
TYPE Methods
PUBLISHED 15 November 2024
DOI 10.3389/frobt.2024.1468385

OPEN ACCESS

EDITED BY

Giovanni Iacca,
University of Trento, Italy

REVIEWED BY

Bin Zhi Li,
Chinese Academy of Sciences (CAS), China
Giovanni Boschetti,
University of Padua, Italy
Jing-Sin Liu,
Academia Sinica, Taiwan

*CORRESPONDENCE

Jiaxi Lu,
lujx@g.ecc.u-tokyo.ac.jp

RECEIVED 11 September 2024
ACCEPTED 16 October 2024
PUBLISHED 15 November 2024

CITATION

Lu J, Takamido R, Wang Y and Ota J (2024)
How to arrange the robotic environment?
Leveraging experience in both motion
planning and environment optimization.
Front. Robot. AI 11:1468385.
doi: 10.3389/frobt.2024.1468385

COPYRIGHT

© 2024 Lu, Takamido, Wang and Ota. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

How to arrange the robotic
environment? Leveraging
experience in both motion
planning and environment
optimization

Jiaxi Lu1*, Ryota Takamido2, Yusheng Wang2 and Jun Ota2

1Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan,
2Research into Artifacts, Center for Engineering (RACE), School of Engineering, The University of
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This study presents an experience-based hierarchical-structure optimization
algorithm to address the robotic system environment design problem, which
combines motion planning and environment arrangement problems together.
The motion planning problem, which could be defined as a multiple-degree-
of-freedom (m-DOF) problem, together with the environment arrangement
problem, which could be defined as a free DOF problem, is a high-dimensional
optimization problem. Therefore, the hierarchical structurewas established, with
the higher layer solving the environment arrangement problem and lower layer
solving the problem of motion planning. Previously planned trajectories and
past results for this design problem were first constructed as datasets; however,
they cannot be seen as optimal. Therefore, this study proposed an experience-
reuse manner, which selected the most “useful” experience from the datasets
and reused it to query new problems, optimize the results in the datasets, and
provide better environment arrangement with shorter path lengths within the
same time. Therefore, a hierarchical structural caseGA-ERTC algorithm was
proposed. In the higher layer, a novel approach employing the case-injected
genetic algorithm (GA) was implemented to tackle optimization challenges in
robot environment design, leveraging experiential insights. Performance indices
in the arrangement of the robot system’s environment were determined by
the robotic arm’s motion and path length calculated using an experience-
driven random tree (ERT) algorithm.Moreover, the effectiveness of the proposed
method is illustratedwith the 12.59%decrease in path lengths by solving different
settings of hard problems and 5.05% decrease in easy problems compared with
other state-of-the-art methods in three small robots.

KEYWORDS

industrial robotics, motion planning, environmental arrangement, takt time,
optimization, hierarchical algorithm, experience reuse, intelligent manufacturing

1 Introduction

Robotic manipulation tasks such as welding (Zeng et al., 2019), transporting (Fu et al.,
2020), assembling (Tereshchuk et al., 2019), and pick-and-place are commonly utilized in
intelligent manufacturing industrial robots. In these tasks, takt time (Davies, 2009), the
cycle time to perform the specific operation, is seen as an important evaluation criterion
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for robotic manipulation to assess the efficiency of a robotic system.
The longer the takt time for a task, the less efficient the robotic system
becomes. In our study, to simplify the problem, we consider the
length of the robotic arm’s trajectory as the moving time apart from
the effect of the dynamics of the robot.

Although the primary focus of industrial robotmotion planning
lies in enhancing operational efficiency, it is affected by the
configuration of various components within the robot environment.
These components, including the base, conveyors, sensors, objects,
and other robots, all play important roles during task execution,
and the accuracy of the robot, which can be enhanced through
calibration technology, also contributes to improving industrial
automation (Li et al., 2021; Li et al., 2022a; Li et al., 2022b).
Furthermore, alterations in the robotic system’s environment
necessitate corresponding adjustments in the robot’s motion, even
for repetitive tasks, resulting in notable variations in takt time or
energy utilization (Gueta et al., 2007). Consequently, the spatial
layout and arrangement of the robot environment significantly
influence industrial productivity. To optimize the efficiency of
a robotic system, it is imperative to establish an appropriate
environment setup alongside devising efficient robot trajectories.
Therefore, designing a robotic system that ensures reasonable
takt time is imperative for enhancing the efficiency of industrial
manufacturing.

