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Reliable and robust robotic
handling of microplates via
computer vision and touch
feedback

Vincenzo Scamarcio1, Jasper Tan2, Francesco Stellacci1 and
Josie Hughes2*
1Supramolecular Nano-Materials and Interfaces Laboratory, Institute of Materials, School of
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Lausanne (EPFL), Lausanne, Switzerland

Laboratory automation requires reliable and precise handling of microplates,
but existing robotic systems often struggle to achieve this, particularly when
navigating around the dynamic and variable nature of laboratory environments.
This work introduces a novel method integrating simultaneous localization and
mapping (SLAM), computer vision, and tactile feedback for the precise and
autonomous placement of microplates. Implemented on a bi-manual mobile
robot, the method achieves fine-positioning accuracies of ±1.2 mm and ±0.4°.
The approach was validated through experiments using both mockup and real
laboratory instruments, demonstrating at least a 95% success rate across varied
conditions and robust performance in a multi-stage protocol. Compared to
existing methods, our framework effectively generalizes to different instruments
without compromising efficiency. These findings highlight the potential for
enhanced robotic manipulation in laboratory automation, paving the way for
more reliable and reproducible experimental workflows.
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1 Introduction

Robotic mobile manipulation platforms are increasingly used for the automation of
laboratory sciences as they improve consistency and reliability in experimental data capture
while enabling large-scale experiments (Abolhasani and Kumacheva, 2023; Thurow, 2021;
Holland and Davies, 2020). However, such mobile manipulators (Ghodsian et al., 2023)
often struggle to robustly, precisely, and reliably pick and place labware—typically “well
plates,” a fundamental task for many wet laboratory protocols. Performing this task in
a laboratory is challenging due to the dynamic nature of the environment, variability
in instrument locations (Hvilshøj et al., 2012), and the necessity for robots to work
alongside humans for extended periods (Duckworth et al., 2019). Additionally, the precision
required is often within the millimeter range (Bostelman et al., 2016; Madsen et al.,
2015). In laboratory environments, the positioning of instruments is not always fixed;
large, fragile devices may need to be moved for various reasons, such as reconfiguring
for different experiments, optimizing workflow efficiency, or performing maintenance.
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This introduces variability that robots must compensate for when
performing tasks such as picking and placing labware. Enhancing
the reliability and precision of these robots would expand the range
of complex wet laboratory protocols that could be automated.

Mobile manipulators commonly rely on simultaneous
localization and mapping (SLAM) (Sánchez-Ibáñez et al., 2021)
and predefined maps to reach target locations, yet this approach
often lacks the necessary localization accuracy, calling for the
integration of additional methods. One popular strategy adopts
computer vision-based localization, where a stereo camera detects
fiducial markers to estimate the instrument’s pose. This technique
has enabled automated cell culture workflows (Lieberherr and Peter,
2021) and has also been applied to automate the synthesis of oxygen-
producing catalysts from Martian meteorites (Zhu et al., 2023).
Furthermore, it has been shown that a mobile manipulator can
interact with different workstations to automate sample preparation
for a high-performance liquid chromatography (HPLC) device
(Wolf et al., 2024). More complex camera systems have also
been used; a dual-handed mobile robot adopted a 3D camera
for identifying and handling various types of labware based on
object features rather than fiducial markers (Ali et al., 2016).
Similarly, a robotic arm paired with a depth camera has been
shown to autonomously handle and arrange centrifuge tubes in
trays (Nguyen et al., 2024). Also, vision systems have been paired
with mobile mini-robots and coupled with static robotic arms to
facilitate sample delivery (Laveille et al., 2023; You et al., 2017).
However, stereo vision and 3D cameras remain sensitive to light
conditions and reflections, which limit their long-term reliability
(Kalaitzakis et al., 2021). An alternative localization strategy utilizes
touch feedback on a cube to determine multiple bench locations
(Burger et al., 2020). When deployed in a laboratory, this method
enabled amobile robot to operate continuously for 6 days to perform
catalyst optimization experiments. Although this strategy is less
commonly used than vision-based localization, the Cooper Group
has consistently validated its robustness, expanding the capabilities
of the mobile platform over time (Lunt et al., 2024; Dai et al.,
2024). However, this strategy requires adding a cube to the
laboratory benches and assumes that instruments remain
stationary. To maintain reliability, instruments can be secured
to benches, and the system can be recalibrated after any
unexpected movement.

