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Prisma Hand II is an under-actuated prosthetic hand developed at the University
of Naples, Federico II to study in-hand manipulations during grasping activities.
3 motors equipped on the robotic hand drive 19 joints using elastic tendons.
The operations of the hand are achieved by combining tactile hand sensing with
under-actuation capabilities. The hand has the potential to be employed in both
industrial and prosthetic applications due to its dexterous motion capabilities.
However, currently there are no commercially available tactile sensors with
compatible dimensions suitable for the prosthetic hand. Hence, in this work,
we develop a novel tactile sensor designed based on an opto-electronic
technology for the Prisma Hand II. The optimised dimensions of the proposed
sensor made it possible to be integrated with the fingertips of the prosthetic
hand. The output voltage obtained from the novel tactile sensor is used to
determine optimum grasping forces and torques during in-hand manipulation
tasks employing Neural Networks (NNs). The grasping force values obtained
using a Convolutional Neural Network (CNN) and an Artificial Neural Network
(ANN) are compared based on Mean Square Error (MSE) values to find out
a better training network for the tasks. The tactile sensing capabilities of the
proposed novel sensing method are presented and compared in simulation
studies and experimental validations using various hand manipulation tasks.
The developed tactile sensor is found to be showcasing a better performance
compared to previous version of the sensor used in the hand.

KEYWORDS

under actuation, in-hand manipulation, tactile sensing, neural networks architectures,
control

1 Introduction

Nowadays, replacement of a missing limb due to trauma, illness, or any congenital
conditions present from birth with prosthetic upper limbs is a significant challenge to
the medical industry. This has prompted a need to create intelligent and multi-functional
prosthetic hands as a means of replacing an amputated limb of a patient. Many aspects
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of prosthetic hand including appropriate weight, ergonomic design,
easiness of use, stable force feedback, sufficient grasping, and
manipulation capabilities should be taken into account in order
to meet a patient’s needs. When the aforementioned factors are in
proper proportion, a prosthetic device can assist a patient to perform
daily activities effortlessly.

Autonomous in-hand object manipulation capabilities are the
most sought-after essential abilities for the prosthetic hands
(Feigl et al., 2023). Numerous studies have been going on in the
field of development of prosthetic devices controlled by a patient’s
electromyographic (EMG) data (Park et al., 2024; Liu et al., 2024).
Along with EMG data, inclusion of touch sensors into a prosthetic
device can manipulate objects in various positions and orientations
by controlling grasping forces (Sharma et al., 2023). Touch sensors
currently used in prosthetic hands have some drawbacks that limit
their effectiveness. One major issue is their lack of sensitivity which
results in inaccurate detection of amount of grasping forces. Another
drawback is the durability of these sensors as they can wear out
quickly with regular use. This can lead to the need for frequent
replacementswhich can be costly and time-consuming.Additionally
the size and weight of the sensors can also be a limitation as they
may add bulk to the prosthetic hand and make it less comfortable
for the user to wear for extended periods of time. One of the
major limitation related to touch sensors employed in finger tips is
their dimensional incompatibility. Developing a compatible touch
sensor for fingertips is a challenging task due to the dimensional
constraints. Incompatible touch sensors equipped on fingertips will
result into inaccurate grasp force values. Hence these limitations
highlight the need for continued research and development in
improving the functionality of touch sensors in prosthetic hands to
better mimic the capabilities of a human hand.

This paper addresses the current shortcomings of available
sensing methods of prosthetic hands and proposes a novel tactile
sensor developed based on opto-electronic technology for a
prosthetic hand named “PrismaHand II.” Our work aims to develop
a dimensionally compatible tactile sensor to integrate with the
fingertips of the Prisma Hand II. We managed to create a 3×
3 tactile map in the constrained fingertip area and determined
grasping forces and torques. The developed sensor is durable, light
weight, cost effective, and accurate in predicting force and torque
values during grasping task. Neural Networks (NNs) are utilized
to estimate the ideal gripping forces during in-hand manipulation
tasks based on the output voltage acquired from the novel tactile
sensor. Two types of NNs were compared to determine a better
training algorithm to obtain grasping forces during manipulation
tasks. We illustrate how to use reconstructed forces and voltages
from touch sensors to perform in-hand manipulation challenges.
We utilized and integrated taxels voltages for manipulating objects
in presence of external disturbances. The sensing capabilities and
performance of the sensor are demonstrated using simulation
studies and experimental validations.

2 State of art

Manipulation of an object using an under-actuated hand is a
challenging yet promising field of research that continues to push
the boundaries of robotic manipulation capabilities. By developing

innovative control strategies and improving the design of hands,
researchers aim to enhance the versatility and efficiency of robotic
manipulation systems. As technology advances, objectmanipulation
is expected to play a key role in various industries, revolutionizing
the way tasks are performed in complex and dynamic environments.
There are various kinds of prosthetic hands currently available
in the market suitable for hand disabled patients (Belter et al.,
2013; Van Der Niet and van der Sluis, 2013; Marateb et al., 2021;
Liu et al., 2019). Most of these prosthetic hands are employed
with tactile sensors to manipulate the physical interactions. Tactile
sensors work based on changes in the values of resistance,
capacitance, optical distribution, and electrical charges (Fraden
and King, 2004; Russell, 1990). Piezoresistive (Almassri et al.,
2015), Piezoelectric (Nassar et al., 2023), capacitive (Ge et al., 2022),
quantum tunnel effect (Shi et al., 2020), optical (Fujiwara et al.,
2018), and barometric (Liu et al., 2023) sensors are the most
common types of tactile sensors used in prosthetic hands.