However, most conventional studies focused on motion
planning or path planning among those two aspects but ignored
that with the improper design of the industrial line; the takt time
could increase significantly. Hence, there are few studies that have
developed the algorithm for identifying both efficient motion and
environment arrangements.

Therefore, in this study, we proposed a new optimization
method, caseGA-ERTC, for industrial robotic systems, which
can facilitate both robot motion and environment arrangements’
optimization. Specifically, to address the difficulty of the combined
optimization problem of motion planning and environment
arrangement, we utilized a hierarchical algorithm and experienced
reuse manner for solving our problems.The former is to decompose
the complicated problems into simpler problems to reduce the
calculation cost, and the latter is to reuse the past solutions
in similar optimization problems to improve the results of the
past solutions. Therefore, we introduced two experience-based
methods for both motion planning and environment arrangement
part. Based on the experiments, our proposed method can
achieve the placements of conveyors in which robots could work
with shorter path lengths compared with non-experience-based
state-of-the-art methods.

In our previous study (Lu et al., 2023), only one robot was
tested, and limited scenarios and difficulties of problems were
proposed. Therefore, in this study, we aim to broaden the definition
of problems and utilize information from more complicated
situations and more diverse kinds of robots (in Section 4.1) to
accomplish the goal of adding to the preliminary results for the
comprehensive study.

The following are the contributions made to this field of study:

1. We proposed a hierarchical structure to realize the target
of optimizing both environment configuration and motion

planning together by decreasing the dimension of the whole
environment arrangement problem;

2. We proposed building experience databases for both
optimization and motion planning. Motion planning
experiences gathered from simulations can also be applied
to real-world robotic experiments;

3. Our proposed experience-based method could find
results with shorter path lengths compared with non-
experience-based methods with the same amount of
optimizing time.

The remaining sections of this paper are organized as follows:
Section 2 introduces related work in environment arrangement
and experience-based motion planning algorithms. Section 3
provides the detailed viewpoints of the proposed methods.
Section 4 explains the constructions and methods of execution
of experiments. To demonstrate the advantages of our method,
we compared our methods with other state-of-the-art methods
solving benchmark problems in Section 5. Finally, the conclusion is
described in Section 6.

2 Related work

2.1 Environment arrangement optimization
problem

Most of the previous research studies focus on the adaptive
motion planning algorithms to adapt to diverse and complex
environments (Bulut, 2023; Jahanshahi et al., 2019; Levant and
Livne, 2011), but failures are inevitable in complex environments.
However, if we think about it from another perspective, if
the environment itself is good enough for the robot’s motion,
then it can also reduce the probability of failures and improve
the efficiency of the robot’s motion planning. Therefore, the
problem of environment arrangement optimization, which aims
to design a suitable environment for the robot’s motions, is
introduced.

In recent years, significant advancements have been achieved
in the development of algorithms aimed at addressing various
optimization challenges in environment arrangement. For
instance, Liu et al. (2008) conducted research focusing on enhancing
the efficiency and productivity of the grit-blasting process in
manufacturing by employing simulation-based modeling within
a robotic system.

Similarly, Gueta et al. (2007) tackled intricate optimization
dilemmas related to base placement and motion planning in
inspection tasks.Their approach involved employing the tabu search
algorithm (Fiechter, 1994), which employs a tabu list to navigate
away from local minima, to determine optimal base positions.
Subsequently, basic inverse kinematics (IK) and velocity profiles
were utilized in the motion planning phase to compute joint angles
and angular velocities.

However, these previous studies faced challenges in
addressing highly complex, high-dimensional robotic environment
design problems and did not incorporate the concept of
experience reuse.
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2.2 Experience-based motion planning

The problem of motion planning in robotics has been studied
for decades, and recently, learning from the past, as well as reusing
and retrieving from the previous experiences, has emerged as a new
trend when dealing with motion planning problems. Experience-
based motion planning could reuse past path planning problem
results and does not have to plan from scratch (PFS). There are
mainly two targets of these experience-based methods compared
with non-experience-basedmethods: 1) improving the quality of the
planned path or 2) saving the planning time. In addition, there are
mainly two approaches for demonstrating the reuse of experiences
while coping with various targets: 1) reconstructing and depicting
the environment variables in task-relevant areas and 2) directly
reusing and exploiting previously planned motions.