The potential for the generalization of visual feedback strategies
has also been explored. For instance,Wolf et al. (2023) andWolf et al.
(2022) developed a localization framework integrating fiducial
markers and barcodes to store device-specific information.
Although these approaches have led to robust applications in some
contexts, they often lack generalizability and robustness against
instrument movement, highlighting the need for further efforts to
achieve universal, reliable robotic localization in dynamic laboratory
environments.

In this work, we propose a method that combines visual and
tactile detection to precisely estimate the pose of instruments in a
laboratory environment. By integrating these methods, we achieve
reliable fine detection of the instrument’s pose through tactile
feedbackwhilemaintaining robustness to unexpected changes using
computer vision, thereby leveraging the strengths of both strategies.
Additionally, we implemented it on SIMO (smart integrator for
manual operations, Figure 1), a bi-manual mobile robot platform.

SIMO uses SLAM and VL markers (3D-shaped markers for SLAM)
(Wadsten Rex and Klemets, 2019) to localize itself approximately
in front of the desired experimental station (defined by a table
and one instrument). Then, the robot uses a camera to identify
fiducial markers (Benligiray et al., 2019) that are attached to the
instruments, thus obtaining their rough pose. Finally, SIMO uses
six-point tactile detection on the instrument to obtain its fine
pose. We demonstrate the robustness of our method using two
mockup instruments by comparing the plate insertion success
rate, absolute precision, and mean execution time for different
methods. Additionally, we test the generalizability of the concept
using three laboratory instruments and perform a “stress test,” where
the robot simulates the execution of an experiment five times in
a row. We demonstrate that this novel approach can achieve fine
positioning (±1.2 mm and ±0.4°) without compromising flexibility
or robustness. In this work, we refer to the pick-and-place robustness
of the robotic system without implications to the wet laboratory
experimental robustness.

In Section 2, we detail our approach and implementation,
including the modifications made to the real instruments. Section 3
describes the experimental setup, custom gripper adaptations,
and room design. Section 4 presents our findings using both
mockup and real instruments. We then conclude with a summary
of the obtained results and highlight future research directions
in Section 5.

2 Methods

2.1 Problem statement

Wet laboratory science protocols typically use several bench-top
devices and instruments that are spatially distributed in a room.One
such protocol is criticalmicelle concentration (CMC) determination
(Mabrouk et al., 2023). This identifies the main physicochemical
property of surfactants, which are amphiphilic molecules that
decrease surface tension and are key chemicals for disinfection,
cleaning, and drug delivery (Falbe 2012; Schramm et al., 2003).
This protocol is typically performed by humans; however, this task
is work-intensive and prone to errors (Baker, 2016). There is an
increasing need for extensive CMCmeasurements, and thus, a fully
automated robotic system is required. To date, no such system exists
(Mabrouk et al., 2023).

To automate this task, a robot is required to handle standard
microplates (ANSI SLAS 1-2004) with millimeter precision
(1− 2 mm) and transport them between three instruments,
namely, a pipetting station, a plate sealer, and a plate reader.
This multi-stage process typically takes 1–2 h, depending on the
technique (Mabrouk et al., 2023). Additionally, the locations of the
instruments may be subject to disturbances and cannot be precisely
known in advance.

In this work, we focus on solving the problem of picking and
placing microplates between a variety of instruments, where the
instruments may be moved or adjusted over time, using a mobile
manipulator. This approach is key to enabling many laboratory
automation experiments such as CMC.

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2024.1462717
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Scamarcio et al. 10.3389/frobt.2024.1462717

FIGURE 1
System setup used in this work, consisting of SIMO (left), a bi-manual mobile robot that mounts two robotic arms (Robot1 and Robot2) on a mobile
base, and three laboratory instruments (a pipetting station, a plate sealer, and a plate reader). The robot motion path between the three experimental
stations is also shown.

2.2 SIMO robot platform

The system we have developed for CMC and other wet
laboratory experiments is a two-arm robot platform, SIMO. The
robot is shown in Figure 1; it mounts two GoFa CRB 15000
(ABB, Switzerland) compliant robot arms, namely, Robot 1 and
Robot 2. Robot 1 is equipped with a parallel gripper (2FG7,
OnRobot, Denmark) that holds a bespoke, 3D-printed probe, which
is used for impedance-based touch localization, and awristmounted
webcam (c505, Logitech, Switzerland). Robot 2 has a two-finger
gripper (RG2, OnRobot, Denmark), which is adapted for gripping
standard microplates through the addition of metallic fingers with
soft silicone bands.

