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Can a human sing with an
unseen artificial partner?
Coordination dynamics when
singing with an unseen human or
artificial partner

Rina Nishiyama and Tetsushi Nonaka*

Graduate School of Human Development and Environment, Kobe University, Kobe, Japan

This study investigated whether a singer’s coordination patterns differ when
singing with an unseen human partner versus an unseen artificial partner
(VOCALOID 6 voice synthesis software). We used cross-correlation analysis to
compare the correlation of the amplitude envelope time series between the
partner’s and the participant’s singing voices. We also conducted a Granger
causality test to determine whether the past amplitude envelope of the partner
helps predict the future amplitude envelope of the participants, or if the reverse is
true.We foundmore pronounced characteristics of anticipatory synchronization
and increased similarity in the unfolding dynamics of the amplitude envelopes
in the human-partner condition compared to the artificial-partner condition,
despite the tempo fluctuations in the human-partner condition. The results
suggested that subtle qualities of the human singing voice, possibly stemming
from intrinsic dynamics of the human body, may contain information that
enables human agents to align their singing behavior dynamics with a
human partner.
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inter-personal coordination, anticipatory synchronization, strong anticipation, self-
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1 Introduction

Music is an inherently social activity that involves real-time non-verbal communication
(Volpe et al., 2016; Welch et al., 2014). A substantial amount of research in music
performance has concentrated on exploring what insights musical interaction can provide
into general inter-agent interaction (e.g., Moran, 2014; Sawyer, 2014). The ability to
synchronize among musicians involves perceiving another’s actions and then adjusting
one’s own actions accordingly, which includes continuous micro-timing adjustments and
anticipatory control (Proksch et al., 2022; Keller et al., 2007; Konvalinka et al., 2010;
Sebanz et al., 2006). Therefore, interactions in music are regarded as valuable models for
exploring complex inter-agent interaction dynamics (D’Ausilio et al., 2015), with potential
implications for understanding coordination in human-machine interactions (Kim and
André, 2008).

In recent decades, computer-based technologies have rapidly advanced in their ability to
generate human-like acoustic features in speech, singing, and music playing (Umbert et al.,
2015; Kühne et al., 2020). One example is singing voice synthesis technology, which
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enables computers to “sing” any song. Since the release of
singing voice synthesis software VOCALOID, it has become
especially popular in Japan (Kenmochi and Ohshita, 2007).
Although technologies to mimic human-like acoustic features in
music playing have rapidly improved, the social and collaborative
implications of such music technology have remained unexplored.
Little progress has been made in designing artificial partners
that offer a comparable social experience to playing with another
person, despite the fundamental importance of understanding what
enables humans and machines to interact with each other in a
coordinated manner.

Previous studies have shown that bodily movements are crucial
for communication and expression among musicians (Klein et al.,
2022), enabling temporal anticipation of actions to synchronize
with others (Keller et al., 2007; Burger et al., 2014; Saino, 2019;
Schreibelmayr and Mara, 2022). Chang et al. (2017) discovered that
the body sway of one musician influenced that of others, even when
visual contact between them was absent. Since visual contact was
absent, body sway could not have directly conveyed information
about the partner to them. It has been suggested that body sway
may manifest in the sound produced by musicians, allowing them
to coordinate their behaviors with each other by perceiving subtle
auditory information duringmusic performance (Klein et al., 2022).
This raises the question: Can a musician coordinate with the sound
produced by an artificial agent without a human body and still play
music together in a coordinated manner?

The current study employs VOCALOID 6 (Yamaha
Corporation, Hamamatsu, Japan), an AI-based software designed
to generate natural-sounding and highly expressive singing voices
from lyrics and melodies, to explore the following question: When
a human singer performs a song with an unseen artificial partner
versus an unseen human partner, will the degree of inter-agent
synchrony and the similarity of their singing voices’ amplitude
envelopes differ between these two conditions? This test examines
whether the coordination dynamics between a singer and an unseen
partner are indistinguishable when the partner is either human or
artificial (c.f., Dotov et al., 2024).