There are many previous research studies to achieve the first
target, reconstructing and depicting the environmental variables in
task-relevant areas.

Experience graph (E-Graph) (Phillips et al., 2013),
Lightning framework (Berenson et al., 2012), and its
variant Thunder (Coleman et al., 2015) introduce a novel
approach to motion planning by retrieving and repairing previous
planned paths.

Even though the above algorithms will become more accurate
and effective as the algorithm runs and the volume of database
increases because of the characteristic of these algorithms to gather
environmental information and reconstruct the environment, these
algorithms are more useful in static environments. Therefore, if the
target of the tasks or the type of robot changes, the possibility of
motion planning failure increases.

To facilitate the reuse of past experiences in addressing
new motion planning challenges, the integration of case-based
reasoning (Abdelwahed et al., 2018) into sampling-based algorithms
has been proposed. This involves storing previous experiences in a
case base and selecting relevant instances for new queries based on
similarity metrics.

Because of these traits, employing case-based reasoning in
complex scenarios like those encountered in 6-DOF robot systems
is extremely challenging.

In our research, we employed the experience-driven random
tree (ERT) algorithm (Pairet et al., 2021), which directly
leverages similar past experiences to enhance result quality and
computation speed.

3 Methods

3.1 Problem definition

As shown in Figures 1, 2, the settings of sensors and gathering
information from sensors were not considered. The relative
positions of the picking object and the end-effector were fixed.
Therefore, we defined the problem of environment arrangement
as finding the positions of conveyors when the robot picks the
object, moving from the picking C-Space C(qpick) to a placing C-
Space C(qplace), at which the path length of the planned trajectory
is the minimum.

The optimization process in question considers the path length
of the motion as the primary evaluation criterion. To be precise, our
objective is to determine the positions of conveyors S within the
robotic environment and the associated trajectory T by the final
timestep T.

Therefore, we conceptualize the task of arranging the
environment as an optimization problem, where the path length
l = f(T ) generated by the motion planning algorithm serves as the
pivotal evaluation criterion.

arg min
XS,XG∈𝕊𝔼(3)

l = f (T (XS,XG)) ,

s.t., flag(T (XS,XG)) = TRUE

time(XS,XG) ≤ T,

where the picking configuration C(qpick) calculated from the start
Cartesian position [x1,y1,z1] and the orientation of the end-
effector corresponding to the defined tasks. Placing configuration
C(qplace) corresponds to the goal Cartesian position [x2,y2,z2], and
constraints are added as

s.t., x1 = x2,y1 = −y2,z1 = z2

to simplify the defined problem by decreasing the dimension
of the environment parameters. Therefore, less computation time is
required when designing the environment arrangements.

Therefore, this environment arrangement problem could be
defined as a 3-dimension (x,y,z) plus a 6-dimension motion
planning problem, which is a 9-dimensional optimization problem.

In addition, flag(T (XS,XG)) is a Boolean function indicating
whether the robot can successfully plan the motion for the given
configurations of the task. If the task is feasible, it returns true; if
not, it returns false.

3.2 Overall structure of our proposed
method

The proposed method is structured as follows: as mentioned
above, this environment arrangement problem is a high-
dimensional optimization problem; therefore, the decomposition
of this optimization problem is critical to solving it. This study
adopts the case-GA + ERTC to solve the environment optimization
problem. As shown in Figure 3, case-GA (Louis and McDonnell,
2004) is introduced first. In each generation of this genetic
algorithm, the relative positions of environment components
are changed to construct the new environment for the robot
pick-and-place tasks.

Then, the motion planning algorithm, ERTConnect algorithm
(Pairet et al., 2021), was presented here for planning valid motion in
this new environment. The path length of the generated motion is
returned to the case-injected GA as the evaluation criterion for the
optimization process. After running the algorithm for n generations
and by the last timestep T, the final environment arrangements and
its corresponding motion when the robot executes the pick-and-
place task in this environment would be output as the final results.
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FIGURE 1
Environment settings of the problem to be solved in the 3D world coordinate. The environment is constructed with two conveyors, and one box is
placed on one of those conveyors. Our task to be solved is defined as a pick-and-place task; the robot is catching one object from conveyor 1 to place
it into the box on conveyor 2. However, the arrangements of the environment and the placement of the conveyors would influence the moving time
for the robotic arm when executing the above tasks. To simplify the problem, we consider the length of the robotic arm’s motion trajectory as the
moving time of executing the pick-and-place task. Therefore, the target of this study is to arrange the environment arrangements in specific positions
of conveyors for achieving the goal of optimizing the path length of the trajectory when executing the pick-and-place tasks.