The dual-arm configuration is beneficial for laboratory
automation applications. It mimics human dexterity and bi-manual
coordination, enabling robots to handle more complex tasks such
as simultaneous manipulation of multiple objects or operating on
different parts of an experiment concurrently. The two robotic arms
are connected to a robot base (250, MiR, Denmark) via a casing that
hosts the arms’ controllers, an onboard PC (NGC-5, Minix, China),
and a battery to power the arms. The MiR base uses odometry to
estimate its pose with a precision of ±50mm (Wadsten Rex and
Klemets, 2019); SLAM enables the robot to build a map of its
surroundings (Figure 7).

Although the developed methods are demonstrated and
deployed on this robot, they are potentially generalizable to other
mobile manipulators operating in a laboratory environment.

2.3 Instrument perception method

Typically, a robotic mobile base can leverage computer
vision and SLAM to achieve a precision of ±10 mm. However,
this is insufficient for handling microplates. We introduce a
generalizable method for any number and type of instruments,

which combines vision and touch feedback to accurately pick
and place plates.

Figure 2 details the high-level approach of the method. Using
a map that has been previously recorded (Figure 7), SIMO moves
to a predefined waypoint for each instrument with a precision of
±50 mm. Using a VL marker, a 3D cut-out with a fixed shape, the
LiDAR can obtain a higher accuracy localization in the order of
±10mm (Wadsten Rex and Klemets, 2019). We then assume the
robot to be in the rough area where the instrument is; however,
its true location can be subject to small disturbances. Additionally,
we assume that a fiducial marker is placed in a visible area on the
instrument. Using the Robot 1’s wrist camera, SIMO estimates the
marker’s pose, achieving a measured precision of ±4.1mm. Then,
SIMO uses the Robot 1’s tactile feedback on the instrument to
estimate its corner points and reconstruct its pose with a measured
precision of ±1.2mm. Finally, given the location of the plate storage,
SIMO can accurately pick and place the plate in the instrument’s
handover position (the position where the standard microplates are
placed to be processed by the instrument) using Robot 2.

It should be noted that the VL marker localization step
shown in Figure 2 may become redundant if additional steps are
implemented to close the loop.Therefore, not all strategies discussed
in Sections 2.5 and 4.1 incorporate this step. Nonetheless, because
the VL marker step enhances the overall robustness of the method,
it is included in the optimal strategy used in Sections 4.2 and 4.3.

Additionally, the precision ranges in Figure 2 are assumed
to follow a Gaussian (normal) distribution. However, outliers
(although rare) may occur, which the system compensates for
through real-time corrections using visual and tactile feedback.
By using visual and tactile feedback directly on the instrument
without the need to add external cubes, as demonstrated by
Burger et al. (2020), SIMO is robust to the instrument’s small,
unexpected movements (smaller than a few cm). Additionally, this
method facilitates the rapid integration of new instruments, as
documented in Section 2.4.5.
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FIGURE 2
Flow diagram detailing the robot–instrument interaction, highlighting the steps in sequence. SIMO uses SLAM to move to the waypoint, defined for
every experimental station (1), and then it localizes the VL Marker, associated with the station (2). Robot1 uses computer vision to estimate the marker’s
pose (3), and then it exploits impedance control and the specialized tool to touch the instrument on three faces (six-point touch feedback) (4). Robot2
can perform plate placement after it is informed by Robot1 about the instrument’s pose (5).

2.4 Achieving fine positioning

In the following section, we describe the localization strategy
once SLAM and VL localization are performed.

Figure 2 shows the approach for precise positioning. Each
instrument has an STag marker on a corner. Robot1’s wrist camera
uses this marker to determine the instrument’s position (3). It
then refines this position by touching the instrument at six
points with its probe (4). After refining the pose, Robot2, now
informed of the instrument’s exact position, can place the plate
in the handover position (5).

2.4.1 Assumptions
Todevelop the algorithms,wemake some assumptions about the

environment. To describe these assumptions, we introduce several
reference frames (see Figure 3).

• Robot 1 (R1) and Robot 2 (R2) share a common reference
frame (world), placed in between and in front of R1 and R2
(Assumption I).
• The instrument must have three perpendicular surfaces
(plane1, plane2, and plane3), one of them being parallel to the
worldxy plane (Assumption II).
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FIGURE 3
(A): illustration of the main reference frames involved in the robot–instrument interaction, highlighting the touch planes on the instrument. (B): the
“world” reference frame is positioned centrally, in between and in front of robotic arms R1 and R2. The RGB color model represents the axes, with each
reference frame labeled accordingly. The labels R1 and R2 designate the two robotic arms.

