hyperparameter values that were found
to be most effective, and were used to initialize the training.

2.5 Data set generation

In a supervised approach, training is the most critical part,
and to fully unleash the power of the deep learning model, we
need a high-quality training dataset. To this end, we created a
dataset which consists of both synthetic and real-world images
from the targeting pin. For generating the synthetic data, we
used RoboDK, a sophisticated offline programming and simulation
platform designed specifically for robotics applications.This section
presents a novel approach that overcomes a significant limitation in
the data generation process that ensures the targeting pin remains in
the image plane when random positions are assigned to the camera.
As depicted in Figure 3, the simulation setup consisted of a Denso
manipulator equipped with a camera mimicking the properties of
our real-world setup.

In this approach, the goal is to randomly assign values to
all 6 DOFs with the constraint that the object is in the image
plane. Considering this constraint, first, the x, y, and z coordinates
of the camera (mounted on the end effector) were randomly
generated within the working range of the manipulator. Next,
to generate the orientational DOFs randomly, the camera is
supposed to initially have the object at the center of the image
plane. This pose was computed using a “Look at” function. The
“Look at” function is typically designed to orient the camera
towards a specific point (object’s centroid in our case) in the
environment.

This function starts by defining a source point (camera) and a
target point (object), along with initial vectors for up (U), front (F),
and right (V). V, U and F are initially considered as the unit vectors
pointing in the positive x, y and z-axes, respectively (see Equation 7).

V =
[[[[

[

1

0

0

]]]]

]

,U =
[[[[

[

0

1

0

]]]]

]

,F =
[[[[

[

0

0

1

]]]]

]

. (7)

The first step is to calculate the new front vector F′, which
points from the source to the target. This vector is obtained by
subtracting the source position (xc) from the target position (xo) and
normalizing the resulting vector (Equation 8):

F′ =
xo − xc
‖xo − xc‖

. (8)

Next, we calculate the new up vector U′. We start by
subtracting the projection of U onto F′ from U and then
normalize it (Equation 9):

U′ =
U− (U ⋅ F′)F′

‖U− (U ⋅ F′)F′‖
. (9)

In case the resulting vector has zero magnitude, we defaultU′ to
be the same as the original front vector F (U′ = F).

The third axis, V′, is calculated as the cross product of U′ and
F′ (Equation 10):

V′ = U′ × F′. (10)

These new basis vectors (V′,U′, F′) form the rotationmatrix for
the new camera pose (Equation 11):

cRo =
[[[[

[

V′

U′

F′

]]]]

]

. (11)

Finally, the pose of the camera is represented as a 4× 4
transformation matrix (Equation 12):

(12)

Next, to randomly generate rotational DOFs, we first rotate the
camera about its optical axis within a predefined range. Rotating
about the optical center will not result in losing the object from
the image plane. Then we determine the rotation bounds for the
camera about its x and y-axes, based on the distance of the camera
from the object. We can obtain the rotation limits by performing
linear interpolation between the predefined bounds at two known
distances, ensuring that the object remains in the image plane.
Consequently, the camera was rotated around its x and y-axes for
a random value within these limits. Table 2 includes the boundaries
used for the pose parameters.

The dataset includes the entries for the calculated image
moments and central moments of the captured image, while the
corresponding camera pose is collected as the label. Initially, in
the simulated environment, 434,528 random poses were generated
within the ranges of Table 2, sequentially commanded to the
Denso manipulator. At each pose, an image was captured by the
mounted camera and processed into a binary representation, and the
moments and central moments were then computed.

In addition to the synthetic data, we also captured real data to
enrich the data set and enhance the robustness of our model in
real-world scenarios. To realize this, we used a similar approach
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FIGURE 3
RoboDK environment including the Denso robot, the camera, and the targeting pin.

TABLE 2 Ranges of the pose parameters (Limitβ and Limitγ are determined by linear interpolation).