In the present study, the artificial partner (Vocaloid) maintained
a consistent tempo throughout the musical passage. In contrast, the
human partner sang at her own tempo after listening to a two-
bar metronome cue set at the same tempo as the artificial partner.
Intuitively, it might seem easier for a singer to synchronize with
music that maintains a constant tempo. However, if real human
singing voices convey subtle information about how dynamics
unfold at different time scales, then the small fluctuations in a human
voice may not be a hindrance. On the contrary, these variations
could provide prospective information that aids in singing along
with the voice. If this latter scenario holds true, we would expect a
higher degree of inter-agent synchrony and dynamic similaritywhen
a singer performswith a human partner compared towhen they sing
with an artificial partner. Moreover, if the fluctuations in the human
singing voice contain prospective information about how the music
unfolds, then stronger anticipatory adjustments of a singer in such
a way to tune into the dynamics of a partner would be expected
in the condition where a singer sings along with a human partner
compared to the condition involving an artificial partner.

We tested these hypotheses by conducting cross-correlation
(CC) and Granger causality (GC) analyses on pairs of time series

representing the amplitude envelopes of participants’ and their
partners’ singing voices. CC measures the correlation between the
two time series across time-lagged copies of one another within a
range of positive and negative lags. The sign of the lag at which the
largest CC value occurs suggests the temporal precedence between
the two time series. Although CC indicates how similar the two
time series are, it can also provide a measure of synchrony by
quantifying the correlations with a zero lag when the two time series
are positioned together in time (Klein et al., 2022). Granger causality
is a statistical notion for time series data, where a preceding time
series helps predict a future one (Barnett and Seth, 2014). Intuitively,
if a signal is predictable, it is possible to make predictions about its
future based on its past history. If the amplitude envelopes of two
vocalists singing together are denoted as Y(t) and X(t), and they
are correlated, then the past of X can also be used to predict the
future of Y. If the inclusion of X improves the prediction of future of
Y, then Y is considered to be Granger-caused by X (for details, see
Barnett and Seth, 2014). The Granger causality (GC) test can also
reveal anticipatory dynamics, where the follower displays behavior
that precedes that of its leader in time (Chen et al., 2023).

In the present study, first, we expected higher maximum CC
values to indicate stronger correlation between dynamics of singing
voices between a singer and its partner. Second, we expected a higher
zero-lag CC values to indicate higher synchrony between dynamics
of singing voices between a singer and its partner.Third, we expected
that the lag at which the highest cross-correlation (CC) value occurs,
along with the directional difference in Granger causality (from
partner to participant versus from participant to partner), would
indicate the extent of anticipatory adjustments made while singing
with a partner.

2 Methods

2.1 Participants

Ethical approval for the study (# 725–2) was obtained from the
Ethics Committee at the Graduate School of Human Development
and Environment, Kobe University (Japan). We recruited seven
university students. Because a female synthesized voice was used
in the experiment (see the following section), all the participants
we recruited were female. All participants had experience singing
in a group setting, such as in a school choir. The average age of
the participants at the time of the experiment was 22.9 (SD =
0.8). In addition, we hired a female semi-professional female singer
who had been singing popular music in a local band to record a
human singing voice to be used as a human partner, with which
participants were instructed to sing along. No participants reported
having hearing or motor disability. Participants received a small fee
for their participation.