FIGURE 4
Plots showing the velocity and the position of the tool tip as it executes the touch feedback routine for six points in three perpendicular planes. The
plots have different colors depending on the task the robot is executing (impedance control going down, contact, and position control going up). The
contact point is estimated by considering when the tool’s velocity is 0 while R1 is in impedance control mode.

• The STag marker (STag)must be visible from the camera, and
it must be attached to the instrument on a plane that is parallel
to the worldxy plane (Assumption III).
• The instrument and its handover position must be physically
reachable by R1 and R2 (Assumption IV).

It is important to note that, as per Assumption II,
the perpendicular surfaces can either be part of the
instrument’s original design or added using custom 3D-printed

components, as detailed in Section 2.4.5. Based on these
assumptions, we can now introduce the different elements
of the method.

2.4.2 Visual detection of STag markers
Visual detection is used to estimate the instrument’s pose in

the reference frame R10 (the reference frame at the base of the
robotic arm R1).This is performed using R1’s wrist camera, which is
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FIGURE 5
Overview of the strategies to perform the plate pick-and-place task. The colored lines indicate the specific actions performed in each strategy: “VL,”
“CV,” and “CV + TF.”

FIGURE 6
Overview of the hardware modules and their communication
protocols; each node represents a module in the workflow.
Interconnecting lines represented with different colors detail the
communication protocols used between the various modules.

calibrated to tune the distortion coefficients, along with its extrinsic
and intrinsic parameters (OpenCV et al. 2024). The estimated STag
pose is averaged using a Cartesian pose filter to remove jitter. Next,
we calibrate the camera position on R1 to obtain the transform Tcam

R10
.

The camera is rigidly attached to R1. The transform Tcam
R10

can
be expressed through two distinct transformation pathways: one
through the robot joints and one through the STag marker estimate.
Each pathway has one unknown transform (Tcam

R1tool
and TSTag

R10
,

respectively), which are assumed to be fixed during the calibration
process. We can solve for the two unknowns by minimizing
the difference in the resultant Tcam

R10
across multiple observations

(Equation 1).

minimize
i

∑
i=0:N−1
(Tcam

R1tool
   TR1tool

R10,i
−Tcam

STag,i   T
STag
R10
) . (1)

We recover the desired transform with Equation 2:

Tcam
R1tool
 = Tcam

R10,i
   TR1tool

R10,i
−1
. (2)

Here, the addition and subtraction signs are abstract
representations of addition and subtraction in the SE(3) space, i.e.,

FIGURE 7
Map of the laboratory, generated by the MiR’s LiDAR, showing the
positions of the three experimental stations: the plate sealer, plate
reader, and pipetting station. The gray, double-colored squares
represent recorded navigation points, while the robot’s current
position is shown as a monocolored gray rectangle labeled “SIMO.”
The red marks indicate real-time LiDAR data, with the black lines
representing the room’s hardcoded layout. If the LiDAR data (red) does
not align with the black lines—for example, showing red dots or lines
in the room’s interior—this indicates that objects are obstructing the
LiDAR sensor.

the manifold space. Additionally, the minimization problem can be
addressed using an appropriate optimization tool. In this work, the
equations were reorganized into a quadratic programming format,
allowing the use of a solver from open-source libraries such as
CVXPY or SciPy.

After estimating Tcam
R10

, the detected STag markers can be
described in the robot reference frame. Finally, the STagxy plane
is forced to be parallel to the worldxy plane, as per assumptions
II and III.

During each localization run, R1 moves to the most recent STag
pose, saved in R1’s memory, so the camera can localize the marker.
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FIGURE 8
Assessment of the success rate for different methods (“VL,” “CV,” and “CV + TF”) and several angular displacements (ranging from −90° to +90°) of the
mockup instrument (mockup1). The visual criteria to compute the success rate are also shown with photographs. The “CV + TF” method provides more
consistent results among all conditions, followed by “CV” and “VL.” Every condition (defined by the angular displacement) was tested three times for
each method.

2.4.3 Tactile detection of instruments
Given the approximate instrument’s pose using the STagmarker,

R1 now performs a more precise estimation using tactile detection
directly on the instrument.