Parameter Minimum value Maximum value

X 207.5 (mm) 407.5 (mm)

Y −150 (mm) 150 (mm)

Z 150 (mm) 500 (mm)

β −Limitβ Limitβ

γ −Limitγ Limitγ

α 45° 135°

to generate random camera poses. However, due to the slower
operational tempo of the physical setup compared to the simulator,
we recorded data during the motion of the end effector from one
random pose to another. However, to ensure that only valid data
is captured, it is necessary to apply constraints that exclude images
that do not fully capture the targeting pin. As a result, to ensure
the presence of the object, the data points were only recorded when
a single contour larger than 500 pixels was detected in the image
and when the bounding box of the target pin was at least 10 pixels
away from the image borders. This cautious approach resulted in
1912 distinct poses commanded to the Denso robot, yielding a
total of 198,588 valid real-world data points (including data points
captured during the camera movement from one random pose to
the other).

To provide a visual representation of how the data set is created,
two videos were prepared to show the process in action. The first
video demonstrates the simulation environment data generation,
accessible at this link, while the second video shows the real
environment data generation, available at this link.

The final data set was carefully split, with all synthetic and half
of the real data allocated for training. The remaining real data was
evenly divided between the validation and test sets (Figure 4). This
approach originated from our experimental findings that relying
only on either synthetic or real data reduced the performance
on the test set, likely due to the real environment’s noise and
lighting conditions and the limited diversity of poses in the
real data. As a result of combining both data sources, we were
able to achieve a balance that captured both the complexity of
real-world scenarios and provided enough variability for robust
model training.

3 Results

First, in Section 3.1, we introduce the experimental setup
mimicking the satellite target tracking in the space. Section 3.2
presents the initial performance evaluation of our trained
DNN model for pose estimation. In Section 3.3 we explore the
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FIGURE 4
Distribution of synthetic and real data used for training, validation, and testing.

FIGURE 5
Experimental setup within the real environment.

computation of the interaction matrix and present experimental
results on target tracking with different initial poses.

3.1 Experimental setup

Similar to the setup in our simulations (see Figure 3), our
experimental layout includes a 6-DOF Denso robotic manipulator,
an Intel RealSense D415 RGB camera for high-quality image
capture, and a green 3D-printed targeting pin that mimics the ISS’s
guiding markers, as illustrated in Figure 5.

3.2 Training results

The DNN model, as described in Section 2.3, was trained for
1,000 epochs, where the loss value eventually plateaued, indicating

an optimal learning point. To determine the pose estimation
accuracy of the model, we used the Mean Absolute Error (MAE)
along with a Scaled MAE metric customized for our multi-output
scenario. The scaled MAE was necessary due to the different units
and magnitudes of the outputs (translational values in millimeters
and rotational values in degrees). To compute it, we first normalized
each output’sMAE by its range fromTable 3, ensuring uniform error
scaling across all outputs.

The ‘best’ model was selected based on its performance on the
validation set. Table 4 presents theMAEdata for thismodel, offering
insights into its translational and rotational pose accuracy.

3.3 Experiments

It is necessary to derive an interaction matrix for the final
DNN model. While our initial aim was to derive a diagonal
interaction matrix, the practical limitations in achieving zero-
error pose estimation necessitated the use of the actual interaction
matrix in our experiments. In Equation 3, the 6× 6 interaction
matrix represents how the DNN model’s predicted image features
correlate with the manipulator’s the motion in six axes. For every
data point in the test set, the model predicted six image features.
The elements in the interaction matrix represent the slopes of
the linear regression lines, each comparing a predicted image
feature against every actual degree of freedom. This approach
helps us understand the impact of each actual movement on the
predicted features.

LsDNN =

[[[[[[[[[[[[[

[

0.94 0.03 −0.12 −0.16 −3.24 0.03

0.05 0.98 0 −3.57 −0.12 −0.22

−0.21 −0.01 0.99 −0.15 0.53 −0.16

−0.02 −0.18 −0.01 0.97 0.05 0.04

−0.14 0 0.01 0.01 0.93 0

0 −0.04 −0.02 0.16 −0.02 0.99

]]]]]]]]]]]]]

]

(13)

As evident from the interaction matrix in Equation 13, the
diagonal elements LsDNN[i, i] (where i ranges from 1 to 6) are very
close to 1, while the non-diagonal elements are close to zero,
which aligns with our objective. However, the noticeable exceptions
are the elements LsDNN[1,5] = − 3.24 and LsDNN[2,4] = − 3.57. These
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TABLE 3 Ranges for output elements of the dataset.

