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Semantic segmentation using
synthetic images of underwater
marine-growth

Christian Mai*, Jesper Liniger and Simon Pedersen

AAU Energy, Aalborg University, Esbjerg, Denmark

Introduction: Subsea applications recently received increasing attention due to
the global expansion of offshore energy, seabed infrastructure, and maritime
activities; complex inspection, maintenance, and repair tasks in this domain
are regularly solved with pilot-controlled, tethered remote-operated vehicles
to reduce the use of human divers. However, collecting and precisely labeling
submerged data is challenging due to uncontrollable and harsh environmental
factors. As an alternative, synthetic environments offer cost-effective, controlled
alternatives to real-world operations, with access to detailed ground-truth data.
This study investigates the potential of synthetic underwater environments
to offer cost-effective, controlled alternatives to real-world operations, by
rendering detailed labeled datasets and their application to machine-learning.

Methods: Two synthetic datasets with over 1000 rendered images each were
used to train DeepLabV3+ neural networks with an Xception backbone. The
dataset includes environmental classes like seawater and seafloor, offshore
structures components, ship hulls, and several marine growth classes. The
machine-learning models were trained using transfer learning and data
augmentation techniques.

Results: Testing showed high accuracy in segmenting synthetic images. In
contrast, testing on real-world imagery yielded promising results for two
out of three of the studied cases, though challenges in distinguishing some
classes persist.

Discussion: This study demonstrates the efficiency of synthetic environments
for training subsea machine learning models but also highlights some important
limitations in certain cases. Improvements can be pursued by introducing
layered species into synthetic environments and improving real-world optical
information quality—better color representation, reduced compression artifacts,
and minimized motion blur—are key focus areas. Future work involves more
extensive validation with expert-labeled datasets to validate and enhance real-
world application accuracy.

KEYWORDS

unmanned underwater vehicles (UUV), synthetic images augmentation, semantic
segmentation, virtual environment, underwater operations, marine growth, fouling

1 Introduction

Semantic segmentation is the task within machine vision used to analyze the
extent of objects in a given scene on a pixel level. It is widely applied within various
robotics contexts (Juana Valeria Hurtado and Abhinav Valada, 2024). For example, it has
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TABLE 1 Segmentation class descriptions, denotes separately labeled sub-category, denotes absence, denotes present but labeled by
major category.

Category Subcategory Description/
species

Offshore
dataset
(Mai et al.,
2024)

Ship dataset
(Atlantic Tech
and Candy
GmBH, 2023)

LIACi
(Waszak et al.,
2023)

SUIM
(Islam et al.,
2020)

Hard marine growth
Blue mussels Mytilus edulis

Balanus Balanus balanus

Soft marine growth

Seagrass Zosteraceae

Seaweed/macroalgae Phaeophyceae

Sea anemones Actiniaria

Sea squirts Ascidiacea

Seawater

Background Unobstructed
water-volume

Seafloor Seafloor, nominally
sand

Water surface Unobscured water
surface

Marine snow Particulates in the
water

Structure Shiphulls, structures,
and wrecks

Man-made structure

applications within the inspection of surfaces in industrial
applications (Joshi et al., 2022) and landcover identification
in remote sensing (Medellin et al., 2023; Paul et al.,
2012) gathered from unmanned aerial vehicles (UAV’s), or
for the identification of safety-critical object information,
such as in autonomous agricultural field robotics
(Mujkic et al., 2023).

In summarizing, no matter the domain, semantic segmentation
is used to find the extent of complex objects within a
scene; in modern applications, the segmentation task is
often implemented using Deep-Learning strategies, especially
within robotics, a review of which is provided in Ni et al.
(2023). In supervised deep-learning segmentation strategies,
a neural network is trained on labeled datasets (subject to
the availability of sufficient computational power for training
and execution) (Juana Valeria Hurtado and Abhinav Valada,
2024). Underlying the image segmentation networks is often
an image classification neural-network architecture, such as the
one developed for the identification of marine-fouling species in
Chin et al. (2017). In the underwater domain, it has applications
within structural inspection (O’Byrne et al., 2015), which is
important to mitigate potential structural failures from, e.g.,
cracks (O’Byrne et al., 2018a), and within biology such as
remote visual species identification (LutzKrause et al., 2023)
(similar to the terrestrial remote sensing case); here data is

often gathered using unmanned underwater vehicles (UUV’s),
specifically either tethered remote operated vehicles (ROV’s)
or autonomous underwater vehicles (AUV’s) (Pedersen et al.,
2022). A systematic review of underwater object detection
using deep-learning methods is provided in Xu et al. (2023),
an added exploration of the relation between pre-processing
image enhancement and the subsequent performance of deep-
learning methods, showing that there is not always a positive
correlation.