Considering Assumption II, any instrument can be used as
a “reference” cube. Using ABB GoFa’s force-compliant motion
(SoftMove), R1 physically touches the instrument on three
orthogonal faces to identify its coordinate system (inst). The touch
points are defined with respect to STag; it is recommended to use
wider points to increase precision; however, we report that a spacing
of 40 mm between co-planar points delivers sufficient performance.

Specifically, by using three points obtained from the same
instrument’s face, we derive the first plane equation (plane1). By
projecting one of the two points from the second instrument’s
face onto plane1, a third point is derived. Thus, it is possible
to compute plane2. Repeating the same method with one point
from the third instrument’s face, along with the information
about plane1 and plane2, we now have three nearly orthogonal
planes (assuming that every set of three co-planar points is not
collinear). Orthogonality is enforced by performing singular value

decomposition (SVD) and setting the matrix of eigenvalues to the
identity matrix.

Mathematically, let pi,k be point i on face k of the cube. Also, let
lij,k = pj,k − pi,k. We can get the normal to plane1 as per Equation 3:

n1 = l12,1 × l23,1, (3)

and the equation of plane1 as

n1 ⋅
[[[[

[

x

y

z

]]]]

]

= p1,1. (4)

To project one of the points on the second face onto plane1, we can
use the following equation:

[[[[

[

x

y

z

]]]]

]

= p1,2 + t ⋅ n1. (5)
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FIGURE 9
Column plot showing the total execution time for three methods
(“VL,” “CV,” and “CV + TF”). The single column is split into colored
rectangles that identify different actions performed by the robot; the
time to run single actions is enclosed in the corresponding rectangle.
“VL” is the fastest method, followed by “CV” and “CV + TF.”

By solving Equation 4 using Equation 5, we obtain the third
point p3,2 to solve for plane2 in the same way. The following steps
can be repeated to obtain p2,3 and p3,3 for plane3.

Finally, we can stack the normal vectors to get T =
(n1 n2 n3). Then perform singular value decomposition (SVD)
by solving Equations 6, 7.

U,S,V = SVD (T) , (6)

Tinst
R10
= U ∗ V. (7)

An example of the six-point touch feedback task
is shown in Figure 4. The velocity graph of R1 has a negative value
as the probe approaches the instrument face, and it reaches 0 when
contact is made. This velocity profile is used to identify the position
of the probe (R1tool) when contact is made.

While performing the six-point touch feedback, the robot
applied a negligible force to the instruments. Given that
laboratory equipment typically weighs tens of kilograms and is
equipped with high-friction rubber feet, no displacement was
observed. However, if this method were to be applied to lighter
instruments, there could be a risk of displacement due to the
applied force.

2.4.4 Defining the handover position
In the last step of the method, we obtain the location of

the handover point, i.e., the point on each instrument where the
plate must be picked and placed. Using Assumption I, we can
derive Tinst

R20
. inst origin is found at plane1 ∩ plane2 ∩ plane3, which

is typically not coincident with the handover position reference
frame (handover). Thandover

inst is a hardcoded and must be specified
for each instrument.

By using Thandover
R20

, R2 can transfer a plate to handover with a
precision of ±1.2mm.

2.4.5 Model generalizability
The framework presented in the previous sections is

generalizable. Any instrument that follows assumptions II, III, and
IV is suitable, considering some device-specific adjustments. To
demonstrate this, we provide four implementation examples; one is
represented using the mockup instruments, as shown in Figures 8,
10, and three are real instruments, as shown in Figure 11. We listed
them in order of increasing adaptation difficulty:

• Mockup Instrument: this represents the ideal case where
the STag marker is attached to the right-front edge of a
cube. The touch point locations on the three planes can
be chosen without constraints. It should be noted that two
distinct mockup instruments are used in this study; however,
both share the same main features (a cube with a visible
STag marker).
• Plate Reader: the STag marker is attached on the right edge
of the instrument, avoiding the slightly inclined surface at the
front (to respect Assumption III).The touch points must avoid
thementioned tilted surface and the opening on the front-right
of the instrument.
• Plate Sealer: the STag is attached to the right-front edge of the
instrument. Two touch point areas are wide, while the third
plane (greyish stripes to the sides of the instrument’s screen) is
quite small. However, R1’s tool can touch it.
• Pipetting Station: the STag is attached to a 3D-printed support,
not on the top surface. The instrument is tall, and the webcam
needs some distance from the STag; this can cause R1 to reach
the limit of its work envelope and stop. The instrument has no
sharp edges, so the touch planes are created with a 3D-printed
shell bolted on the instrument (front-right of the instrument).
Touch points are chosen on this shell.