Contact point locations of a fingertip are determined using
reconstructed forces and torques values obtained from a tactile
sensor integrated to a hand in Liu et al. (2012b). The measured
force values can be used for carrying out force controlling strategies
and optimising grasping forces. Fast responding tactile sensors such
as piezoelectric, capacitive, and barometric sensors can measure
vibrations at contact points. The vibration information can be used
for detection of slip and object exploration. Tactile sensors are
capable tomeasure object shape andpressure distributions at contact
points (Kyberd and Chappell, 1992). Capacitive and piezoresistive
sensors can gather data from taxels directly using multiplexing
circuits. Increasing the number of tactile sensors in a fingertip can
lead to issues with wiring. These issues can be overcome by using
plastic optical fibres in the tactile sensors. A 2 layered silicone
based haptic tactile sensor is proposed in Sato et al. (2008). The
displacement of themarker is recorded by a camera and can compute
themagnitude of the force with a resolution of 0.3 N. An optical fibre
based sensor named Fiber Bragg grating (FBG) senso embedded in
a silicone based elastomer is introduced in Heo et al. (2008). The
sensor can detect forces upto 15 N with a resolution of 0.05 N. The
main drawback of the sensor is the presence of hysteresis loss due
to silicone material embedded to the sensor. Microbending optical
fiber (MBOF) sensors are also demonstrated in Heo et al. (2008) to
reduce the effect of optical bending issues. Another tactile optical
sensor with a silicone based skin equipped to a fingertip is given
in Yamada et al. (2005). Reflector chips made up of steel acts as the
top layer of the silicone skin. The intensity and direction of applied
forces are measured using optical sensing method. In order to avoid
the bulky nature of the optical fibres, LEDs are introduced into the
tactile sensors in Rossiter and Mukai (2005). The sensor showcased
4× 4 matrix structure with a sensitivity in the range of 1 mV/N.
Another LED based tactile sensor with 8× 4 array is presented
in Ohmura et al. (2006). The sensor is composed of a flexible
polyurethane foil, that can bent to adapt to complex curved surfaces.
A tactile sensor with 2 LEDs stacked on top of each other and placed
beneath an elastic membrane is demonstrated in Hoshino and Mori
(2008). When a contact force is applied, the pattern of light under
the membrane changes and position along with magnitude of force
can be measured using the technique.

Pressure profiles obtained during application of force on a
tactile surface are generated to measure force values in Weiß
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and Worn (2005). The pressure profiles are mostly used for
recognising contacts (Liu et al., 2012a), estimating grasp intensity
(Bekiroglu et al., 2011), and classifying objects (Drimus et al., 2014).
Integrating tactile sensors to fingers and fingertips is a complex
task due to dimensional constraints. Tactile sensors can be
flexible (Schmitz et al., 2010) or rigid (Koiva et al., 2013) based
on the types of surfaces and required outputs. Different types
of sensors equipped on robotic hands and their characteristics
are given in Supplementary Table 1.

Machine learning techniques are currently being used in a
number of studies for determining forces acting at contact points
using tactile sensing systems. Feature extraction is performed to
filter raw signals and decrease the computational time by reducing
transmission of unwanted data through tactile sensing system
(Dahiya et al., 2013). Unsupervised way of learning is applied to
recognise features from a tactile sensing system. In Madry et al.
(2014), an unsupervised feature learning scheme is employed to
extract features from raw images and pool these images to determine
grasping force. Along with unsupervised learning methods, deep
learning techniques are also used for extracting features from
tactile sensors. Krizhevsky et al. (2012) adopted a CNN to extract
features of a tactile image and Sohn et al. (2017) employed a
Recurrent Neural Network (RNN) to analyse the deformation of
the tactile sensor padding. Most of the learning based feature
extraction methods are prone to over-fitting issues. In order to
reduce the probability of over-fitting, most learning methods are
accompanied by feature selection methods (Servati et al., 2017).
Bhattacharjee et al. (2012) proposed a K-Nearest Neighbour (KNN)
strategy to recognise contact points using a tactile sensor. However,
computational time is higher during contact point recognition
compared to traditional recognition methods. Support vector
machines (SVM) methods are employed along with tactile sensors
to determine contact points, and grasping forces. Gastaldo et al.
(2014) employed SVM method to obtain contact point locations
during a grasping activity. Even-though the SVMmethodperformed
better showcasing high accuracy predictions, computational effort is
higher during the prediction process.