2.2 Music materials

We selected two Japanese popular songs with different tempi,
Sincerely (75 BPM in 4/4 time, hereafter referred to as a “slow song”)
and Shojo Rei (Tempo: 150 BPM in 4/4 time, hereafter referred
to as a “fast song”), for participants to sing along (Figure 1). Both
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FIGURE 1
The refrains of the two songs sung in the experiment: (A) Slow Song (“Sincerely” originally sung by TRUE and (B) Fast Song (“Shoujo Rei” originally sung
by Miku Hatsune).

songs were sung by a female vocalist in their original versions.
Slow Song was originally sung by a human female artist TRUE,
while Fast Song was originally sung by a female VOCALOID virtual
singer Miku Hatsune. Fast Song involves a series of notes that are
an octave (8 notes) apart, while Slow song has a relatively simple
melody with smaller note changes (Figure 1). The chorus/refrain
part was extracted from each song to be sung by participants in the
experiment (Slow Song: 10 bars, 37 s, Fast Song: 17 bars, 29 s).

For each song, we created an audio recording with a human
singer and a VOCALOID AI singer (HARUKA), which was
used as a singing voice of a partner for participants to sing
along. First, recordings of an artificial Vocaloid singer were
created with VOCALOID 6 singing voice synthesis software (audio
files are available in Supplementary Material). Next, we sent the
audio recordings of a Vocaloid singer to a human singer and
instructed her to sing as close to the vocal style and pitch
changes of the Vocaloid singer as possible (audio files are available
in Supplementary Material). Both singing voices were recorded
in Cubase LE AI Elements 13 (Steinberg, Hamburg, Germany)
as monophonic 16-bitWAV files at 44.1 kHz sampling rate. The
recording of both songs included the two measures of metronome
sounds before the chorus began. Once the chorus has begun, no
metronome clicks were available for listeners to hear in either
partner condition. In other words, the pickup metronome clicks
indicated only the starting tempo of the pieces. While the Vocaloid
partner sung with a constant tempo throughout the chorus, the
human partner sung with her own tempo after listening to the
two-bar metronome sounds which indicated the beginning of the
recording. The vocal recordings of both the Vocaloid partner and
the human partner are available in Supplementary Material.

2.3 Procedure

Chorus parts for both pieces sung by an artificial (Vocaloid)
singer and a human singer were sent to participants a week prior
to the experiments for participants. Each participant was instructed

to sing along in unison with the singing voice of an unseen
partner (either a human or an artificial partner) played through a
headphone monitor, following the partner’s singing voice as closely
as possible (Figure 2). The experimental setting was analogous to
the situation where a singer sings along with a partner in a separate
room without visual information. Before the start of the singing
voice, participants heard the two-bar metronome (as was the case
in the recording of the singing voice of the human partner) so
that they can adjust the timing at the beginning. The singing voice
of each participant was recorded on Cubase LE AI Elements 13
with Scarlett 2i2 Studio microphone, pre-amp, and USB audio
interface (Focusrite, High Wycombe, United Kingdom). When each
participant arrived in the lab, participants practiced singing along
with the recordings for a few times to test participants’ recording
setups to familiarize themwith the procedure. Participants recorded
five times for each song (Slow Song and Fast Song) in each
partner condition (a human partner and an artificial partner). All
participants sang Slow Song first before singing Fast Song. Within
each song, the order of the trials of the two partner conditions (a
human partner vs. an artificial partner) was randomized.

2.4 Data analysis

2.4.1 Amplitude envelope
All vocal audio recordingswere imported intoMATLABR2023b

(MathWorks, Natick, MA) and resampled to a rate of 16 kHz.
The temporal envelope of each vocal sample was obtained by
computing the magnitude of the Hilbert transform (Issa et al., 2024;
Braiman et al., 2018). Building on previous studies that analyzed
temporal modulations in human speech and music separately from
spectral information (Ding et al., 2017; Elliott and Theunissen,
2009), we isolated slow temporal modulations in sound amplitude
(<32 Hz) by applying a 3rd order Butterworth IIR filter with a 32 Hz
cutoff frequency to the time series twice—once forward and once
backward. The amplitude envelope time series were then down-
sampled to 200 Hz by averaging the time points within consecutive,
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FIGURE 2
Experimental setup. (A) Human partner condition where participants sing along with a human partner. (B) Artificial partner condition where participants
sing along with the vocal synthesizer.