FIGURE 2
Two-dimensional environment setting of the problem to be solved
(top view).

3.3 Construction of datasets

As shown in Figure 3, the problem is solved by the hierarchical
construction of methods. The higher-layer optimization problem
and lower-layer motion planning problem are solved. Two datasets
are introduced for methods in each layer.

Casebase C, used in higher layer: case-GA, is composed
of solutions. Therefore, solutions from the previously solved

environment arrangement problems [x,y,z] were collected into the
casebase C.

In the lower layer, the motion planner’s dataset A was
constructed with trajectory information. As shown in Figure 5,
because of the discontinuity of the sampling-based methods,
trajectories are composed of time-series points in C-Space. When
the robot’s end-effector moves to the designated Cartesian pose XG,
each series point provides joint angle information.

Therefore, each trajectory is demonstratedwith joint angles inC-
Space [θ0,θ1,…,θn]. The starting and ending configurations of each
trajectorywere saved for the comparison of similaritywhen selecting
experiences.

3.4 Experience-based optimization method

Case-GA was used for the main structure of this optimization
problem; therefore, the algorithm should start from the random
generation of the first generation of the genetic algorithm.

For each positions of conveyors, which defines the construction
of the environment, we decided for planning themotion of the robot
for 10 times and chose the trajectory which has the smallest path
length to mitigate the problem caused by the randomness of those
sampling-based motion planning algorithms. As a result, for each
individual, it will take approximately 4 s–40 s (if all failed). However,
the total optimization time should be limited in real engineering
industrial environment design problems.

Therefore, in this study, we set the total generation of this
algorithm as 20. Here, we also defined the size of each population
as 20; therefore, 20 [x0,y0,z0]s are generated for constructing 20
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FIGURE 3
Overview of the methods.

different environments. Then, the motion planning algorithm is
introduced for planning the pick-and-place task in 20 previously
designated environments with 20 different pick-and-place positions.

The evaluation criterion revolves around the path lengths
determined by the motion planning algorithm; therefore, two of the
above [x,y,z]with theminimum path lengths are defined as parents.
The individual with the minimum path length would be saved
and directly transferred into the next generation, and two parents
mentioned abovewould be used for generating 19 individuals for the
next generation by real-coded simulated binary crossover (SBX) and
polynomial mutation methods (Pattanaik et al., 2018a). Then, the
case-inject process of the genetic algorithm is considered (marked
as purple in Figure 4). Case injection action is conducted over a
specific period of generations; here, we defined it as 4. Since the
total generation of this GA was designed as 20, case injection was
conducted five times in each problem of scenery.

For each case-injection action, cases with the minimum
difference with the best individual in the injecting population were
selected; here, we define [xe,ye,ze] based on the following equation:

a = arg min
ai∈C

dist(ai − d) ,

where d represents the best individual [xb,yb,zb] in the current
injecting generation and ai represents the [xi,yi,zi] solutions in
casebase C. When injecting cases into the population, there is a
possibility that the selected case [xe,ye,ze] is already inside the
population, especially not during the first injection. Therefore, only
when the individual is not already inside the generation, the selected
case would be injected. Then, the algorithm would be run for the
next generation until meeting the stopping criterion. At the end of

the algorithm, the final solution [x f ,y f ,z f] with the minimum path
length and its corresponding motion would be returned.

3.5 Experience-based motion planning
algorithm

Path length calculated by the motion planning algorithm in
environments designated in the higher layer GA is seen as the
evaluation criterion in the GA process. Therefore, experience-based
planning was performed by the ERTConnect planner (Pairet et al.,
2021) (marked as red in Figure 4).

As shown in Algorithm 1, positions of the conveyors S would
be converted into start and goal configurations qstart and qgoal of the
6-DOF robot in C-Space with the IK solver since the ERTConnect
motion planner searches the trajectory in configuration space.