In submerged environments, obtaining controlled experimental
labeled survey data is challenging, partly due to the substantial cost
involved and partly due to the many uncontrolled environmental
influences, such as turbidity, signal attenuation, and variable
lighting, which are also driven by uncontrollable weather
effects (O’Byrne et al., 2018b; O’Byrne et al., 2018a). This
is particularly troublesome in coastal and near-surface work
situations (Liniger et al., 2022). Noteworthy real-world labeled
benchmark datasets for general underwater segmentation include
SUIM (Islam et al., 2020), and for ship-hull inspection, LIACi
(Waszak et al., 2023). Training of segmentation algorithms on the
SUIMdataset for both fully supervised and semi-supervised training
has been explored in several works (Kumar et al., 2024), explored the
use of unsupervised pseudo-segmentation as a downstream task and
compared the performance against state-of-art unsupervised dense
segmentation, finding an improvement of ≈15% when measured
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FIGURE 1
Real-world marine-growth examples. (A) Example of offshore structural marine fouling (courtesy of SubC Partners). (B) Example of ship hull marine
fouling (courtesy of Blue Atlas Robotics).

on mean-intersection-over-union on the SUIM dataset (Vorndran
and Roeck, 2024). explored the use of inconsistency masks (IM) to
improve the segmentation mask performance in areas where the
models have difficulty in segmentation, such as around the edges of
objects, and found a possibility to approach the full data-set training
performance using only a limited subset. Xu et al. (2024) explore
the use and adaptation of Segment Anything Machine (SAM)
to create AquaSAM, a model tuned for foreground/background
segmentation which yielded an improvement of ≈7% versus

baseline SAM-ViTB. The related task of multi-label classification,
based on the LIACi dataset, was explored in (Azad et al., 2023),
but outside this has not yet been explored extensively in the
literature.

In many different application contexts, both industrial,
commercial, and defense settings, where similar constraints
on the gathering of data exist, the utilization of synthetic
environments for machine-learning training has proven to be
fortuitous (Sergey, 2021; O’Byrne et al., 2018b). Synthetic data
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TABLE 2 Pixel wise class imbalance and layer weights - Offshore case.

Name Pixel Count Image Pixel Count Image Freq Class Weights

seawater 5.9642e+ 06 3. 2068e+ 08 0.018599 7.8879

seafloor 1.4286e+ 06 1. 1994e+ 08 0.011911 12.316

structure 1.0403e+ 08 3.2068e+ 08 0.3244 0.45223

mussels 3.2484e+ 07 2.2142e+ 08 0.14671 1

balanus 1.2531e+ 06 1. 9279e+ 08 0.0064998 22.571

seaweed 1.1736e+ 08 3.2036e+ 08 0.36634 0.40047

anemones 5.8161e+ 07 2.0997e+ 08 0.277 0.52963

TABLE 3 Pixel wise class imbalance and layer weights - Ship case.

Name Pixel Count Image Pixel Count Image Freq Class Weights

Seawater 9.4391e+ 07 5.12e+ 08 0.18436 0.76053

seafloor 2.828e+ 07 3.0976e+ 08 0.091298 1.5357

structure 1. 6781e+ 08 5.12e+ 08 0.32775 0.4278

mussels 6.1969e+ 07 5.12e+ 08 0.12103 1. 1585

balanus 8.5624e+ 06 5.1149e+ 08 0.01674 8.3757

seaweed 7.9417e+ 07 5.1149e+ 08 0.15527 0.90303

sea_squirts 7.1572e+ 07 5.1046e+ 08 0.14021 1

FIGURE 2
Training and test process, adapted from (Mai et al., 2024).
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FIGURE 3
Training progress, offshore case, NVIDIA T4, 10 epochs maximum. (A)
Training accuracy. (B) Training loss.

FIGURE 4
Training progress, ship-hull case, NVIDIA RTX4090, 100 epochs
maximum. (A) Training accuracy. (B) Training loss.

for training entails a cost reduction compared to real-world
submerged operations, precise control over the environment, and
the ability to simultaneously generate accurate ground truth without
using any human resources for labeling. Graphical modeling and
rendering tools, focusing primarily on visual rendering for various
artistic and commercial purposes, hold importance for achieving

photorealistic rendering, a crucial aspect of machine learning tasks.
Examples include VUE, utilized in studies like (O’Byrne et al.,
2018b), and Blender, featured in research such as (Smith et al.,
2022). These tools contribute significantly to creating visually
realistic submerged environments, essential for machine learning
applications (Sergey, 2021).