FIGURE 3
Examples of the audio amplitude envelope time of the singing voice in the two partner conditions (a human partner and an artificial Vocaloid partner)
for (A) Fast Song and (B) Slow Song from the experiment (each taken from the fifth trial of participant ID P5).

non-overlapping 5-ms windows. This process resulted in a smooth
curve that reflects the fluctuations in sound intensity over time.

2.4.2 Cross correlation
To assess the similarity of temporal modulations in sound

intensity between participants’ performances and the recorded vocal
sounds of their partners that the participants followed, we calculated
cross-correlations (CC) between the amplitude envelope time series
of each partner’s recording (a human singer and a Vocaloid singer)
and each participant’s performance during every trial while singing
along in unison. CC coefficients were calculated across the entire
waveforms for each trial for lags between −0.1 and 0.1 s.

We derived three measures based on the CC analysis:

1. Maximum CC Value: The highest CC coefficient across all
time lags was calculated for each trial, resulting in one cross-
correlation coefficient per trial per participant. This value
indicates the similarity of the amplitude envelope time series
between the partner’s and the participant’s voices.

2. Lag at Maximum Correlation: The time delay at which the
maximum correlation occurred in each trial was identified.
This measure indicates the time difference between the two
time series that produced the highest similarity. Positive lag
values suggest that the participant’s voice lagged behind the
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FIGURE 4
The results of cross correlation (CC) analysis of the temporal modulations in sound amplitude between the partner and the participant as a function of
tempo (Fast Song vs. Slow Song) and the type of partner (Human or Vocaloid). (A) The maximum values of the CC coefficients across all time lags that
indicate the similarity of the amplitude envelope time series between the partner and the participant. (B) The lag at which the maximum correlation
occurred, which indicates the time delay between the two time series that produced the highest degree of similarity. (C) Cross correlation coefficients
computed with a zero lag when the two time series are positioned together in time that indicate a measure of phase alignment between the singing
voices of the partner and the participant. Positive lag values would indicate that the singing voice of the participant lags behind that of the singing voice
of the partner, where lagging the voice of the partner produced the highest degree of similarity, while negative lag values would indicate that the
singing voices of the participant preceded that of the partner. Error bars representu ±1 standard error of the mean.

partner’s voice, while negative lag values indicate that the
participant’s voice preceded the partner’s.

3. Zero Lag CC Coefficient: The CC coefficients were computed
with a zero lag, where the two time series are aligned in
time. This measure indicates the phase alignment synchrony
between the amplitude envelopes of the partner’s and the
participant’s singing voices.

2.4.3 Granger causality
We calculated the magnitude of Granger causality (GC)

from the amplitude envelope time series of the recording of
the partner (Human or Vocaloid) to the amplitude envelope
time series of the performance of the participant and vice
versa—for each participant and each trial following the procedure
implemented in the Multivariate Granger Causality (MVGC)
Toolbox for MATLAB (Barnett and Seth, 2014). An optimal
model order (the number of past points in the time series
included in the model) was chosen for each trial for each
participant using the Akaike information criterion. Then, for each
participant for each song, the maximum model order out of their
five trials was used to calculate GC values for all five trials.
The average model orders used for participants when singing
Fast Song and Slow Song were 75 ms (15 points) and 85 ms
(17 points), respectively.

2.4.4 Statistical analysis
Wemodeled the three aforementioned CCmeasures as outcome

variables in a linear mixed effects model using the “lme” function
from the “nlme” package (Pinheiro et al., 2024) in R version 4.4.1.
The fixed effects factors were partner (a human singer vs. an artificial
Vocaloid singer), and tempo (Slow Song vs. Fast Song). Similarly,
we modeled GC as an outcome variable in a linear mixed effects
model with partner, tempo, and the direction of GC (partner to
participant vs. participant to partner) as fixed effects. To account
for the correlation between performances of the same participant,
a participant factor was included as a random effect for the intercept
for bothmodels. Bonferroni-adjusted post hoc pairwise comparisons
based on estimated marginal means were conducted using the
“emmeans” package (Lenth, 2024) in R. The alpha value for a
significant effect was set at 0.05.