Nowadays, researchers are focusing more on deep learning
techniques to increase the performances during predictions. Deep
learning techniques have been successfully outperformed most
of the conventional machine learning methods (Zou et al., 2017;
Zhao et al., 2018). Deep Neural Network (DNN) based force
reconstruction from image patterns are presented in Sferrazza et al.
(2019). The proposed DNN performed well during real time
testing, however, generalization capabilities of the strategy are
not analysed. Radical Basis Function Neural Network (RBFNN)
based prediction of contact point forces are carried out in Wang
and Song (2021), Zhang et al. (2018). RBFNN exhibited greater
generalization capabilities by linearising non linear functions with
high precision. However, real time prediction of 3D forces are
not achieved using the technique. Correlating sensor signals using
ANN based approaches is given in Gao et al. (2018), Chuah
and Kim (2016). The Artificial Neural Network (ANN) based
networks performed better during simulation studies and however,
computational effort is higher during real—time implementations.
Electrical Impedance TomographyNeural Network (EIT-NN) based
low-cost sensor is given in Park et al. (2021). Convolutional Neural
Network (CNN) based tactile systems are employed in Kakani et al.

(2021) and Meier et al. (2016) to determine force and motion
characteristics during a grasping task. Various machine learning
integrated tactile sensing systems used in different applications
are given in Supplementary Table 2.

Response timing of tactile sensors is crucial during a task
execution. Fast and accurate sensing capabilities will increase the
efficiency of a task execution. A tactile sensor manufactured using
polystyrene microspheres (Li et al., 2016) exihibited a fast response
time of 38 ms. A piezoresistive tactile sensor (Wang et al., 2019)
consisted of Galinstanmicro-channels has a response time of 90 ms.
A flexible pressure sensor (Wang et al., 2019) composed of PZT
nano ribbons exhibited a fast response rate of 0.1 ms. Chun et al.
(2016) proposed a tactile sensor manufactured using a conductive
graphene-sponge composite. The response time of the proposed
sensor is obtained as 5 ms. Several actuation techniques have also
been referenced such as elastic actuation in form of a series of
elastic tendons (Grebenstein et al., 2012) combined with compliant
links made up of steel layers (Choi et al., 2017). Also several
attempts for flexure based (Odhner et al., 2014) and spring-based
(Lotti et al., 2005) elastic compliant finger joints are made. Several
robotic hands such as fully-actuated hands like Shadow Dexterous
Hand (Andrychowicz et al., 2020), KITECH hand (Lee et al., 2016)
and BCL-13 (Zhou et al., 2018) have been developed based on
individual joint control.

Controller schemes adopted for manipulating the hand postures
are crucial to carryout a grasping task effectively. In Ficuciello et al.
(2012), 3 postural synergies based control strategies are adopted
for improving the efficiency of grasp executions carried out by a
UB Hand IV (University of Bologna Hand, version IV). Smooth
hand motions are obtained using the proposed control strategy
during experimental validations. A study has been conducted in
Ficuciello et al. (2018) for investigating the effectiveness of postural
synergies employed in an anthropomorphic hand named SCHUNK
5-Fingered Hand (S5FH). Inverse kinematic schemes and feedbacks
from an RGBD camera are used for manipulating the motions
of the hand. The motor current values are utilized to restrict the
grasping forces using the motor position control in the synergy
subspace. An another synergy based control strategy adopted for
the S5FH is demonstrated in Ficuciello (2018). Synergy parameters
are computed based on an under-actuated kinematic approach.
The proposed control strategy is composed of a feedforward and
2 correction parameters to determine fingertip positions during
grasping. The development of a reinforcement learning algorithm
for an anthropomorphic hand-arm system using policy search
methods is given in Ficuciello (2019).The reward function generated
during the learning is used to assess the effectiveness of the
grasp in a synergy-based framework. Experiments are conducted
on a KUKA LWR4+ manipulator equipped with a S5FH to
demonstrate the effectiveness of the method. Optimal contact forces
are computed in Villani et al. (2012) considering the contact points
and wrench. Feedback from tactile and force sensors are used for
obtaining an optimal grasp.

In this paper, a novel tactile sensing method developed for
enhancing grasping capabilities of a prosthetic hand named
“PRISMA Hand II” based on opto-electronic technology is
presented. In this work, we chose an optical tactile sensor for
the prosthetic hand, since optical tactile sensors are considered
as the most durable and flexible sensors with high spatial
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resolution (Ascari et al., 2007). We developed a compatible
tactile sensor and successfully integrated to the fingertips of the
prosthetic hand.

We calibrated the sensor using a reference sensor (ATI) in
order to train NN to reconstruct contact force components. As a
result, the same sensor provided a tactile map and contact force
estimation at the same time, by allowing us to implement different
control approaches with the same device. Grasping force and torque
values in 3 axes to manipulate an object are determined separately
using ANN and CNN training methods. The accuracy of force
values obtained using these 2 NNs is compared using Mean Square
Error (MSE) values. An In hand manipulation control technique
for grasping activities of an object using hand is also developed.
The control scheme computed grasp forces/torques based on the
reconstructed data from sensors. Additionally, it also controlled
the orientation of the object using taxel voltage data. Experimental
validations are carried out to study the performance of the proposed
strategies.

3 Design and sensing system of the
PRISMA Hand II

PRISMA Hand II (shown in Figure 1), an updated model of
PRISMA Hand I (Ficuciello et al., 2020) is a 3D printed tendon-
actuated prosthetic hand made up of 19 joints driven by 3 motors
and weighs around 0.339 kg. The thumb is composed of 1 revolute
joint and 3 flexion/extension compliant rolling joints. The index,
ring, and little fingers are consisted of a single revolute joint and 3
flexing/extension joints. It comprised of fingertip tactile sensors to
compute voltage/force feedback.