A typical challenge in submerged environments is marine
growth fouling, which is problematic in many offshore contexts,
including causing increased mechanical weight and wave load
on offshore structures such as foundations, structural jackets,
and mooring lines (Pedersen et al., 2022). Additionally, marine
growth can hinder non-destructive inspection processes in such
domains by occlusion of structural surfaces (Liniger et al.,
2022; O’Byrne et al., 2018a). In a related scenario, marine
fouling can also cause additional drag on ship hulls as noted in
(Waszak et al., 2023; International Maritime Organization IMO,
2010). To meet operational demands, management of marine
growth is often necessary, including derivation of the species
and coverage (Pedersen et al., 2022; Liniger et al., 2022).
This task can be conducted autonomously using UUVs
with onboard processing, thus alleviating the need for high-
cost high-risk human diving operations previously used
(Liniger et al., 2022; João Afonso Borges Carvalho, 2023).

Based on this problem of marine fouling management, this
work explores the use of visual, 2D semantic segmentation
algorithms to segment images of marine growth on various
scenarios, thereby enabling the automatic determination of
the species coverage in scenes while avoiding manual human
labeling and video and image analysis, thus facilitating various
control measures, such as calculations of structural loads
or cleaning intervals. In line with the objective to alleviate
the need for labor-intensive manual pixel-level labeling of
training materials, a purely synthetic-image approach is
used for training the segmentation network. In contrast to
the work of O’Byrne et al. (2018b), no adjunctive machine
learning is used to refine the results of the neural network;
however real-world images are used in the initial classifier
training, rather than relying purely on synthetic data for all
training steps. Unlike the approach of (LutzKrause et al., 2023;
Lin et al., 2022; Alonso et al., 2019), no manual or semi-automatic
labeling of the segmentation mask was performed on real-
world imagery, with the segmentation mask instead being purely
automatically defined in synthetic data, thus completely automating
the segmentation dataset labeling process.Themain contributions of
this study are:

• Training and quantitative evaluation of the performance
of two underwater segmentation networks on synthetic
segmentation data.
• Evaluation of synthetic-only segmentation against expert-

labeled ground-truth datasets: LIACi (Waszak et al.,
2023) and SUIM (Islam et al., 2020) and their accompanying
network performances.
• Aqualitative evaluation of the real-world performance of these

networks on images from three distinct underwater scenarios
using our own field data:
– Inspection of an offshore structure (Liniger et al., 2022).
– Inspection of harbor surfaces (wall and mooring post).
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FIGURE 5
Overview of test site locations, 1 and 2 are coastal sites (harbors), and 3 is an offshore site (location approximate).

TABLE 4 Test site characteristics.

Site # Name Location Maximum depth Turbity range Expected type (Jerlov)

1 Coastal - Fredericia Habor 55.5578494N, 9.7337925E 11m <1.5 FTU 3C–5C

2 Coastal - Aabenraa Habor 55.0254519N, 9.4409781E 18m <0.9 FTU 3C–5C

3 Offshore - North Sea ≈ 56N, ≈ 4.5E 40m N/A II

– Inspection of ship hulls (Waszak et al., 2023).

Extending the case studies ofMai et al. (2024), this work deepens
the methodological description of the synthetic image training
approach for classification underwater and provides additional
validation by the following additions:

• Evaluation of a commissioned synthetic dataset of ship hulls
with varied structural paint textures
• New species of attached marine growth representing invasive

ship hull fouling

The remainder of the paper is organized as follows: Firstly,
the materials and methods of the work are described, which
includes the synthetic dataset used, the real-world validation data,
the neural-network architecture and training; secondly, the results
of the trained neural network segmentation are illustrated and
evaluated 1) on the synthetic dataset itself, 2) on the expert-
labeled datasets, and 3) applied to our data from the real-world
environments in selected Danish harbors and offshore sites, where
marine fouling is present; finally, some concluding remarks are
given as well as perspectives for network implementation and future
applications.

2 Materials and methods

Synthetic datasets are used to perform transfer learning on a pre-
trained neural network architecture and subsequently evaluated on
the real-world out-of-bag test data. Firstly, the classes to be included
in the segmentation task must be considered, as well as the required
resolution of the input and output stages of the neural network based
on the available data.

2.1 Classes and species considered

Based on the environment of interest being a submerged
structural inspection task, the classes of interest can
be delineated between the background environment, the
structural components, and the attached marine growth. The
marine-growth classes are selected based on the prevalent
fouling species in the Danish North Sea. A distinction
can be made between hard and soft marine growth,
with hard marine growth characterized as incompressible,
and soft marine growth as easily compressible, since
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FIGURE 6
Montage of segmented synthetic images, RGB and ground
truth from (Atlantic Tech and Candy GmBH, 2023). (A) RGB input
image. (B) Ground truth mask overlay. (C) DeepLabV3+ segmentation.

they have different structural load characteristics as
described in Gaurier et al. (2014).

Based on these considerations, the following classes have
been applied to the segmentation task, corresponding to the
underlying datasets’ classes. The offshore dataset and underlying
rendering methodology for both datasets are described in Mai et al.
(2024), which consists of the creation of 3D scenes of the
respective environment in Blender, with the inclusion of accurate
water, structural, and marine-growth 3D models. For the ship-
hull dataset, from (Atlantic Tech and Candy GmBH, 2023), the
sea squirts were included as an additional species, due to their
presence in the reference video materials. An overview of the
classes used in the segmentation training and validation datasets
is given in Table 1.