2.5 Experimental tests

To benchmark this combined approach, we compare three
strategies for the placement of the microplates:

• “VL” uses a VL marker to achieve fine positioning, after which
SIMOperforms the placing task. To only estimate the precision
of VL positioning, the handover pose is precisely hardcoded
before running the test.
• “CV” uses the strategy described in Sections 2.4.2 and 2.4.4
to obtain the handover pose (the pose is not refined
using the method described in Section 2.4.3). The strategy
described in Section 2.4.4 is slightlymodified in this case; from
TSTag
R10

, we can compute TSTag
R20

, and by hardcoding Thandover
STag , we

can compute Thandover′
R20

.
• “CV + TF” uses the strategy described in Sections 2.4.2 and
2.4.3 to refine the instrument’s pose. Then, it follows the
procedure detailed in Section 2.4.4 to estimate Thandover

R20
.

All methods use SLAM for navigation, but only the VL strategy
uses the “VL” marker for fine positioning. A visual summary of the
three strategies is shown in Figure 5.

When experiments are repeated, SIMO retracts from the
experimental station’s docking point, returns to the same position,
and performs the placing task.
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TABLE 1 ANOVA and Tukey HSD test results.

Test Result

ANOVA F-statistic 16.5372

ANOVA p-value 1.9038e-06

Group 1 Group 2 Mean difference (success rate) p-adj Reject

CV CV + TF 0.2619 0.0477 True

CV VL −0.3571 0.0045 True

CV + TF VL −0.6190 0.0 True

FIGURE 10
Assessment of the standard deviation (X, Y, and angular) of different methods (“VL,” “CV,” and “CV + TF”) for several angular displacements (ranging from
−90° to +90°) of the mockup instrument (mockup2). The photograph on top details how the standard deviation is computed; the mockup instrument
(in green) and the plate (in blue), respectively, have a fiducial marker that is used to compute their relative pose and its associated standard deviation.

3 Experimental setup

3.1 Specialization of the grippers

R1 has a parallel gripper that holds a bespoke tool (Figure 2),
which is used to touch the instruments while R1 is in impedance
control mode. We designed the tool to have a cubic shape (50 × 50
× 40 mm) that can be easily gripped, with two inserts that mirror

the shape of the gripper’s fingers. The tool’s probe is 30 mm long
and has a spherical shape at the end with a diameter of 10 mm. The
length of the tool’s stem allows it to reach and touch points on all
planes, while the spherical tip ensures that there is a single point of
contact between the tool and the touched surface. It should be noted
that while the tool’s z-axis is parallel to the normal of plane1 while
touching it, the same axis is perpendicular to the normal of plane2
and plane3 (Figure 3) while performing the touch detection routine.
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FIGURE 11
Photographs that show the three real instruments used to test the “CV + TF” method. (A): Plate sealer, (B): Plate reader, (C): Pipetting station. The
important implementation details are highlighted in orange, while the photographs in the second row show the instruments’ handover position.

R2 mounts a finger gripper to hold the plates (Figure 2). We
specialized the gripper by adding longer aluminum fingers and
gluing silicone stripes at their ends, which provides sufficient grip to
hold the plates. Finally, we also used spacers to enhance the gripper’s
stroke and hold a plate in landscape mode.

3.2 System diagram topology

Figure 6 shows the system’s diagram. The central controller
orchestrates the full protocol. It prompts SIMO to dock on a
specific experimental station and requests to start device-specific
action to the different instruments. However, such actions can be
categorized into three main classes: “Receive Plate,” which prepares
the instrument for plate placement; “Run,” which prompts the
instrument to execute its specific task; and “Give Plate,” which sets
the instrument to hand the plate back to the mobile robot.

3.3 Mockup instruments

Figures 8, 10 show the two types of mockup instruments that
we used to compare the success rate and precision of various plate-
placing strategies (see Sections 2.5 and 4.1). The first (mockup1)
is comprised of a 3D-printed cube (87 × 95 × 42 mm) having
a rectangular holder to fit an aluminum handover position. The
handover position’s edges are chamfered to ease plate insertion,
which is typical for automation-friendly instruments. An STag
marker is placed on the top surface. The second (mockup2) has
the same 3D-printed cube lying on a sandwich of a thin silicone

layer (Dragon Skin 20, Smooth-On, USA) to ensure plate adhesion
and a sheet of paper. For this experiment, both the cube and
plate have an STag marker to compute their relative distance and
evaluate placement precision through computer vision using R1’s
wrist camera.