A novel tactile sensing technology was developed for the
PRISMA Hand II to improve manipulation capabilities of the hand
during grasping. The tactile sensing method employed a taxel
sensing method based on optoelectronic technology (Cirillo et al.,
2017). The sensor shown in Figure 2 operated based on the change
in intensity of reflected light caused by pressing the fingertip
deformable pads, which was then measured by photocouples
and output a voltage value. Depending on the deformation
of the pad above the phototaxels, the reflected light on the
photocouples changed the photocurrent values.The change in values
of photocurrent caused a voltage change that was detected by an
Analog to Digital Converter (ADC) on the printed circuit board
(PCB).The output of the ADC converter was obtained in the form of
digital bytes. Voltage output byteswere translated to force and torque
values in the 3 axes (X,Y,Z) using two NNs training methods such as
ANN and CNN methods. MSE values were used to determine the
highest performing network. During the calibration procedure, a 3
axes ATI F/T sensor served as a force/torque reference to establish
the relationship between voltage and force.

The dimensions of the fingertip sensor along with front and
rear views are shown in Figure 3. A PCB containing LED-photo
transistor couples was covered by an elastic pad. The deformable
pad consisted of a top layer of a black silicon (MM928) layer with
an opaque black grid sandwiched between the silicon and the PCB.
This prevented light disturbances and non-monotonic behavior
under high stresses, guaranteeing maximum reflection of light at
all wavelengths. The ability to receive light of any wavelength can

FIGURE 1
Prisma Hand II (Ficuciello et al., 2020).

FIGURE 2
Prisma Hand II fingertip sensor.

improve the sensitivity and precision of the sensors. 2 Capacitors
(C3 (0.1 uF) Ceramic and C4 (4.7 uF) Tantalum) and resistors (R2
(270 kΩ), R3 (3.9 kΩ), RN1 (3.9 kΩ), RN2 (270 kΩ), and RN4 (1
kΩ)) equipped on the PCB aided the conversion of photocurrent to
voltage during operation of the sensors.

The sensor previously employed on the hand was composed
of a 2 × 2 matrix structure photo transistor couples (2 × 2)
placed on top of the PCB. The sensor employed an ADC converter
[ADS1015 (4 channels)]. The sensors were trained using NNs
utilizing force readings from the ATI F/T sensor. On the contrary,
the new optimised sensors developed in this work consisted of a
3 × 3 matrix structure photo transistor couples. The improvised
sensor was connected to an Arduino Nano micro controller using
an I2C connection protocol. Data were communicated in the
form of bits during the operation of sensors. The unique feature
of the new sensors allowed us to use a combination of force
and torque data from an ATI sensor as an input for training a
NN. This decreased MSE errors and improved precision of force
prediction. The increased amount of input data samples (force +
torque) used to train the NNs accounted for the higher precision
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FIGURE 3
Fingertip sensor (A)Dimensions (in mm). (B)Front view. (C)Rear view.

in output force prediction. Furthermore, the bits were converted to
a voltage, V with respect to a reference voltage, Vref using the below
mentioned formula:

V =
Vref ×Bytes

4096

For the sensors given in the study, the Vref value was set to
3.3V from the Arduino microcontroller. The ADC converted bytes
to digital values. The selected ADC type was MAX11617, with 12
channels, resulting in 4,096 (212). The upgradation of the ADC
channels from 4 to 12 allowed us to include torque measurements
in addition to force during calibration. The connection protocol
comprised of four wires: SDA (serial data), SCL (serial clock), input
voltage (3.3 V), and ground. To quantify all the 5 fingertip sensors
together, a multiplexer/I2C expander (TCA9548A) was linked as a
bridge between sensors andArduinomicro controller.This provided
a solution for addressing the 5 fingers simultaneously using a single
electrical board. It is important to note that these performancesmust
be evaluated in light of the fact that, when compared to commercially
available sensors, the proposed one is more compact, less expensive,
consumes less power, has a digital interface, and the deformable
layer ensures good adaptability and stability during grasping and
manipulation applications.

4 Force mapping using neural
networks

The process of force mapping was performed to establish a
relationship between the output voltage from the sensor and the
reference force/torque values in 3 axes (X, Y, Z) from an ATI
F/T sensor by means of ANN and CNN networks separately. The
fore-mentioned relationship was established during a calibration
process by recording 140,000 samples of voltages and relative forces
at a frequency of 100 Hz using ROS (Koubâa, 2017). During the
calibration process, the pad was pressed and moved at various

FIGURE 4
Setup for calibration of sensor.

angles to capture as many data samples as possible using a grasping
procedure. An ANN network developed in Cirillo et al. (2017) was
used for training the data samples. TensorFlow and Keras sequential
models with dense and activation layers were used for training
on a Python framework. The performance of NN models was
compared based on accuracy of force/torque predictions obtained
after training. The parameter for selecting the optimal model was
based on the lowest MSE value in the force/torque prediction
phase of tests. Figure 4 depicts sensor calibration using the axis
frame of reference.

An ANN network trained using Levenberg—Marquardt (LM)
method is depicted in Figure 5. Input layer was composed of output
voltages from various taxels and forces/torques in 3 axes comprised
the output layer. The properties of hidden layers were varied based
on the task and provided in the coming sections.