3 Results

Figure 3 presents the examples of the audio amplitude envelope
time series of the singing voice in the two partner conditions (a
human partner and an artificial Vocaloid partner) for (A) Fast Song
and (B) Slow Song from the experiment. Visual inspection of the
time series suggests that the singing voice of the participant generally
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FIGURE 5
The results of Granger causality (GC) analysis of the temporal modulations in sound amplitude between the partner and the participant as a function of
tempo (Fast Song vs. Slow Song) and the type of partner (Human or Vocaloid). Granger causality values for both directions, from the amplitude
envelope of the partner to that of the participant, and from the amplitude envelope of the participant to that of the partner are presented. Error bars
represent ±1 standard error of the mean.

closely mirrored that of the partner in both partner conditions and
songs with different tempi.

Figure 4 presents the results of the cross-correlation analysis
when the data from all participants were pooled. Visual
inspection of Figure 4A suggests that when a participant sung
along with an unseen partner in unison, the participant generally
exhibited greater degree of similarity of the temporal modulation of
sound intensity with the human partner compared to the artificial
Vocaloid partner, and in the Slow Song compared to the Fast Song.
A linear mixed effect model analysis on maximum CC coefficients
confirmed these impressions, finding a highly significant effect of
partner, F(1,130) = 91.30, p < 0.0001. The linear mixed effect model
analysis also found a significant effect of tempo, F(1,130) = 41.87, p <
0.0001,with a relativelyweak significant interaction between partner
and tempo, F(1,130) = 6.22, p = 0.014, where the difference in the
degree of similarity between the human and the Vocaloid partners
was greater when participants sang the Fast Song compared to the
Slow Song. No other significant effects were found. A Bonferroni-
corrected post hoc analysis confirmed that the participant exhibited a
significantly greater degree of similarity of the temporal modulation
of sound intensity with the human partner compared to the artificial
Vocaloid partner when singing Fast Song, t (130) = 8.52, p < 0.0001,
as well as when singing Slow Song, t (130) = 4.99, p < 0.0001.

Thephase relations between the singing voice of participants and
that of the unseen partner exhibited a difference between the human
partner condition and the artificial Vocaloid partner condition.
When a participant sang along with a human partner, she generally
coordinated with the partner in an anticipatory manner, preceding
the partner (Figure 4B). By contrast, when participants sung along

with an unseen artificial partner, participants did not go ahead of
the partner as much. A linear mixed effects model analysis on the
lag at which maximum correlations occurred found a significant
effect of partner, F(1,130) = 184.62, p < 0.0001, confirming the above
impression. The analysis also found a significant effect of tempo,
F(1,130) = 14.35, p = 0.0002, where the participants got ahead of the
partner to a greater degree when singing the Fast Song compared to
the Slow Song. No other significant effects were found.

A similar tendency was observed in the zero-lag cross
correlation values which indicate the degree of synchrony of the
amplitude envelope time series between voices of the partner
and the participant (Figure 4C). A linear mixed-effects model on
zero-lag cross-correlation (CC) coefficients revealed a significant
effect of partner type, F(1,130) = 16.62, p = 0.0001, indicating that
participants in this experiment were more synchronized with the
unseen human partner than with the artificial Vocaloid partner.
This finding is somewhat counterintuitive, given that the Vocaloid
partner maintained a constant tempo, whereas the human partner
did not. The analysis also found that participants were generally
more synchronized with the partner when they were singing the
Slow Song compared to the Fast Song, F(1,130) = 59.52, p < 0.0001.
No other significant effects were found.