3.4 Room

The laboratory map is generated using laser scanning (Figure 7).
The highlighted shapes represent the docking stations where the VL
markers are physically placed. Every VL marker is associated with
an experimental station. We placed three experimental stations at
the edges of the room, one for every instrument (pipetting station,
plate sealer, and plate reader).

Typically, laboratory instruments are arranged along various
walls, either close together on the same bench or on separate
benches, sometimes at different angles to accommodate spacing
needs. Although this setup can be challenging, it is not the most
complex scenario, as other factors, such as obstacles or additional
equipment, can add even greater complications.

4 Results

4.1 Mockup instrument test

Our method is initially validated by comparing it with different
localization strategies using the two mockup instruments. The first
experiment seeks to identify the success associated with placing a
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FIGURE 12
Summary of the large-scale stress test. The upper plot shows the robot’s position in the room as it is executing one round of the CMC experiment; the
orange letters highlight the positions of the three experimental stations on the map ((A): Plate sealer, (B): Plate reader, (C): Pipetting station). The
photographs in the middle illustrate the robot–instrument interaction, while the single horizontal column plot in the lower part shows the total time to
run the CMC protocol five times in a row ((A): Plate sealer, (B): Plate reader, (C): Pipetting station). Every color highlights the time to perform a specific
task to complete the experiment.
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plate in the mockup instrument (mockup1) using the three methods
described in Section 2.5.

Figure 8 shows mockup1. By using a protractor and a clamp,
it was possible to rotate the cube while preventing undesired
movements when running the tactile detection. We admit
three possible outcomes: “success” (score = 1), “alignment error”
(score = 0), and a “minor alignment error” (score = 0.5). A “minor
alignment error” placement implies that the plate would fall into
the “success” category with a slight movement or vibration. This is
common for instruments that have retractable handover positions.

We tested the three methods (“VL,” “CV,” and “CV +
TF”) by placing the mockup instrument in seven different
orientations, ranging from −90° to +90°. Each test was repeated
three times, yielding a total of 63 experiments (21 per method).
As described in Section 2.5, SIMO uses SLAM to navigate to the
instrument’s approximate position from which we assume that the
robot can see the fiducial marker placed onmockup1.

Figures 8, 9 show that while “CV + TF” requires almost double
the time compared to “VL,” its global success rate (95.14% over
21 placements in different orientations) justifies its adoption over
the other methods. We also notice that the “VL” score would be
close to 0% if the handover position was not hardcoded beforehand,
highlighting the low robustness of this method. In addition, “CV”
places in the middle of both metrics (success rate and time).

Analyzing the data from Figure 8, Table 1 confirms that at least
one group’s mean is statistically different from the others (the
ANOVA test). Additionally, the Tukey test shows that the means of
all groups are statistically different.

In the second experiment, we use mockup2. The goal is to link
the success rate with a quantitative metric: the relative difference
between the plate reference frame and a fixed frame, named
“instrument reference frame” (see Figure 10). By focusing on the
relative distance’s standard deviation rather than its absolute value,
we can obtain the placing precision of the different methods based
on three metrics: X, Y, and angular standard deviations.

As in the previous experiment, by using a protractor and a
clamp, it was possible to rotate the cube while preventing undesired
movements when running the tactile detection; we also tested the
same number of conditions to yield 63 experiments in total (21
per method).

From Figure 10, it is noticeable that “CV + TF” consistently
outperforms the other strategies, explaining the higher success rate
obtained, as shown in Figure 8. Additionally, we hypothesize that
“CV’s” lower angular standard deviation, if compared to “VL,”
determines the doubling of its success rate since the X and Y
standard deviations are comparable.

In conclusion, “CV + TF” delivers the best performance,
achieving a precision of ±1.2 mm and ±0.42°, although with a longer
processing time. As such, it will be the default method used in the
following sections. Additionally, in the following sections, “CV +
TF” incorporates the VLmarker localization step to further improve
the method’s overall robustness.

4.2 Real instrument tests

Following the mockup instrument tests, we next evaluate the
performance of real instruments that have varied geometries and

placement types. By doing this, we want to test the method’s
generalizability, first introduced in Section 2.4.5.

Figure 11 illustrates the tested instruments, in order of
increasing pick-and-place difficulty, from left to right. Each
instrument was tested 10 times adding random noise each time:
±10 mm and ±5°. The instrument was re-positioned to its default
position (handoveryz‖worldyz, relative distance = 50 cm) after every
test, before re-adding noise.