A CNN network was also used for training the data samples
to reconstruct force/torque values. CNN architecture used in this
work is given in Figure 6. Taxel image extractions were performed
using two convolutional layers as shown in the figure. ReLU function
was used as the activation function in the convolutional layers. A
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FIGURE 5
ANN architecture.

3 × 3 kernel with stride value 1 and padding value 1 was used in
convolutional layers accompanied by a pooling process with 2 × 2
kernel, stride value 2 and padding value 1. Fully connected/dense
layers of NNs were used for predicting force and torque values from
the extracted features from the convolutional layers.

5 In-hand manipulation control

In hand manipulation control method was employed to obtain
an optimum grasp on objects during object manipulation tasks. The
objects weremanipulated based on voltages (rawdata) received from
each sensor taxel. Force/torque valueswere reconstructed usingNNs
(ANN and CNN networks) separately and evaluated to determine
optimum grasps.

The operating principle of in-hand manipulation was based on
correct voltage thresholding of all 9 taxel values collected from the
sensor. The fingers were capable of executing sufficient motions
to ensure a successful grasp and manipulation of objects to avoid
grips on objects. The key principle of threshold selection was based
on a real-time computation of the average values of all taxels’
voltages, va which was then multiplied by a constant factor, K as
mentioned below:

vt = K× va

The adoption of real-time mean voltage readings was critical
since the sensor was extremely sensitive and not possible to be
set to a conventional threshold value. The contact points between
fingertip and object can change during a grasping task. This causes
a shift in the pressure points of the pad and result in a varying
voltage throughout the task. The second rationale for using the
average was to account for voltage variations across all taxels and
examine the whole contact surface rather than just one specific
location. A heuristic approach was taken for selecting the constant
of proportionality K, as changes in K can significantly affect

the spectrum of acceptable and non-feasible contact. In theory,
increasing the K value reduces the range of safe contact, whereas
decreasing the K value reduces the range of unsafe contact.The value
of K was determined by conducting multiple tests and observing the
behavior of voltage change. The threshold value was then compared
to the real taxel voltage measurements. The conditions in which
the taxel voltage falls below the threshold were regarded as unsafe
contacts. A taxel voltage equal to or greater than the threshold was
considered as a safe contact between an object and a component of
the taxel-related sensor. The objective was to consider the contact
unsafe when a minimum number of taxels (an entire row) obeys the
unsafe contact point conditions. The steps followed during in-hand
manipulation control scheme is given in Algorithm 1.

6 Results and discussion

In this work, experimental validations on sensors equipped
on the thumb of the Prisma hand II were carried out to
analyse performance of the developed sensor. Simulation studies
and experimental validations were performed using different
architectures of CNN and experimentation set ups. The thumb of
the hand plays a major role in the horizontal and vertical in-hand
manipulations. Hence, thumbwas selected to study the performance
of the sensor developed for the hand.

6.1 Experimental validation of working of
sensors

ANN and CNN networks were used for predicting 3 axes force
values in X, Y, and Z directions. Voltages transformed into a 3 × 3
matrix structure were given as the input for training networks. A
sigmoid function was used as an activation function during ANN
training process. A batch size of 64 samples and 300 epochs were
used for training ANN. The whole sample of data was divided into
80 percent for training and 20 percent for validating the network.
Adaptive Moment Estimation (ADAM) was used to optimise the
results and respective MSE values of the ANN trained in the X, Y,
and Z-axes were found to be MSEx = 0.053, MSEy = 0.049, and
MSEz = 0.319 respectively. To compare and select a best performing
network, a CNN was also used for training the same dataset. The
CNN comprised 2 convolutional layers of 256 and 64 neurons in
addition to a dense layer of 16 neurons.The dataset was divided into
80 percent of training data and 20 percent of validation data. CNN
used a batch size of 64 and epochs of 300. The MSE values for CNN
trained in the X, Y, and Z-axes were found to beMSEx = 0.022,MSEy
= 0.022, and MSEz = 0.148 respectively.

To compare the performance of two NNs, experiments were
conducted in 2 phases using the fingertip pad carrying out a pushing
and a sliding tasks. During pushing tasks, NN was supposed to be
precisely predicting the Z axis forces affecting the ATI reference
sensor. The NN was assumed to be anticipating X and Y-axis forces
acting on the object during sliding task. Figure 7 depicts the graphs
comparing the force values in Z-direction predicted using ANN and
CNN trainings during pushing experiment. The graphs comparing
the predicted values of forces in X and Y directions during sliding
experiment using ANN and CNN trainings are shown in Figure 8.
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FIGURE 6
CNN architecture.

Input:

1. Voltages obtained from all taxels,

vi,i = 1,2,…9

Output: Optimum value of grasping

contact and force:

2. Initialise the parameter sets and start

grasping task

3. Compute average voltage values, vt

4. Compute constant of proportionality, K

5. For all values of vi, calculate voltage

threshold, vt;

vt = K×va
6.

if vt ≤ vi then

 7. final voltage, vf = vi
 8. Grasping contact and force finalised

 10.

else

 11. Update the position of grasp and go to step 5

 12.

end if

Algorithm 1. In hand manipulation scheme.