Figure 5 presents the GC values in the two directions (partner
to participants; participants to partner) within-subjects for each
tempo separately. When participants sang along with the Vocaloid
partner, as expected, participants generally followed the partner
because the recording of the partner was fixed. However, with the
human partner, the tendency reversed, where participants exhibited
the anticipatory dynamics leading the human partner (Figure 5). A
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FIGURE 6
The results of cross correlation (CC) analysis of the temporal modulations in sound amplitude between the partner and the participant as a function of
tempo (Fast Song vs. Slow Song) and the type of partner (Human or Vocaloid) for individual participants (P1 - P7). (A) The maximum values of the CC
coefficients, and (B) the lag at which the maximum correlation occurred.

linear mixed effect effects model analysis on GC values confirmed
the visual impression, finding a highly significant interaction
between partner anddirection,F(1,266) =86.65, p<0.0001.This result
confirmed the presence of anticipatory dynamics when singing
with the human partner, with participants displaying the temporal
modulation of sound intensity that preceded their partner’s in time.
It also indicated that, when singing with the Vocaloid partner,
participants generally followed the partner’s lead. In addition, the
analysis found amarginally significant effect of tempo, F(1,266) =6.35,
p = 0.012, where GC values tended to be greater in the Fast Song
compared to the Slow Song. No other significant effects were found.

The data from individual participants demonstrated that the
participants generally sang with more similar temporal variation
patterns with the unseen human partner compared to the artificial
Vocaloid partner, except one individual (P6) who did not exhibit
such a difference when singing the Slow Song (Figure 6).

Individual GC data indicated that some participants
consistently followed (P4 and P5) or led (P1) their partner
across both conditions (Figure 7). Nevertheless, all participants

exhibited a stronger tendency to synchronize in an anticipatory
manner with the unseen human partner than with the artificial
Vocaloid partner, though the degree of this effect varied
among them (Figure 7).

4 Discussion

Music, typically involving multiple agents engaged in a
temporally coherent manner, provides an ideal platform for
studying the dynamics of human interaction with artificial agents.
The primary objective of this study was to explore whether a
human singer can effectively “sing together” with an unseen
partner—a human singer or a vocal synthesizer—necessitating
the synchronization of one’s behavior with the dynamic singing
patterns of the partner in an anticipatory manner. We specifically
investigated whether a human singer demonstrates similar time-
varying properties in their singing voice when singing alongside
two different partners: another human singer and a Vocaloid singer.
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FIGURE 7
The results of Granger causality (GC) analysis of the temporal modulations in sound amplitude between the partner and the participant as a function of
tempo (Fast Song vs. Slow Song) and the type of partner (Human or Vocaloid) for individual participants (P1 - P7). Granger causality values for both
directions, from the amplitude envelope of the partner to that of the participant, and from the amplitude envelope of the participant to that of the
partner are presented. Error bars represent ±1 standard error of the mean.

We investigatedwhether the temporal correlations between a human
singer’s amplitude envelope and that of an unseen partner could be
distinguished across conditions featuring a human partner versus
an artificial Vocaloid partner.

The results of the present experiment suggested that participants
in the present experiment distinguished the human partner and
the artificial partner by “doing.” Even without visual cues, our
participants synchronized their singing behaviormore anticipatorily
with the human partner compared to the artificial partner,
highlighting distinct dynamics between the two partners. This
anticipatory synchronization led to a closer temporal alignment of
the amplitude envelopes of singing sounds with those of the human
partner compared to the artificial partner condition.