An example of marine fouling on a Danish offshore structure
is illustrated on Figure 1A. The left side of the image shows
a section of the previously cleaned structure with only a thin
layer of algal fouling remaining. In contrast, the right side
constitutes heavy fouling with a mix of anemones, mussels,

and seaweed. An example of marine fouling on a ship hull
is shown in Figure 1B, where the fouling consists of mussels, sea
squirts, and balanus.

2.2 Synthetic image dataset

We have utilized two synthetic image datasets consisting of
>1000 rendered images each, commissioned from Atlantic Tech
and Candy GmBH (2023), which is generally considered sufficient
for transfer learning (Shahinfar et al., 2020), to train the
segmentation neural networks, which will be evaluated in Section 3.
Recalling from Mai et al. (2024), the datasets are based on
virtual environments created in, and rendered using, the open-
source software Blender, with the Cycles raytracing engine
(Blender Documentation Team, 2023); the virtual environments
themselves are based on CAD-models and a mixture of 3D
scanned and procured models and textures from commercial
asset providers. The rendering of images and labels is conducted
through procedural scripting, integrated with the rendering process
steps, thus pixel-level labels are generated automatically and
exactly for each rendered scene, corresponding to the classes
given in Section 2.1. In the datasets, the rendering distances
and water types have been varied to cover various inspection
scenarios encountered in real-world video inspections, based on
the reference materials gathered using ROVs provided by the
industrial partners. This robustifies the trained algorithm so it
does not overfit towards the appearance of the marine species
and structural surfaces at a single, given distance. To include
the variations in turbidity and water coloration in different real-
world operating scenarios, varied Jerlov water types have been
used during rendering, from very clear Jerlov I oceanic water
to coastal Jerlov 5C water, see (Mai et al., 2024) for example,
images. For additional augmentation, both noisy and denoised
(using NVIDIA OptiX denoiser) images have been used, as well
as images with no water volume. In addition, for the second
dataset (ship hulls), the focal length has been varied for each
image. A detailed description of the synthetic dataset creation
can be found in Mai et al. (2024), and the main characteristics are
recalled below:

• Image quantity: 1038× 2
• Image size: 532 × 299pixel
• Range to target surface: 30100 cm
• Data augmentation: noisy and denoised images
•Water types (Jerlov): I, II, III, 1C, 3C, 5C
• Included classes: See Section 2.1.

2.3 Neural-network architecture

The deep-neural network is re-applied from the previous case
demonstration of (Mai et al., 2024); the deep-neural network chosen
for the segmentation task is DeepLabV3+ segmentation network
(details in (Chen et al., 2018)) with an Xception classifier backbone
(details in (Chollet, 2017)), where the classification backbone has
been trained on real-world marine-fouling images. The choice
of network architecture is guided by the current state-of-art, as
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FIGURE 7
Confusion matrix, offshore structure, updated from (Mai et al., 2024).

described in (Sergey, 2021), where several applications of synthetic
data and various network architectures have been evaluated,
including DeepLabV3+, and the strengths and weaknesses of the
networks are illustrated. Additionally, DeepLabV3 is widely applied
in similar underwater segmentation works (Waszak et al., 2023;
Islam et al., 2020), thus readily allows for comparison of the
synthetic-only transfer-learned network performance. The neural
network architecture has been modified by the replacement of the
pixel classification layer to compensate for the class imbalance in
the synthetic datasets; the class imbalance and resulting weights
are illustrated in Tables 2, 3 for the offshore and ship hull case
respectively.

2.4 Deep-neural network training

Anoverview of themethodology is presented on Figure 2, which
illustrates the sequential nature of the pre-training, transfer learning,
and the subsequent evaluation of synthetic and out-of-bag real-
world data.

2.4.1 Backbone training
Ideally, a pre-trained classification network covering all the

classes included in Section 2.1 would be applied as the backbone
classifier, but such a network is not readily available. In substitution,
an Xception classifier, pre-trained on the ImageNet database, has
been additionally transfer-learned on the dataset of (Chin et al.,
2017). The xception backbone has been chosen for its best-in-class
classification accuracy and the ability to be directly inserted into the
DeepLabV3+ segmentation network. Through the transfer learning
on the real-world image dataset, the training performance of the

overall segmentation network is increased, including a reduction in
the time to convergence.