The MSE values for prediction of force in Z axis using ANN and
CNN during pushing experiment were found to be 0.2164 and 0.101
respectively. MSE values of forces in X direction during sliding
experiment were found to be 0.016 and 0.013 respectively.TheY-axis
forces during the inference/prediction phase of sliding experiment
for ANN and CNN were found to be 0.024 and 0.010 respectively.
The lowest MSE value corresponded to the best NN choice.

Figures 9 and 10 depict the comparison of training and
validation losses during simulation and experimentation validations
respectively. The training and validation losses computed using

FIGURE 7
Comparative prediction graph of Z-axis force using ANN and CNN
during push experiment.

FIGURE 8
Comparative prediction graphs of X and Y-axes force using ANN and
CNN during slide experiment.
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FIGURE 9
Training and validation losses during simulation.

ANN and CNN networks at epoch 300 during simulation were
obtained as 21%, 17%, 15%, and 13% respectively. Similarly training
and validation losses during experimentations usingANNandCNN
were obtained as 40%, 37.5%, 24% and 17% respectively. Hence,
it is evident that CNN performed better in terms of losses for the
specified task compared to ANN. The parameters and outcomes of
ANN and CNN training networks during simulation studies and
experimentations are given in Supplementary Tables 3, 4.

The accuracy of the ANN model seems to be more stable
when momentum is utilized, exhibiting less volatility during the
training epochs. Better performance is achieved with smaller decay
levels. With a decay of 1× 10−3, the final learning rate for ANN
training is computed to be around 0.001. CNN model performed
showcased a learning rate of 0.0001 and accuracy above 90%.
Hence, we can conclude that CNN performed better than ANN
during simulation studies and experimentations due to lower MSE
values, higher accuracy, higher learning rate, less training loss,
and validation loss compared to ANN in the prediction phase.
The model trainings are showcasing an underfitting state for both
ANN and CNN based methods as evident from Figures 9, 10. Our
primary aim was to compare the performances of two types of NNs
within 300 epochs (we set 300 epochs to limit the computational
effort). After the initial phase of comparison study, we understood
that CNN performed better within the stipulated time with higher
accuracy, lower training, and validation losses. We continued using
the CNN training method by increasing epochs along with adding
more data samples and more layers in the succeeding experiments
to eliminate under-fitting/over-fitting issues and to achieve
more accuracy.

6.2 Experimental validation using updated
convolutional neural network

6.2.1 Inclusion of torque values in CNN training
The previous approach to train a CNN was based on the

inclusion of only 3 axes force values. To evaluate the performance
of CNN based on increment of data samples, 3 axes torque values
were considered during the training phase in order to make the
prediction of forces more precise. The reference torque values were
provided from an ATI F/T sensor whereas the 9 taxel solution
of the sensor made the inclusion of torque values possible. An
experimental validation of performance of sensors considering
torque values were carried out for pushing and sliding actions of
the thumb. Parameters and results obtained in this experimentation
phase are given in Supplementary Table 5.

The MSE values in X, Y, and Z directions during force training
were found to be MSEx = 0.022, MSEy = 0.031 and MSEz = 0.400
respectively.TheMSE values in X, Y, and Z directions during torque
training were found to be MSEx = 9.932, MSEy = 8.841, and MSEz
= 0.465 respectively. Figure 11 showcases a graph comparing the
performance of prediction ofZ-axis forces obtained usingCNNwith
and without considering torque values during pushing and slidin
experiments. Figure 12 shows graph comparing the performance of
prediction of X and Y-axes forces using two CNN networks during
sliding experiment.

The MSE values in Z-axis during pushing experiment were
obtained as 0.11 for CNN without considering torque and 0.35 for
CNN considering torque. The MSE values in X-axis during sliding
experiment were found to be 0.013 for CNN without considering
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FIGURE 10
Training and validation losses during experimentation.

FIGURE 11
Comparative prediction graph of Z-axis force using CNN with torque
(CNNt) and without torque (CNN) during push experiment.

torque and 0.023 for CNN considering torque. The MSE values in
Y-axis during sliding experiment were obtained as 0.01 for CNN
without considering torque and 0.012 for CNN considering torque.
MSE statistics showed that the accuracy of network reduced during
force prediction when torque values were added to the CNNnetwork.

6.2.2 Inclusion of more layers in CNN training
network

On the basis of the previous approach for the inclusion of torque
during training, an increment of layers in the same model of CNN

FIGURE 12
Comparative prediction graphs of X and Y-axes force using CNN with
torque (CNNt) and without torque (CNN) during slide experiment.

was made to improve the learning ability of the network. In this
architecture, 5 convolutional layers were chosen with 128, 64, 32,
32, and 16 neurons. Furthermore, a dense layer of 16 neurons was
added to obtain an output layer of 6 neurons including torque and
force values. Supplementary Table 6 depicts the parameters of CNN
and results obtained during this experimentation phase.
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FIGURE 13
Comparative prediction graph of Z-axis force using CNN with less
layers (CNN1) and more layers (CNN2) during push experiment.

FIGURE 14
Comparative prediction graphs of X and Y-axes force using CNN with
less layers (CNN1) and more layers (CNN2) during slide experiment.