Considering the subtle tempo fluctuations in the human
partner’s singing voice, it is unlikely that our participants relied on
a “constant tempo” strategy, where they would maintain a steady
tempo akin to a metronome in their minds. What alternative
strategies enable human participants to better coordinate their
singing voice with a fluctuating tempo compared to a constant
tempo? One possible interpretation of the present results is that
the singing sound of the human partner contained detectable
information related to the unfolding of its dynamics in the near
future (e.g., breath sounds). If perceptually detectable information
exists in the human voice (but not in the voice of Vocaloid)
that enables the coupling of the present change of state to the
upcoming state of affairs, then anticipatory synchronization through
perceptual coupling to auditory information is theoretically feasible
(Stepp and Turvey, 2010). If a human participant successfully tunes
into such information about the near future available in the present
(termed as the “current future” in Bootsma, 2009), then we would
expect to observe two key results from the present experiment: a
pronounced tendency for anticipation and an increased similarity in
the unfolding dynamics of the amplitude envelopes in the human-
partner condition compared to the artificial partner condition.

Another plausible explanation for these results is that human
participants and their human partners share similar intrinsic
dynamics of the body. Consequently, singing with a human singer
is naturally more coordinated compared to singing with a Vocaloid
singer, which lacks these shared intrinsic dynamics. The dynamics
of the singing voice are influenced by the air pressure in the lungs
and the mechanical properties of the elastic folds of the mucous
membrane lining the larynx (vocal cords), which are controlled
by numerous laryngeal muscles (Sundberg, 1977). Considering the
intricate biomechanics involved in singing, the dynamic unfolding
of the singing voice is expected to reflect the characteristics of
human vocal organs operating within specific biomechanical and
environmental constraints. Therefore, it is likely that the amplitude
envelopes of singing voices from human participants and their
human partners would naturally align, displaying similar patterns
of temporal unfolding. Furthermore, it is plausible that shared
intrinsic dynamics enable the singer to attune to subtle, detectable
information about the unfolding of the partner’s singing voice.
The present findings suggest that participants found it easier to
sing along with the human partner than with the artificial partner.
Because human singers share the intrinsic dynamics of the body,
they may naturally synchronize their rhythm with that of a partner
when subtle auditory information about the partner’s embodied
action is available. While some intrinsic dynamics are universally
shared (e.g., airflow through the vocal folds is essential for singing),
social or normative aspects of communal singing practices might
also influence the degree of temporal alignment between two human
singers (see Nonaka et al., 2024, for a related discussion in pottery
practice). Future research could investigate howa shared community
of practice impacts temporal alignment between singers when they
sing together.

Future research could explore identifying auditory variables that
enable a human singer to coordinate effectively with others. Once
these variables are identified, they could be implemented in vocal
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synthesizers to experiment with manipulating these variables and
observing how such changes affect the dynamics of singing together.
Another intriguing area of research could be to explore the nature of
morphological computation involved in singing (c.f., Pfeifer et al.,
2007). By carefully considering the biomechanics and passive
dynamics that create the distinctive patterns of human singing, it
may be possible to replicate these temporal patterns so precisely that
human participants would find the behavior of human and artificial
partners indistinguishable.

5 Conclusion

The present study tested whether a singer’s coordination patterns
differ when singing along with an unseen human partner versus an
artificial partner (VOCALOID 6 voice synthesis software). We used
cross-correlation analysis to compare the similarity of the amplitude
envelope time series between the partner’s and participant’s voices, the
time delay that produced the highest degree of similarity between the
two time series, and the degree of phase alignment (i.e., synchrony)
between the amplitude envelopes of the partner’s and participant’s
singingvoices.WealsoconductedaGrangercausality test todetermine
whether the past amplitude envelope of the partner helps predict
the future amplitude envelope of the participants, or if the reverse is
true.Weobservedmorepronouncedanticipatorysynchronizationand
greater similarity in the unfolding dynamics of amplitude envelopes
in the human-partner condition compared to the artificial partner
condition, despite the tempo fluctuations in the human-partner
condition.Theresults suggest thatsubtlequalitiesof thehumansinging
voice, possibly stemming from the intrinsic dynamics of the human
body, may provide information that enables human singers to align
their singing behavior with that of a human partner.
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