2.4.2 Segmentation training
The segmentation network is DeepLabV3+ with the pre-trained

xception backbone inserted (Mai et al., 2024). The dataset has been
split utilizing 60% as training images, with 20% validation and
20% testing images set aside. The images have been augmented
using randomized rotation in the range −180180deg, and both
denoised and noise images have been included as additional
augmentation. Cross-entropy loss is utilized in the training.; as
in Mai et al. (2024), the training is performed with a Stochastic
gradient descent withmomentum (SGDM) solver, constant learning
rate of 0.001, validation frequency of 10, and validation patience
of 5. The learning rate selection is informed by the transfer
learning scenario, so the learning rate should be set lower
than from-scratch learning (Bengio, 2012); similar learning rates
have been found through optimization in Cai et al. (2022);
Liu et al. (2024); Liu et al. (2021) thus providing a basis for
the selection.

The training was performed on a single NVIDIA GPU using
MATLAB GPU accelerated training, and the training graph from
training the network is shown on Figures 3, 4 for the two datasets
respectively. In figure Figures 3A, 4A, the training accuracies is
illustrated, and on Figures 3B, 4B, the losses, respectively. The
total training was completed in 1420 iterations for the offshore
case and 5210 iterations for the ship hull case. The training
was terminated due to meeting the validation requirements
in both cases, to avoid overfitting. Training for both datasets
was performed in a similar time, varying between 141148min
or ≈2 h 20min.
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FIGURE 8
Montage of segmented synthetic images, RGB and ground truth from (Atlantic Tech and Candy GmBH, 2023). (A) RGB input image. (B) Ground truth
mask overlay. (C) DeepLabV3+ segmentation.
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FIGURE 9
Confusion matrix, ship hulls.

2.5 Test sites: Offshore, coastal and
ship-hulls

For qualitative assessment of the developed algorithms, data
from three test sites has been utilized: one environment near an
offshore installation in the Danish North Sea and two harbor
locations, Aabenraa and Fredericia, on the east coast of Denmark,
as marked on the map of Figure 5. These sites serve as typical
operating cases where marine growth is commonly found,
i.e., on long-term fixed structures such as harbor walls and
caissons, and where a representative species distribution of
marine growth is expected to be present based on previously
gathered video reference materials and the marine growth
species description of Gaurier et al. (2014). The primary
characteristics of the test sites are listed in Table 4, where
the turbidity and depth have been retrieved from satellite
sources at (Copernicus Marine Service, 2023) and verified by local
measurements. In addition, several videos of ship-hulls from various
locations, provided by our industrial partners, have been used for
validation.

3 Results

The segmentation network has been tested on three
scenarios: 1) the data of the synthetic test sets (set-aside),
2) images from two expert-labeled datasets, 3) images from
real-world out-of-bag scenarios; an offshore installation, a
selection of ship hulls, and images from two coastal installations
in harbors.

3.1 Test results - Synthetic images

The synthetic image test sets for the offshore and ship hull cases
have been segmented using the two trained networks.

3.1.1 Offshore case
An example of the segmentation results of the offshore synthetic

image test set is shown on Figure 6, providing an overview of
the input images, ground truth, and output segmentation for
comparison.

The confusion matrix for the synthetic data, shown on Figure 7,
illustrates the row-normalized class accuracy for the offshored
structure case. The accuracy is high for most of the marine-growth
classes, with an average ≈74%, and in all cases above the benchmark
(67.78%). A notable false classification occurs between seawater
and seafloor; this is partly caused by the relatively featureless
textures and the obfuscation of the seafloor at longer distances,
which makes the classes’ appearance overlap. The second largest
incorrect classification occurs between the structural surfaces and
the seaweed, most likely due to the downy texture at the edge of
the seaweed, combinedwith the color and texture similarity between
structural surfaces and seaweed. The third incorrect classification is
between the balanus and mussels, caused by the balanus’s proximity
since they are directly on the mussel surfaces.

3.1.2 Ships hulls case
An example of the segmentation results of the offshore synthetic

image test set is shown on Figure 8, providing an overview of
the input images, ground truth, and output segmentation for
comparison.
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FIGURE 10
Montage of segmented synthetic images, RGB and ground
truth from (Waszak et al., 2023). (A) RGB input image. (B) Ground truth
mask overlay. (C) DeepLabV3+ segmentation.

TABLE 5 (a) Per-class performance metrics for LIACi dataset subset, our
network. (b) Per-class performance metrics for SUIM dataset subset, our
network. Dataset performance metrics.

Accuracy IoU MeanBFScore

seawater 0.4224 0.2525 0.27564

structure 0.052925 0.044498 0.16937

seaweed 0.74115 0.37775 0.27182

Accuracy IoU MeanBFScore

seawater 0.65622 0.60769 0.48777

seafloor 0.0014823 0.00086848 0.015662

structure 0.021133 0.0042696 0.020863

seaweed 0.75701 0.55868 0.44506

The confusion matrix for the synthetic data, shown on Figure 9,
illustrates greatly varying accuracy for the marine-growth classes
between 4374%,which is generally lower than the offshore structural
case, with some species accuracy below and some above the
benchmark (67.78%). The dominant false classification occurs
between seawater, seafloor, and marine snow; this is caused by the
relatively featureless textures and the obfuscation of the seafloor at
longer distances, which makes the classes’ appearance overlap, as
well as the randomized location of the marine snow in the images.
The second largest incorrect classification is between the balanus
and mussels, again caused by the balanus’s proximity since they
are directly on the mussel surfaces. A third incorrect classification
occurs between the structural surfaces and the seaweed, similar to
the offshore case.