An experimental comparison for evaluating the precision of
prediction for both CNN trained was done during pushing and
sliding experiments. We consider CNN1 (older version) to be with
fewer layers while CNN2 (updated version) to be with more layers.
Figures 13, 14 show graphs depicting the performance of prediction
of X, Y, and Z-axes forces during pushing and sliding experiments
respectively. Moreover, experiments were also conducted in order
to compare X, Y, and Z-axes torques using CNN with fewer layers
(CNN1) and (CNN2). Graphs comparing the values of prediction
are shown in Figures 15, 16. The MSE values for force training in X,
Y, and Z directions were found to be MSEx = 0.022, MSEy = 0.043,
and MSEz = 0.500 respectively. The MSE values for torque training
in X, Y, and Z directions were obtained as MSEx = 11.302, MSEy =
9.221, and MSEz = 0.511 respectively.

The MSE values of prediction phase in Z-axis during push
experiment were found to be 0.35 for CNN1 and 0.19 for
CNN2. The MSE values of prediction phase in X-axis during
slide experiment were obtained as 0.023 for CNN1 and 0.015
for CNN2. The MSE values of prediction phase in Y-axis during

FIGURE 15
Experiment 2 using torque: Comparative prediction graph of Z-axis
torque using CNN with less layers (CNN1) and more layers (CNN2).

FIGURE 16
Experiment 1 using torque: Comparative prediction graphs of X and
Y-axes torque using CNN with less layers (CNN1) and more
layers (CNN2).

slide experiment were found to be 0.012 for CNN1 and 0.008
for CNN2. The MSE data showed that increasing the number of
layers improved CNN performance in force prediction compared to
fewer layers.

6.3 Experimental validations during
in-hand manipulation tasks

Experiments were conducted to determine the efficiency of
the sensors to carry out in-hand manipulation tasks successfully.
An object (a rubber ball) with unknown mass and geometry was
chosen for performing the task. In the presented experiments, the
manipulation approaches were based on the behavior of the taxels
of the sensor placed on the thumb. Figure 17 displays the taxels
equipped on the thumb sensors.

The condition for horizontal manipulation was based on
the evaluation of taxels on the lateral side. The thumb moved
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FIGURE 17
Sensor (A) Taxel numbering. (B) Sensor frame.

FIGURE 18
Frames during the horizontal manipulation phase.

horizontally in clockwise and anticlockwise directions at a constant
speed of 20 rpm. In order to maintain a safe contact during
the whole manipulation process, the lateral side taxels of the
sensor were checked. In case of horizontal manipulation, initial
motion of the thumb was carried out in clockwise direction
until the lateral taxels (6–3–0) lost contact or it reached joint
limits. After the initial phase of manipulation, the thumb was
turned in an anticlockwise manner to return the object to its
original position.

Figure 18 shows the frames of horizontal manipulation using
thumb. Figure 19 depicts the time instant of non-feasible contact on
the graph when the left side taxel voltages fall under the threshold
value (the reader should consider the mirror view of the taxel
matrix in the figure). Figure 19 demonstrates the stop condition of
clockwise manipulation at time instant 6.9 s when the voltage values
of taxels (6–3–0) fall below the threshold.This signified that the right
lateral side of the taxels is no longer in touch with the object. This
circumstance increased the chance that the object was fall out of
the hand hold.

The condition of vertical manipulation was based on behavior
of the top and bottom taxels of the sensor presented on the
thumb. Taking reference from Figure 17, the vertical manipulation
comprised of 2 phases. The first phase of downward manipulation
consisted of fingers closure and thumb extension in downward
direction. Motions were carried out with a constant velocity of

10 rpm until the top taxels (6–7–8) lost contact or reached joint
limits. Similarly, for upward manipulation, fingers opening and
thumb flexion were carried out at a constant velocity of 10 rpm
until the bottom taxels (0–1–2) break contact or the joint limits
were reached.

Figure 20 shows the screenshots of motions of fingers and
thumb during vertical manipulation task. Figure 21 depicts graphs
obtained during vertical manipulation tasks. The results showed
that there were two stop time instants during the task. A
stop time instant of downward manipulation at 8.8 s and stop
time instant of upward manipulation at 12.3 s were detected
from the results.

6.3.1 Experimental analysis to check reaction to
disturbance

A feasible manipulation of object was accomplished in
the presence of external disturbances based on the voltage
information. In this experiment, hand executed a pinching grasp
and the controller determined a possibility of non-feasible grasps
using instantaneous threshold value at each sampling time. The
reaction to external disturbances during task execution was
provided by taxels placed on the lateral side of the thumb.
The thumb moved in the required direction (clockwise and
anticlockwise) at a constant velocity of 20 rpm depending on
which lateral side lost contact with the object. The rotation
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FIGURE 19
Voltage values of thumb sensor taxels along with threshold and instant of danger (red) indicated during horizontal manipulation phase.

FIGURE 20
Frames during the vertical manipulation phase.

stopped when at least two taxels returned to threshold values. K
was set to a value higher than 0.6 to increase the performance
of the controller.

The hand grasped a foam ball and an external disturbance
was applied to the ball using a pen as shown in Figure 22.
The application of external disturbance caused a non-feasible
left-side contact. Taxels such as 8, 5, and 2 fall below the
threshold value. The motions were implemented to bring voltage
outputs of taxels 8 and 5 inside threshold level. The disturbance
caused on left-side was identified at time instant 7.9 (red) and a

feasible contact was restored at time instant 9.2 (green) as shown
in Figure 23.