Element x (mm) y (mm) z (mm) β° γ° α°

Minimum 157.5 −150 150 129.91 −55.03 −117.36

Maximum 411.54 150 500 240.5 56.65 129.11

Range 254.04 300 350 110.59 111.68 246.47

TABLE 4 Final model’s mean absolute error data.

Element MAE Average MAE Scaled MAE Average scaled MAE

x 7.45 (mm)

5.82 (mm)

2.93× 10−2

1.54× 10−2

y 5.83 (mm) 1.94× 10−2

z 4.18 (mm) 1.20× 10−2

β 1.32°

1.37°

1.19× 10−2

γ 1.78° 1.59× 10−2

α 1.02° 0.41× 10−2

TABLE 5 Initial and desired poses.

Pose

x (mm) y (mm) z (mm) β (deg) γ (deg) α (deg)

A 314.05 37.05 413.32 166.21 −11.40 −16.25

B 308.93 −57.99 434.48 200.75 −8.26 10.25

C 368.71 −74.09 386.80 200.14 −3.59 12.00

D 257.79 −27.34 495.22 196.62 6.91 22.33

E 276.98 51.01 249.78 163.99 15.68 16.01

Desired 307.5 0 300 180 0 0

values indicate a correlation between the x prediction of the DNN
during Ry movement and the y prediction during Rx movement.
This correlation is understandable, as rotations around the x (Rx)
and y (Ry) axes in the manipulator’s frame cause corresponding
movements along the y and x-axes in the image plane. Additionally,
the elements LsDNN[4,2] = − 0.18 and LsDNN[5,1] = − 0.14 in the
fourth and fifth rows are higher than other non-diagonal elements,
emphasizing the ‘x and Ry’ and ‘y and Rx’ interconnections in the
final DNNmodel. Improving the DNN’s accuracy in the estimations
can further address these interconnections.

We tested the model with five distinct initial poses, ensuring
a mix of positive and negative initial errors for each degree of
freedom. The chosen initial poses, labelled A through E, are
detailed in Table 5.

The block diagram of theDNN-based visual servoing is depicted
in Figure 6, where we used a proportional controller and the
DNN extracts feature (pose) from the images. For these tests, we
adjusted the P controller for each degree of freedom to ensure the

manipulator’s end effector converges within 1 cm and 3° to the
desired pose. The resulting trajectories for each initial pose are
depicted in Figure 7.

As shown from Figure 7, the end effector follows an almost
straight path from its start to the target. However, in practice,
as the end effector gets close to the desired pose, we noted
minor shakiness in its movement. This is caused by small
oscillations in the pose estimates, which are the outputs of the
neural network.

4 Discussion

To validate the proposed features derived from the DNN
method, some comparisons were made with a prominent set of
features in the literature. This set consists of Tahri and Chaumette
(2005)’s features, which are the centroid coordinates xg and yg, the
area a, and the rotation α. Additionaly, for rotations about the x
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FIGURE 6
DNN-based visual servoing block diagram.

FIGURE 7
Trajectory comparison of five different initial poses.

and y-axes, Liu et al. (2009)’s features (sx and sy as described in
Equation 14) are used. From now on, the combination of these
features is referred to as the Liu method ([xg,yg,a, sx, sy,α]).