3.2 Test results - Expert labeled datasets

While datasets that exactly match the applications and
segmentation classes synthetic renders of this work are not available,
it is possible to perform an alternative quantitative evaluation
by using datasets that have overlapping super-classes such as
general marine-growth, seawater, and man-made structures;
for this purpose, two manually labeled datasets have been
retrieved and tested with the developed neural networks for
the offshore and ship hull cases respectively, detailed in the
sections Section 3.2.1 and Section 3.2.2.

3.2.1 Ship hull labeled dataset
To demonstrate the quantitative performance of the developed

neural network for the ship hull case, an expert-labeled dataset
will be segmented. A dataset with the exact classes of the synthetic
images is not available, so a dataset with the overlapping superclasses
of ship-hull, background, and marine growth has been applied as a
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FIGURE 11
Montage of offshore expert images, RGB and ground
truth from (Islam et al., 2020). (A) RGB input image. (B) Ground truth
mask overlay. (C) DeepLabV3+ segmentation.

substitute from the LIACi dataset1, available at (Waszak et al., 2023).
Since the LIACi dataset does not distinguishmarine-growth species,
for the purpose of comparison, the output of the neural network
has been merged so that marine-growth classes include both the
soft and hard marine growth classes (seaweed, mussels, balanus,
anemones). To delimit the comparison and presentation, images

1 In the LIACi dataset, the background water is not directly labeled, so

background class is assumed for all otherwise unlabeled pixels, similar

to the synthetic renders.

have been selected from the dataset where at least 20% of the image
is the background seawater and at least 20% marine fouling. The
output of the segmentation is shown on Figure 10C, with the ground
truth on Figures 10B, and RGB input on Figure 10A respectively.
In general terms, the performance is good for the detection of
the marine-growth classes but it is insufficient for the detection of
the structural components, with large misclassification as seawater.
Similar to the offshore best cases, the separation of marine growth
and seawater background is clearly delimited, but the structural
elements are still incorrectly classified as seafloor or seaweed,
rather than structure. The accuracy is highest for the true-positive
detection of themarine-growth class as well as for the seawater itself,
as shown on the row-normalized confusion of Figure 12A, however,
the detection of the seafloor and especially structure shows severe
misclassification with less than <42.2% <5.3% correctly classified,
respectively, rendering the results for these classes unreliable for
all presented segmentations. Only the seaweed true-positive rate is
above the benchmark case (67.78%). Concerning the segmentation
outputs on Figure 10C and comparing with the RGB inputs on
Figure 10A, it is evident that the misclassification is most severe
when the background seawater is dark (low illumination) and
markedly less severe when the background is obscured by low
visibility, i.e., high turbidity. The detailed per-class performance
metrics for the LIACi dataset are given in Table 5A

3.2.2 Offshore labeled dataset
An expert-labeled dataset will be segmented to quantitatively

assess the performance of the developed neural network for the ship
hull as a demonstration case. A dataset with the exact classes of the
synthetic images is not available, so a dataset with the overlapping
superclasses of ship-hull, background, and marine growth has been
applied as a substitute from SUIM dataset2, available at Islam et al.
(2020). Since the SUIM dataset classes do not directly match the
trained classes, for the purpose of comparison, the output of the
neural network has been merged so that marine-growth classes
include both the soft and hard marine growth classes (seaweed,
mussels, balanus, anemones), while retaining the classes for seafloor
and seawater, and remapping wrecks as structure. To delimit the
comparison and presentation, images have been selected from
the dataset where at least 20% of the image is the background
seawater and at least 20% marine fouling. The output of the
segmentation is shown on Figure 11C, with the ground truth on
Figures 11B, andRGB input on Figure 11A respectively. In general
terms, the performance is good for detecting the marine-growth
classes. Still, it is insufficient for the detection of the structural
components, with large misclassification as seawater. In the best
cases, the separation of seaweed and seawater background is clearly
delimited, but the structural elements are still incorrectly classified
as seawater rather than structure. The accuracy is high for the true-
positive detection of the marine-growth class, as shown on the
row-normalized confusion of Figure 12B. However, the detection
of seafloor and especially structure shows severe misclassification,
rendering the results for these classes unreliable for all presented
segmentations. Concerning the segmentation outputs on Figure 11C

2 In the SUIM dataset, the water surface and free water body is

labeled together.
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FIGURE 12
Confusion matrixes for expert labeled dataset subsets. (A) Confusion matrix - LIACi dataset, row-normalized. Lower box is classwise precision, right
box is class-wise recall. (B) Confusion matrix - SUIM dataset, row-normalized. Lower box is classwise precision, right box is class-wise recall.

and comparing with the RGB inputs on Figure 11A, it is, like the
ship hull case, evident that the misclassification is most severe when
the background seawater is dark (low illumination) andmarked, but
less severe when the background is obscured by low visibility, i.e.,

high turbidity. Additional misclassification occurs with the presence
of non-trained elements such as human divers and vertebrates.
The detailed per-class performance metrics for the SUIM dataset
are given in Table 5B.
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FIGURE 13
Example segmentations of offshore videos, courtesy of SubC Partner. (A) Offshore example 1.