In the selection of experiences from the database, a similarity
equation is devised to assess the Euclidean distance between the
configurations of the start and end states, as depicted below:

ξe = arg min
ξei∈A

dist(ξei (start) − qstart) + dist(ξei (goal) − qgoal) , (1)

where qstart and qgoal are the start and goal configurations of
the current planning problem, respectively; meanwhile, ξei is the
experience path stored in libraryA.

Then, the ERTConnect algorithm was executed for planning
trajectories connecting starting and ending configurations using the
previously selected experience ξe.

The fundamental operation of the ERT algorithm is similar
to the Expansive Spaces Trees (EST) algorithm (Hsu et al., 1997)
because of its foundation in tree-based sampling techniques.
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FIGURE 4
Flowchart of the proposed experience-based environment arrangement method.

FIGURE 5
Trajectories stored in the ERTConnect algorithm dataset are time-series points in C-space.

However, it diverges with its integration of the experience-
reuse component, which facilitates the establishment of spatial
connectivity. Additionally, the ERTConnect algorithm represents a
bidirectional iteration of the ERT algorithm.

During each query, the ERTConnect algorithm ascertains a
seamless trajectory within the C-Space, spanning from the starting

state to the target configuration, utilizing the given experience.
As shown in Figure 6, the prior experience (composed of points inC-
Space ξe = [θ0⋯θn]T) would be first randomly divided into several
micro-experiences. These micro-experiences would be mapped to
the current query piece by piece. For each micro-experience, the
starting configuration θiwould be linked to the ending configuration
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   Input: Positions of conveyors S(x, y, and z) and

Motion planner’s database A.
   Output: Trajectory T and its corresponding path

length l

1: convert Sto start and goal configurations qstart,

qgoalin C-space with the IK solver

2: select experience ξewith the minimum Euclidean

distance with the current query qstart, qgoalfrom the

database A
3: ERTConnect() with experience ξeplan for

feasible solution T
4: calculatethe path length lof the trajectory T
5: end

6: return l

Algorithm 1. ERTConnect motion planner ().

FIGURE 6
Procedure for the ERTConnect algorithm [adapted from Pairet et al.
(2021)]. The experience trajectory ξe is selected and set as a reference
for planning a new trajectory. First, this experience trajectory ξe is
randomly divided into several micro-experiences (e.g., the red
segment ξei). This experience segment will then be retrieved to a new
query (in yellow) according to Equation 2 (in green). This process will
be executed from the starting configuration qstart until the final
configuration qgoal is realized.

qnewend of the planned trajectory using affine transformation:

τi = λm×n ⋅ ξei + bm×1, (2)

where bm×1 = qnewend − θi could be seen as the shifting vector used
to link the starting configuration of the micro-experience and new
query. In addition,m represents the dimension of the robot. λm×n =
[0, α

n−1
, 2α
n−1
,…,α], in which α =

qgoal−bm×1
θgoal

. Therefore, the ending
configuration of each micro-experience could be generated.

The path would be planned until the start and goal
configurations are connected in the configuration space. In the end,
the path length l of the planned trajectory T would be returned into
the GA process.

4 Experiments

In this section, we evaluate the effectiveness of our proposed
method by comparing it with other non-experience-based state-of-
the-art optimization andmotion planning algorithms.We assess the
performance in terms of path length with different stopping criteria
in simulation experiments.

4.1 Experimental setups

4.1.1 Construction of the problems
Regarding benchmark tests for the environment arrangement

solver, we defined several environment constraints for constructing
different pick-and-place tasks. As shown in Figure 9, three picking
directions, namely, vertical (A), horizontal (B), and back-forward
(C), and three placing directions, namely, vertical (D), horizontal
(E), and back-forward (F), are designed for setting the tasks.
In addition, whether the box exists in the environment is also
considered an environment constraint. Therefore, in total, 36
benchmark problems are created for testing. Among them, tasks are
separated into hard and easy tasks, according to the direction and
existence of the box. Picking or placing from the vertical sides often
involves motions that are primarily in the vertical or near-vertical
plane.This can result in fewer rotational degrees of freedom required
for the robotic arm. Therefore, benchmark problems when no box
is in the environment or the box is placed in the vertical side are
defined as easy tasks, and benchmark problems when the box placed
on the horizontal side and back-forward side are considered as hard
tasks. In total, 18 easy tasks and 18 hard tasks were designed.