{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{
{

xg =
m10

m00

yg =
m01

m00

a =m00

sx = 0.1− (c1c2 + s1s2)/I
(9/4)
3

sy = (s1c2 − c1s2)/I
(9/4)
3

α = 1
2
arctan(

2μ11
μ20 − μ02

),

(14)

where mij and μpq are moments of order i+ j and central
moments of order p+ q, respectively. Also, c1, c2, s1, and s2 are
defined in Equation 15:

{{{{{{{
{{{{{{{
{

c1 = μ20 − μ02
c2 = μ03 − 3μ21
s1 = 2μ11
s2 = μ30 − 3μ12

. (15)

The Liu method’s features have the units of
[px,px,px2,px

10
9 ,px

10
9 , rad]. In contrast, the DNN method’s

features, which represent pose ([x,y,z,β,γ,α]), have units of
[mm,mm,mm,deg,deg,deg]. Because of these unit differences,
each method needs its own set of controller gains. To ensure a
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TABLE 6 Tuned P controllers for the DNN and Liu methods.

Method Controller gains

Kx Ky Kz Kβ Kγ Kα

DNN 0.09 0.09 0.12 0.003 0.003 0.003

Liu 0.9 0.9 150 30 60 0.3

FIGURE 8
Analysis of DNN and Liu Methods for initial pose C (A) Trajectory comparison. (B) DNN method’s pose error over time. (C) Liu method’s pose
error over time.

fair comparison, the P controllers were carefully adjusted for each
method, aiming for convergence within 1 cm for translational
movements and 3° for rotational ones. The tuned gains of P
controllers can be seen in Table 6.

Running the methods for 100 s under different initial poses
yielded similar results. Therefore, to illustrate the comparison, we
present the results for initial pose C (as outlined in Table 5) as
an example. Figure 8A shows the trajectory plot, comparing the
end-effector path for both the Liu and DNN methods from initial
pose C. The plots clearly show that the DNN method achieves a

direct and efficient trajectory from the starting pose to the target.
In contrast, the Liu method resulted in a curved, less efficient
path. It is important to highlight that the Liu method operates on
feature error, not pose error. As a result, in certain experiments,
the end effector stopped close to the desired pose due to minimal
feature differences between images. However, the DNN method
almost consistently identified these differences, ending up at the
correct pose.

Figures 8B, C show the pose error of the DNN and Liu methods
over time, respectively. A closer look at these plots reveals that the
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TABLE 7 Metrics comparison for Initial Pose C.

Data Element Method RMS Max STD

Pose Error

x
Liu 16.156 −61.210 10.394

DNN 17.234 −61.210 12.007

y
Liu 34.253 109.058 26.731

DNN 16.534 74.092 13.674

z
Liu 22.790 −86.790 17.954

DNN 18.610 −86.790 15.570

β
Liu 4.125 −20.152 3.625

DNN 3.673 −20.152 3.215

γ
Liu 3.284 6.247 1.784

DNN 1.033 3.592 0.546

α
Liu 2.266 −12.009 2.146

DNN 2.332 −12.009 2.332

Velocity

x
Liu 3.666 28.843 3.619

DNN 1.740 −5.675 1.634

y
Liu 2.131 17.032 2.021

DNN 1.517 6.226 1.367

z
Liu 1.902 6.403 1.679

DNN 2.166 −9.765 1.986

β
Liu 0.004 −0.031 0.004

DNN 0.011 −0.050 0.010

γ
Liu 0.009 0.047 0.009

DNN 0.002 −0.018 0.002

α
Liu 0.009 −0.041 0.008

DNN 0.007 0.033 0.006

TABLE 8 comparison of average RMS values and improvements in translational and rotational DOFs for pose error and velocity.

Category Parameter Liu DNN Improvement (%) Avg. Improvement (%)

Pose Error
Translational (mm) 26.075 12.980 50.22

32.04
Rotational (deg) 3.600 3.101 13.85

Velocity
Translational (mm/s) 2.473 1.294 47.69

21.67
Rotational (deg/s) 7.67× 10−3 8× 10−3 −4.35
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DNN method has a faster response with less overshoot, which is
desirable for our application.

While Figure 8 shows improvements in the performance, it does
not provide the quantitative details needed for a comprehensive
analysis. Thus, we use three metrics: RMS (Root Mean Square),
Max (Maximum value), and STD (Standard Deviation).