TABLE 6 Dataset benchmark performance comparison, ‘-’ denotes not available in cited work.

Model Ref. Base
architecture
(backbone)

Global. acc Mean. IoU Acc.
marine-growth

IoU
marine-growth

LIACi-DeepLabV3 Waszak et al. (2023) DeepLabV3 77.34% 75.28% 55.64% 52.20%

LIACi-SegNet Waszak et al. (2023) SegNet (ResNet50) 82.79% 80.63% 67.78% 63.62%

LIACi (subset) w. ours DeepLabV3+
(Xception)

40.00% 22.49% 74.11% 37.75%

SUIM-DeepLabV3 Islam et al. (2020) DeepLabV3 81.27 ± 2.30% 79.10 ± 2.34% — —

SUIM-Net-VGG Islam et al. (2020) VGG-16 86.97 ± 2.30% 84.14 ± 1.15% — —

SUIM-Net-VGG Islam et al. (2020) VGG-16 86.97 ± 2.30% 84.14 ± 1.15% — —

SUIM-DatUS2 Kumar et al. (2024) ViT-B8 64.67% 28.48% — —

SUIM-STEGO Kumar et al. (2024) ViT-S8 53.24% 24.76% — —

SUIM-AIM++ Vorndran and Roeck
(2024)

AIM 67.8% 48.5% — —

SUIM (subset) w. ours DeepLabV3+
(Xception)

66.13% 29.28% 75.70% 55.86%

3.2.3 Comparison summary
The segmentation of the expert-labeled datasets demonstrates

the achieved performance of the synthetic-only approach wrt.
the performance of networks as trained directly on manually
annotated images.The performance of the synthetic-only network is
comparatively lower than the real-data training, however productive
accuracy is achieved for identifying marine-growth (seaweed)
and seawater, especially when applied to the SUIM dataset. A
comparison of the per-class accuracy and IoU against the original
dataset proposed algorithms are shown in Table 6.

3.3 Test results - Offshore video

An instance of the segmentation results for the offshore
environment is shown on Figure 13. Concerning segmentation
performance, the following can be noted: the sea anemones on
the central segments of the image are segmented with reasonable
accuracy, but those at the edge, where resolution is lower, are
erroneously labeled as seaweed; the seaweed in the lower left-hand
corner is labeled correctly but with some overlap on the anemones
adjacent to it.
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FIGURE 14
Example segmentation of coastal videos, courtesy of SubC Partner. (A) Coastal example, Fredericia Habor, courtesy of SubC Partner. (B) Coastal
example, Aabenraa Habor, courtesy of SubC Partner.

3.4 Test results - Coastal videos

Asample of the segmentation results for the coastal environment
is shown on Figure 14. Concerning segmentation performance, the
following can be noted: the seaweed in the central left section and
the vertical centerline in the image have been labeled correctly. In the
lower right quadrant, misclassification as anemones occurs, though
no anemones are present in the test location. A considerable part of
the shaded area towards the right and top of the image is incorrectly
labeled as mussels for indeterminate reasons.

3.5 Test results - Ship hulls

Examples from ship hull scenarios are shown on Figure 15.
The out-of-bag performance for the ship hull videos is inferior
to the structural and coastal videos. Chief sources of the reduced
classification performance, relative to the offshore case aremanyfold.
The lower fidelity and compression artifacts of the input videos, are
caused by increased compression of the raw images, and motion
artifacts, are not captured in the synthetic data used for training.The
presence of reduced color saturation is caused by the camera’s white
balance and the presence of caustics due to sunlight from the surface
also causes misclassification as evident in Figure 15A, in the right
part of the image. In the image of Figure 15B, a significant part of
the sea squirts in the center of the image is correctly classified,
however, the surrounding mussels are incorrectly classified as
structural surfaces. The performance in segmenting the boundary
of the free water volume is illustrated on the left part of Figure 15C,
where the upper part and central parts are captured well, including
the details around the central sea squirts. However, issues remain in

classifying where the color of the water is less distinct, such as in the
lower left part of Figure 15C and the lower left corner of Figure 15B.
These factors are not present to the same extent in the offshore test
cases due to higher raw camera resolution and larger operational
depths (reducing caustics).