4.1.2 Implementation of the methods
For the two layers of this hierarchical structural problem-solving

method, two experience-based methods and two state-of-the-art
non-experience-based methods were utilized for the test. For the
upper level of the hierarchical structure, which aims to solve the
optimization problem,GA (Pattanaik et al., 2018b) and case-injected
GA (Louis and McDonnell, 2004) are used. For the lower level of
the hierarchical structure, which aims to solve the motion planning
problem, motion planners RRTConnect algorithm (Kuffner and
LaValle, 2000) and ERTConnect algorithm (Pairet et al., 2021) are
introduced. Therefore, , in total, 2 (for higher layer) × 2 (for
lower layer) = 4 combinations of environment arrangement solvers,
namely, GA-RRTC, caseGA-RRTC, GA-ERTC, and caseGA-ERTC,
are introduced for solving this environment arrangement problem.

4.1.3 Equipment utilized for the experiments
Four robots with different sizes and configuration structures are

utilized for testing the effectiveness of our proposed method:

• xArm6: 6-DOF, maximum reach: 691 mm
• Elfin5: 6-DOF, maximum reach: 800 mm
•Motoman mhj: 6-DOF, maximum reach: 909 mm
• AUBO-i7: 6-DOF, maximum reach: 1,150 mm.

4.1.4 Environment settings
The center positions of the box and the left conveyor

were aligned, and the sizes of the boxes and conveyors
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FIGURE 7
Sequence of the execution of experiments.

were set in proportion to the reach of each robotic arm,
as stated in Section 4.1.3. The height of the box was set to 0.2R, and
the width of the box was made equal to the width of the conveyor
at 0.3R. The lengths of the box and the conveyor were set to 0.65R
and 1.36R, respectively, where R represents the maximum reach of
each robot.

4.2 Dataset setups

Dataset collection is related to the sequential execution of
experiments. Therefore, we designed four steps to execute our
experiments, as shown in Figure 7. In the beginning, 36 environment
arrangement problems were solved via the GA-RRTC algorithm.
The trajectories of the final results and other randomly selected two
trajectories were stored into the dataset, which would be used for the
ERTConnect algorithm in later experiments; therefore, in total, 108
trajectories were stored into the ERT dataset.

Trajectories were represented and stored by the angles of joints
of the robotic arm in configuration space corresponding to each
discrete point in 3D space. However, only the start configuration
θstart1−6 and goal configuration θgoal1−6 were used in the evaluation
of the similarity according to Equation 1.

Then, the same environment arrangement problems are solved
by the combination of the GA-ERTC algorithm. Here, the final
solutions of 36 queries (x, y, and z) are seen as cases to be saved
into the casebase. However, to ensure the casebase used by the query
does not contain the solution that was solved by the same problem,
only 35 solutions would be saved into the casebase for each query.
These casebases would be used for case-injected GA for the next
two experiment testings: the case-injected GA-RRTC algorithm and
case-injected GA-ERTC algorithm.

5 Results and discussion

We have done simulation experiments in four robots (AUBO-i7,
Elfin5, mhj, and xArm6, as shown in Figure 8) with easy tasks and
hard tasks using four combinations of methods mentioned above.
Here, we access our results by calculating the average value of the
path length (rad) of the 18 tasks when stopping the environment
arrangement algorithm at different times. For the auboi7 robot,
whose size is the largest, the time spent for planning feasiblemotions
was longer than other robots with smaller sizes. Therefore, for the
AUBO-i7 robot only, the stopping time criteria are longer than the
three other robots.

Figure 10 shows an example of our obtained results, in which
the AUBO-i7 robot was used to solve the environment optimization
problem when performing the task involves picking from the
horizontal side and placing from the vertical side. The final
positions of the conveyors are [x1,y1,z1] = [0.3524,0.6594,0.3137]m
and [x2,y2,z2] = [0.3524,−0.6594,0.3137]m, with the path length
of the trajectory as 2.98 rad. According to the results obtained
from the simulation shown in Table 1, the proposed experience-
based environment arrangement solver case-injected GA-ERTC
showed the highest performance in most of the experimental tasks,
especially in robots with small sizes, such as Elfin5, xArm6, andmhj
robots. When stopping the algorithm in the 2000s in easy tasks and
3000s in hard tasks, our proposed experience-based method shows
better results. In experiments conducted in the Elfin5 robot, there
is a decrease in the final result (path length) of 8.06% in easy tasks
and 19.64% in hard tasks. In the mhj robot, there is a decrease in the
final result of 0.54% in easy tasks, 8.99% in hard tasks. In the xArm6
robot, there is a decrease in the final result of 6.55% in easy tasks and
9.15% in hard tasks.