6.4 Experiment to validate force control
scheme while grasping

Force control enabled a variety of gripping techniques, including
pinch, power, and lateral grasps, to be used securely and effectively
to grasp objects with varying shapes and orientations. The
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FIGURE 21
Voltage values of thumb sensor taxels along with threshold and instant of danger (red) indicated during vertical manipulation phase.

FIGURE 22
Frames during application of external disturbance.

Z-axis forces were considered during grasping tasks to determine
threshold force. Similarly, forces in X and Y-axes were considered
for computing threshold forces during slip conditions. The
orientation of the axis of force on the fingertip pad are shown
in Figure 17.

Experiments for validating the force control scheme based
on threshold values during grasping tasks were conducted. The
motor moved at a speed of 60 rpm until a desired value of
force was reached. The fingers and thumb rotations were set to
a speed of 60 rpm. The stop criterion was ensured based on
the value of force threshold in 2 phases for efficient grasping.

The first phase was executed after the normal Z-axis force
reached 0.8 N to stop the finger’s motion. Moreover, the second
phase involved the stopping of the thumb flexion when the
force reached a value of 1 N. An added advantage of this kind
of approach was that the force limits can be modified easily
to a higher or lower value depending on the requirement of
grasping. Figure 24 shows the screenshots of motions of the
hand during lateral and pinch grasps execution. Figure 25 shows
the Z-axis force reaching a desired value of 1 N during pinch
grasp (mouse). When the hand grasped an object laterally at
different orientations, the motor that controlled the thumb and
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FIGURE 23
Voltage values of thumb sensor taxels, along with threshold (red), during external disturbance.

FIGURE 24
Frames of Lateral grasp and Pinch grasp.

fingers moved them to predetermined places. In addition, the
thumb moved at a speed of 60 rpm until the required force
was applied.

6.5 Experimental validation during
manipulation tasks combining raw tactile
voltage and reconstructed force data

The predetermined force values were used for enhancing in-
hand manipulation tasks. The performance of force controller
described in Section 6.4 was improved using a predetermined
force. The computed force values were used to exert desired
grasping force to reduce the effects of external disturbance

and restore a feasible grasp. The behavior of force in the
Z-axis during the task is depicted in Supplementary Figure 1.
The value of force reached around 1 N at time 4.2 s during in-
hand manipulation of the object when an external disturbance
force was applied. In order to maintain a stable grasp, 1 N
force was applied to the hand in the opposite direction. The
red line in Supplementary Figure 1 indicates the non feasible grasp.
The restoration of the feasible grasp is indicated in yellow line. The
restoration of required force (equal to 1 N) in Z-axis to obtain a
feasible grasp is indicated by the green line. The values of raw tactile
voltage values were used for carrying out the grasping task during
the manipulation phase depicted between the red and the yellow
lines. The in hand manipulation tasks were controlled using the
combination of raw tactile voltage and reconstructed force values.
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FIGURE 25
Force output obtained in 3 axes of Thumb sensor during Pinch Grasps (similar graphs are obtained for the lateral grasp).

7 Conclusion and future works

This work presented a novel sensing strategy based on opto-
electronic technology developed for a prosthetic hand. Grasping
forces and torques were determined from voltages obtained from
the novel sensor using ANN and CNN training methods. To
summarize the performance of various trained NNs, the optimum
approach for carrying out both pushing and slipping tasks was to
use CNN compared to a ANN. The CNN2 was found to be the best
model for determining force and torque values from ATI reference
sensormeasurementswith better prediction accuracy, lower training
and validation losses, better learning rate, and lower MSE values
compared to CNN1. However, when torque values were introduced
to the CNN network, the accuracy of the network decreased while
predicting forces/torques.

Experimental evaluations on proposed novel sensor in this work
demonstrated a force capacity upto 30 N in the Z-axis frame, which
was sufficient for carrying out power, pinch, and lateral grasps. For
force values less than 1.2 N, the precision of force prediction using
NN differs by no more than 0.15 N from the actual force value.
This disparity can be reduced by using an autonomous calibration
procedure at the micro-force level to improve the sensor’s efficiency.
The performance of the developed sensor was satisfactory when
compared with the similar tactile sensors available in the market.
The sensor could able to achieve a better sensing capability even
though it is designed with dimensional constraints to place on
the fingertips.

A method for controlling in-hand manipulation was developed
in order to facilitate the grasping of objects with the hands in
presence of external disturbances. Grasp forces were calculated by

the control strategy using the reconstructed sensor data.Themethod
employed taxel voltage data to regulate the object’s orientation.
The adoption of control strategy to assist during grasping tasks
enhanced the grasping of object without loosing contact even in
the presence of external disturbances in vertical and horizontal
directions. Experiments were conducted to validate the proposed
strategies and analyze their effectiveness. The idea of in-hand
manipulation control proposed in this work can be useful in the
employment of the PRISMA Hand II in prosthetic as well as
in the industrial domains. Future work will focus on employing
the proposed force control strategy on all the fingers to improve
efficiency of in-hand manipulation tasks.
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