4 Discussion

This study has focused on qualitatively evaluating semantic
segmentation applied to underwater surfaces using neural networks.
The neural networks have been implemented using a two-stage
training approach consisting of transfer learning on real-world
data for classification layers and purely synthetic data for the
segmentation layers. The use of synthetic data is motivated by the
high cost of acquiring and manually labeling real-world underwater
data. The approach has been illustrated in the application of
marine-growth segmentation,motivated by the extensive and varied
presence of marine fouling on man-made structures.

The results demonstrate the utility of the synthetic dataset
approach in training a usable neural network, with apparent usable
results on real-world imagery. However, some areas of performance
degradation remain, particularly in lower-resolution sectors of
the images or where there is shade or caustics. A substantial
false classification rate exists between the seafloor and seawater,
which is, however, less relevant in the task of distinguishing
between marine growth and structure; similarly, the increased
false classification rate between Balanus and mussels is of less
consequence for distinguishing between hard and soft marine-
growth. Indeed, the misclassification between the marine growth
species and the structural surface is more critical and should be
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FIGURE 15
Example segmentation of ship hull videos, courtesy of Blue Atlas Robotics. (A) Ship hull example 1. (B) Ship hull example 2. (C) Ship hull example 3.

addressed further in future work. This is particularly the case for
mussels, which suffer from false positives and false negatives in
several application scenarios. This could be due to the varying
presentation of microfouling on the mussel’s exterior surfaces.
A more thorough and strict definition of the classes would be
beneficial for the marine-growth segmentation; for example, the
difference between thin layers of marine fouling and thick layers
consisting of multiple cohabiting organisms should be addressed,
which is not captured in the presented approach, and is expected
to have a substantial influential the he misclassification between
almost clean but highly textured structural surfaces biofilm surfaces,
macrofouling and more clearly delineated fouling species such as
mussels and anemones.

As a general observation, the promising results achieved for
offshore structures do not extend fully to ship hull applications,
where the current misclassification remains unacceptably high.
This discrepancy highlights the clear current limitations of the
proposed segmentation approach across different applications.
Improvement can be pursued through the development of more
realistic and varied synthetic environments and by enhancing

the fidelity of the sensor data. Introducing layered cohabitating
species appears to be the most obvious enhancement to synthetic
environments. For the sensor data, efforts should focus on
improving the quality of optical information, including better
color representation, reduced compression artifacts, and minimized
motion blur. The present work has investigated the application
of optical information for segmentation; however, incorporating
additional sensor modalities, such as acoustic technologies,
can enhance environmental information. Acoustic data are
robust against optical losses and can potentially provide an
additional depth dimension that is useful for distinguishing
between different species. A prior study has already initiated the
generation of synthetic acoustic data (Woock and Beyerer, 2017;
Reitmann et al., 2021).

Importantly, validating the actual accuracy in the real-world
dataset requires using of a ground-truth dataset. Due to the varied
presentation of the marine growth, an expert-labeled dataset is most
readily usable, however the available datasets often do not overlap
completely with the synthetic data in terms of class delineation,
which makes a direct comparison impossible, and necessitates the
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use ofmore encompassing superclasses which are less demonstrative
of the achievable species performance.

Following the validation of the trained networks, they can be
applied to marine-growth segmentation tasks in various industrial
contexts, such as for the recurrent or continuous monitoring
of marine-fouling load on structural components, through the
implementation of edge-computing hardware aboard ROV’s and
AUV’s, or through offline usage in historical data analysis.
Furthermore, the approach can be expanded to other contexts
by modifying the underlying virtual environment and generating
additional data, such as seafloor piping or other types of subsea
installations, or for analyzing natural habitats.

A natural avenue of further exploration is to evaluate and
compare additional state-of-art neural network architectures with
training on the synthetic data, especially given the rapid evolution
of network architectures in both the underwater and other
robotics domains (Ni et al., 2023; Juana Valeria Hurtado and
Abhinav Valada, 2024; Xu et al., 2023); relatedly, a systematic
exploration of additional modifications of the neural network
for the concrete marine-growth segementation scenario could
also be explored. For application in a real-world scenario, the
developed network must be deployed for inference either as
offline processing of captured video and images as presented in
this work or as an online edge-processing solution. Generally,
semantic segmentation in real time on an edge processing device
remains computationally intensive, thus yielding low frame rates
as elucidated in Lambert et al. (2023), where framerates of
<3.5 frames per second are generally achieved on a modern
edge-processing device (NVIDIA Jetson Nano 4 GB). However
efficient network such as ESPNet achieves significantly better
performance at≈18FPS, and the expected continued development of
edge-computation devices will most probably continue to improve
the achievable segmentation performance. A similar adaptation
is shown in Islam et al. (2020) where adaptations of the neural
network provide an FPS performance gain.
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