The plate sealer’s handover position has sharp, chamfered
edges (Figure 11A) that facilitate plate placement, resulting in a
100% success rate during testing. In contrast, the plate reader’s
handover position is less robust, with shorter edges and a
smaller chamfer (Figure 11B). Nevertheless, we report a 100%
success rate.

The pipetting station presents a more significant challenge for
pick-and-place operations. As shown in Figure 11C, the station
features very small chamfered edges and small metal lips that
guide the plate into position. Although this design simplifies plate
insertion for humans, it demands millimeter-level precision from
robots to avoid failure. The flexibility of this part allows humans to
easily adapt through learned behavior, while robots, which relymore
on precise control and have less sophisticated adaptive feedback, are
more likely to fail the task. Although this metal part is removable,
we decided to test SIMO in a more challenging scenario; we report
a 100% success rate.

4.3 Large-scale stress test

Finally, we use SIMO to run an experiment that requires all three
instruments mentioned in the last section, CMC determination,
to test the method’s robustness over extended periods of time.
We defined this to be the “large-scale stress test.” The room was
organized as per Section 3.4.

We report that SIMO can run the CMC experiment five
times in a row without failure (total time of experiment =
1 h 15 min). Figure 12 shows the robot’s trajectory over one run;
after placing the plate in the pipetting station, SIMO brings the
standardmicroplate filled with the reagents to the plate sealer, which
applies a plastic cover to the plate to avoid evaporation. Finally,
SIMO brings the standard microplate to the plate reader, where the
fluorescence signal from the experiment is read; the raw data can be
processed to extract the CMC. The analyzed plate is discarded, and
a new cycle can start. This consistent performance across multiple
cycles underscores the robustness and reliability of our approach.

5 Conclusion

In this work, we present an algorithm that couples visual and
tactile feedback to achieve fine pick and place (±1.2mm and ±0.4°)
of standard microplates. We tested this method on a bi-manual
mobile robot, named SIMO, to interact with different laboratory
instruments. This approach was validated on mockup instruments
by comparing its performance against two other common strategies.
Subsequently, we demonstrated the method’s ease of use and
robustness by adapting it to three real instruments. Finally, we
showed themethod’s robustness over extended periods by executing
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the CMC determination protocol five times, for a total experiment
time of 1 h 15 min.

Future improvements to ourmethodmight include generalizing
it to multiple mobile manipulators, designing a single compact
gripper capable of vision and touch perception coupled with pick-
and-place capabilities, and developing error recovery strategies. For
instance, if a marker is not detected by the camera, investigating
possible fiducial marker search strategies could be beneficial.
Although the presented method demonstrates significant promise,
certain bottlenecks may limit its overall throughput and efficiency.
One of the primary challenges is represented by the sequential
nature of robotic tasks, where the robot must complete one step
before advancing to the next. This leads to potential downtime,
especially in high-throughput environments, requiring the
simultaneous handling of multiple tasks. Additionally, interactions
with instruments, such as calibration and localization using fiducial
markers, can become time-intensive if environmental conditions
change or markers are not promptly detected. To overcome
these limitations, future work could focus on enabling parallel
task execution with multiple robots, optimizing path planning
algorithms to minimize idle time, and advancing sensor fusion
techniques to enhance localization speed and accuracy. Finally,
it would also be useful to test the wet laboratory experimental
robustness of the system by performing real chemistry and biology
experiments to assess which additional benefits a robotic platform
can bring to the laboratory. These enhancements could significantly
boost throughput and fully harness the potential of mobile robotic
systems in dynamic laboratory environments.

Efforts to achieve universal, reliable robotic localization in
dynamic environments have the potential to reshape wet laboratory
research. Automating non-value-adding activities such as labware
transportation will improve the reliability and reproducibility of
experimental data by virtually eliminating human error.

Human error in laboratory settings canmanifest in variousways,
such as fatigue, distraction, or minor inconsistencies in manual
dexterity, which introduce variability into experimental procedures.
Manual data recording errors, such as incorrect measurements or
conditions, further compound inaccuracies. Automating repetitive,
precision-critical tasks, including pipetting or plate handling,
allows for consistent, millimeter-level accuracy and error-free data
collection. This can greatly benefit routine protocols like CMC,
enabling a new experimental pace with mobile robots that can
potentially work continuously, unlike humans.
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