However, when stopping the algorithm in 5000s in hard tasks of
the large robot AUBO-i7, our proposed experience-based method
did not show good performance.Theremight bemainly two reasons
for this phenomenon.

1) The experience-reuse efficiency in the AUBO-i7 robot is lower
than other robots. As shown in Table 2, we calculated the
average distance (rad) between the selected experience and
current query when using the ERTConnect algorithm and
compared the results between the AUBO-i7 robot and Elfin5
robot. The results show that the distance in AUBO-i7 cases is
approximately twice that of Elfin5 cases. This represents that
experiences reused in AUBO-i7 could be more different with a
new query; therefore, the experience-reuse efficiency would be
lower than small robots.

2) The hard tasks of the AUBO-i7 robot are more difficult than
other robots because of the environment settings (the set of the
box). We set the size of the boxes in proportion to the reach of
the robots, not scaled to the robot’s configuration space. Thus,
the large size of the robot AUBO-i7 increases the potential for
collisions. Therefore, the motion planning in the large robot,
AUBO-i7, is much harder than that in small robots, which
leads to the increase in final results (path length) in hard tasks
of the AUBO-i7 robot.

In reason 1, average distances between current query and
selected experiences in the AUBO-i7 robot are higher than those in
the Elfin5 robot. The reason for this might be related to the second
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FIGURE 8
3D Model in RViz of the robots used in experiments: (A) Elfin5 robot. (B) mhj robot. (C) xArm6 robot. (D) AUBO-i7 robot.

FIGURE 9
Environment constraints for defining the problem to be solved. In total, there are three picking constrains: (A) picking from the vertical side; (B) picking
from the horizontal side; and (C) picking from the back-forward side and three placing constraints: (D) placing from the vertical side; (E) placing from
the horizontal side; and (F) placing from the back-forward side. Whether the box [as shown in (E, F)] exists in the environment is also considered an
environment constraint.

FIGURE 10
Result trajectory of the AUBO-i7 robot when performing the task involves picking from the horizontal side and placing from the vertical side.

reason.When the positions of the boxes change in the environment,
because of the high difficulty of planning feasible motions of the
AUBO-i7 robot, even the small changes in the positions of the box
could lead to a large slip of the starting and ending configurations

comparedwith the dataset planned by the IKmodule at the first stage
of motion planning.

In addition to the abovementioned results, we also introduce a
laddered reference for users who are willing to use our proposed

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2024.1468385
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Lu et al. 10.3389/frobt.2024.1468385

TABLE 1 Path length (rad) returned when stopping the optimization
algorithm in different progresses in four robots (AUBO-i7, Elfin5, mhj,
and xArm6).

AUBO-i7 (easy tasks)

Condition Path length
(1000s)

Path length
(2000s)

Path length
(3000s)

GA-RRT 2.407574 2.247776 2.210905

caseGA-RRT 2.515666 2.346976 2.295159

GA-ERT 2.478247 2.31395 2.259126

caseGA-ERT 2.486048 2.242487 2.167826
(−1.9%)

AUBO-i7 (hard tasks)

Condition Path length
(1000s)

Path length
(3000s)

Path length
(5000s)

GA-RRT 2.747944 2.480159 2.391671

caseGA-RRT 3.041041 2.680214 2.572279

GA-ERT 2.638694 2.505068 2.469904

caseGA-ERT 2.723162 2.569482 2.459562

Elfin5 (easy tasks)

Condition Path length
(800s)

Path length
(1400s)

Path length
(2000s)

GA-RRT 1.911629 1.892187 1.880808

caseGA-RRT 1.909614 1.895111 1.886558

GA-ERT 1.838229 1.790196 1.780574

caseGA-ERT 1.787515 1.737445 1.729197
(−8.06%)

Elfin5 (hard tasks)

Condition Path length
(1000s)

Path length
(2000s)

Path length
(3000s)