• RMS: This metric measures the overall oscillation intensity,
whether in terms of pose error or velocity. A high RMS value in
the pose error indicates deviations from the desired pose, and
when observed in velocity, it points to speed fluctuations.
• Max: Serving as a measure for extremes, the Max metric
identifies the largest positional deviation or the most
significant speed variation.
• STD: It shows the variability of the pose error or velocity
around its mean value. High STD values emphasize
inconsistencies.

For an organized overview, Table 7 lists these metrics over the
same experiments with initial pose C (as outlined in Table 5).

From the detailed analysis of Table 7, it is evident that the
DNN method’s performance significantly improved for most of
the degrees of freedom. The consistently lower RMS, Max, and
STD values indicate a more stable and predictable performance.
However, there are notable exceptions in the x and α poses where the
DNNmethod shows a marginally worse performance. Interestingly,
when we focus on velocity, the DNN method compensates for
both of the aforementioned pose errors. For velocities, it is
worth noting that the DNN method’s performance metrics for
the z and γ directions are higher, indicating a more variable or
unpredictable movement.

To better compare the performance of the methods and to
evaluate the improvement of the DNN method, the average RMS
values for pose error and velocity are presented in Table 8. It is
evident that the Deep Neural Network (DNN) method substantially
outperforms the Liu method in several key aspects. The DNN
method reduced the average RMS values for translational pose error
and velocity by over 47%, demonstrating a robust capability in
improving the system’s responsiveness and accuracy. Despite these
gains, the DNN method shows a smaller improvement of 13.85%
in rotational pose error and a slight decrease in performance for
rotational velocities. This small decrease is on the order of 10−3,
which makes it negligible.

The DNN-based visual servoing method’s adaptability to
unanticipated scenarios is demonstrated in this video, showing
the manipulator’s response when the targeting pin is arbitrarily
re-positioned in the workspace. The video highlights the system’s
capability to efficiently track the targeting pin, ensuring it
remains centered and parallel in the camera’s view within a short
amount of time.

5 Conclusion

This research addresses the challenge of coupling in visual
servoing to autonomously track the targeting pin on servicing
satellites using a robotic manipulator. In this paper, we presented
a novel deep learning-based visual servoing approach that uses
image moments to precisely estimate the camera’s pose to achieve

decoupled image features. The main contributions and conclusions
of this research are as follows:

• Development of DNN-based Visual Servoing: A parallelized
DNN architecture for estimating the camera’s pose is
meticulously designed. These pose elements are treated as
a novel set of decoupled image features, offering a nearly
diagonal interaction matrix.
• Data set generation: We have implemented a data generation
strategy that combines synthetic and real data.While 6D poses
were randomly generated, an innovative strategy ensures that
the object remains in the image. This comprehensive training
dataset covers a broad spectrum of scenarios, ensuring the
DNN model is well-prepared to handle real-world conditions
effectively.
• Comparative Analysis with Established Techniques: A
comprehensive experimental validation of the neural
network approach is conducted, demonstrating significant
improvements in trajectory, pose accuracy, and velocity of
the end effector compared to established visual servoing
techniques.

The most important impact of this study is its adaptability
for controlling various robotic manipulators in marker-based
applications. By using our training procedure for any targeting
pin, one can potentially achieve performances outperforming some
classical image moment-based visual servoing methods.

6 Future works

The following suggestions can potentially improve the proposed
methods’ performance and generalizability:

• Dataset Enhancement: Creating a dataset that uses the
real targeting pin (Figure 1) or ensuring that the dataset’s
environment closely resembles space lighting conditions can
improve the accuracy of pose predictions.
• Canadarm2 Kinematics: Investigate the application of the
proposed methods by testing or simulating on the Canadarm2
kinematics.
• Hyperparameter Refinement: Continuous tuning and
experimentation with the network’s architecture and
hyperparameters can improve performance.
• Transfer Learning: Using insights from established pre-trained
pose estimation models and adapting them to the current
problem might yield better results.
• Network Ensembling: Aggregating outputs from diverse
network architectures can enhance accuracy, as different
models might specialize in recognizing distinct features.
• Direct Image Input: Utilizing the image itself (rather than
its moments) as the network’s input could provide insights
potentially overlooked when solely relying on imagemoments.
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