GA-RRT 3.582743 3.448506 3.378888

caseGA-RRT 3.403129 3.12497 3.073381

GA-ERT 2.985809 2.832983 2.780494

caseGA-ERT 2.956463 2.781493 2.715406
(−19.64%)

mhj (easy tasks)

Condition Path length
(800s)

Path length
(1400s)

Path length
(2000s)

GA-RRT 2.303998 2.274186 2.236647

caseGA-RRT 2.29979 2.276456 2.259014

GA-ERT 2.254757 2.246878 2.246562

(Continued on the following page)

TABLE 1 (Continued) Path length (rad) returned when stopping the
optimization algorithm in different progresses in four robots (AUBO-i7,
Elfin5, mhj, and xArm6).

mhj (easy tasks)

Condition Path length
(800s)

Path length
(1400s)

Path length
(2000s)

caseGA-ERT 2.234666 2.229086 2.224507
(−0.54%)

mhj (hard tasks)

Condition Path length
(1000s)

Path length
(2000s)

Path length
(3000s)

GA-RRT 3.437869 3.323296 3.249903

caseGA-RRT 3.371937 3.235782 3.149138

GA-ERT 3.111261 3.048727 2.990963

caseGA-ERT 3.057014 2.979651 2.960559
(−8.99%)

xArm6 (easy tasks)

Condition Path length
(800s)

Path length
(1400s)

Path length
(2000s)

GA-RRT 1.930181 1.899212 1.848715

caseGA-RRT 1.939437 1.911066 1.866544

GA-ERT 1.794222 1.784214 1.775055

caseGA-ERT 1.835677 1.811967 1.793110
(−6.55%)

xArm6 (hard tasks)

Condition Path length
(1000s)

Path length
(2000s)

Path length
(3000s)

GA-RRT 3.383504 3.259521 3.158789

caseGA-RRT 3.78115 3.415445 3.380669

GA-ERT 3.209672 2.973886 2.939468

caseGA-ERT 3.130803 2.976547 2.869729
(−9.15%)

The best results are highlighted in bold

TABLE 2 Average distance (Rad) between the current query and selected
experience of AUBO-i7 and Elfin5 robot in the pick-and-place task from
the back-forward side when there is box in the environment.

AUBO-i7 Elfin5

Average distance (rad) 3.8717168 1.2448932

methods. In real manufacturing, tolerable planning time might be
shorter than our proposed maximum stopping time. Therefore,
our results also show how long the path lengths of the designed
environments can be in a shorter planning time (800s, 1400s,
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and 2000s), which could be reused in practical environment
arrangement problems for engineers.

6 Conclusion and future work

In this study, we proposed an experience-based environment
arrangement solver to solve the combination problem of
environment arrangement and motion planning. To solve this high-
dimensional problem, the hierarchical structure is proposed to
decompose the high-dimensional problem into two semi-high-
dimensional problems. Case-injected GA was used for solving
the optimization problem, and the path length planned by the
ERTConnect algorithm was used as an evaluation criterion in
the process of genetic algorithm. We compared our proposed
experience-basedmethods with non-experience-based state-of-the-
art methods.

The results of simulation experiments showed that our proposed
experience-based method case-injected GA-ERTC algorithm
can sufficiently re-utilize the past experiences and design the
environment with the average 5.05% decrease in path length in
18 easy and 12.59% in 18 hard pick-and-place tasks in three robots
(Elfin5, mhj, and xArm6).

However, there are still several limitations in this study. First,
as shown in our results, the effectiveness of our proposed method
could be unclear when being used in the large robot while increasing
the difficulty of tasks. Second, our goal is to solve problems and
increase the quality of the final results within specified limited time,
so we do not seek to ensure the optimality of the result. Third,
we have only tested our proposed method on 6-DOF robots, so it
would be another interesting study if we could extend our vision to
7-DOF robots.

Therefore, there could be three future directions for our work.
First, for different types of tasks, a switch between methods
can be proposed. For simpler tasks without obstacles, non-
experience-based methods, which do not require referencing
previous experiences, could be employed to increase the calculation
speed. However, for more complex tasks where the success rate of
non-experience-basedmotion planningmethods is low, experience-
based approaches would be more suitable. Second, discussion about
the optimality of the optimization algorithms could be another
direction. Third, since our proposed methods are only tested on 6-
DOF robots, the transfer of experiences among 6-DOF robots and
7-DOF robots could also be an interesting research topic.
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