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A robot hand-arm that can perform various tasks with the unaffected arm
could ease the daily lives of patients with a single upper-limb dysfunction. A
smooth interaction between robot and patient is desirable since their other arm
functions normally. If the robot can move in response to the user’s intentions
and cooperate with the unaffected arm, even without detailed operation, it can
effectively assist with daily tasks. This study aims to propose and develop a
cybernic robot hand-arm with the following features: 1) input of user intention
via bioelectrical signals from the paralyzed arm, the unaffected arm’s motion,
and voice; 2) autonomous control of support movements; 3) a control system
that integrates voluntary and autonomous control by combining 1) and 2)
to thus allow smooth work support in cooperation with the unaffected arm,
reflecting intention as a part of the body; and 4) a learning function to provide
work support across various tasks in daily use. We confirmed the feasibility
and usefulness of the proposed system through a pilot study involving three
patients. The system learned to support new tasks by working with the user
through an operating function that does not require the involvement of the
unaffected arm. The system divides the support actions into movement phases
and learns the phase-shift conditions from the sensor information about the
user’s intention. After learning, the system autonomously performs learned
support actions through voluntary phase shifts based on input about the user’s
intention via bioelectrical signals, the unaffected arm’s motion, and by voice,
enabling smooth collaborativemovement with the unaffected arm. Experiments
with patients demonstrated that the system could learn and provide smooth
work support in cooperation with the unaffected arm to successfully complete
tasks they find difficult. Additionally, the questionnaire subjectively confirmed
that cooperative work according to the user’s intention was achieved and
that work time was within a feasible range for daily life. Furthermore, it was
observed that participants who used bioelectrical signals from their paralyzed
arm perceived the system as part of their body. We thus confirmed the feasibility
and usefulness of various cooperative task supports using the proposedmethod.
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1 Introduction

Some people suffer paralysis in one of their upper limbs
because of damage to the brain or nervous system or other
causes and are forced to live with one arm (Wade et al., 1983;
Rosson, 1987; Backe et al., 2008). Those with a single upper-limb
dysfunction daily encounter tasks that are difficult or impossible
for them owing to the limitation of having only one functional
arm (Sköld et al., 2004; Mancuso et al., 2015). Moreover, the load
concentration on the unaffected arm causes fatigue and decreases
the daily work they can perform.These represent significant barriers
to everyday life and social participation.

One currently available measure is the use of welfare equipment
(Performance Health, 2024; Etac, 2024). However, none of these
tools can provide active support, such as the ability to move like a
human arm. Consequently, all tasks must be performed with only
one unaffected arm, so load concentration cannot be eliminated.
In addition, it is difficult to carry and use all assistive devices for
each task in diverse work environments. Moreover, tasks requiring
the simultaneous movement of both arms, such as tipping a jelly
cup while eating its contents, are difficult to execute. To solve the
source of this problem, an alternative to the paralyzed arm would
be necessary. A robot hand-arm that can grip daily necessities and
perform various tasks in cooperation with the patient’s unaffected
arm offers a solution to the limitations described above.

Research and development have been conducted on a robot
hand-arm attached to a wheelchair for people with upper-limb
dysfunction (Hillman et al., 2002; Romer et al., 2005; Alqasemi and
Dubey, 2007; Maheu et al., 2011; Wakita et al., 2012). However,
these robot hand-arms for disabled users perform movements by
operating a controller such as a joystick. Therefore, when used
by a patient with a single upper-limb dysfunction, the unaffected
arm is restrained for the operation, and it is also difficult for these
robot hand-arms to perform cooperative work with the patient’s
unaffected arm. Alternative methods of operation, such as chin-
operated joysticks and controllers using head movements, exist
for individuals with bilateral upper-limb dysfunctions (Fall et al.,
2015; Aspelund et al., 2020; Rulik et al., 2022). However, it is
inconvenient for patients with a single upper-limb dysfunction
to have their head movements restricted to these operations, as
bimanual tasks often require head movements such as turning
the face to the left or right work area based on the arm
moving to pick up an object, or adjusting face direction to
ensure that the hands performing the task are in the center of
the field of vision. There is also an eye-gaze-based method, but
similar problems occur (Scalera et al., 2021; Sunny et al., 2021).
It is desirable that the physical functions necessary for the task,
including the unaffected arm, are not restricted when a robot
hand-arm cooperates with a patient’s unaffected arm. While
brain–machine interfaces using brain activity signals also exist, fine
operation and smooth movements are difficult due to limitations
in resolution and the complexity of the information (Kim et al.,
2015; Karunasena et al., 2021; Peng et al., 2022). Furthermore, these
systems tend to be bulky, making them impractical for patients
with a single upper-limb dysfunction to carry and use in daily
life. Invasive methods also carry surgical risks, making them less
accessible. There is a voice-based method (Poirier et al., 2019), but

all the methods described so far, including voice-based, require
complex operations to control the robot hand and its position,
orientation, and so on. When both upper limbs are affected, it is
effective to operate a robot hand-arm to perform tasks, even if
it takes a long time. However, for patients with a single upper-
limb dysfunction, smooth interaction between the robot hand-arm
and the patient is desirable, as their other arm functions normally.
Methods to operate a robot hand-arm without requiring complex
operations currently include teaching playback, object recognition-
based pick-and-place, and automatically generating movements
for instructed tasks (Ahn et al., 2022; Wohlgemuth et al., 2024;
Shahria et al., 2024). However, these methods are designed for the
robot hand-arm’s independent operation. In these approaches, it is
difficult to reflect human intent in the robot’s movements during
the task, making it difficult to coordinate with the unaffected
arm during tasks. As described above, conventional robot hand-
arms for persons with upper-limb dysfunctions are designed for
individuals with bilateral upper-limb dysfunction, and tasks are
performed only by the robot hand-arm. No method has been
designed to support patients with a single upper-limb dysfunction,
and there is no method that enables smooth coordination with
the unaffected arm. Figure 1A summarizes the issues faced by
conventional methods for cooperative work with the unaffected
arm. This study aims to address these issues and achieve smooth
cooperative work between the robot hand-arm and the unaffected
arm according to the patient’s intention.

For the robot hand-arm to be able to replace the paralyzed
arm and perform cooperative tasks with the unaffected arm,
it should move according to the user’s intention, similar to a
body part, and simultaneously perform the corresponding actions
alongside the unaffected arm. For a robot hand-arm to perform
such actions, it is necessary to input information that reflects the
user’s intention for movement in cooperative work involving both
hands. If the robot hand-arm can automatically perform support
actions based on this input information, smooth cooperative work
can be achieved. On the other hand, this information input
should not disturb the user’s activities, such as unaffected arm
and head movements. In this study, the robot hand-arm served
as a replacement for the paralyzed arm. Therefore, as long as
the information reflects the intention to move obtained from the
paralyzed arm, it is possible to input intuitive intention information
according to the motion that the user desires the robot hand-arm
to perform without disturbing the user’s other physical movements.
Although the patient’s paralyzed arm is unable to perform tasks
because its motor functions are limited owing to the paralysis, it
is possible to capture the paralyzed arm’s intention to move from
the bioelectrical signal (BES) that communicates the intention to
move from the brain (Sankai, 2011; Saita et al., 2018). Additionally,
since cooperative work involves actions performed by one arm
in conjunction with the other, information on corresponding
actions can be obtained from the motion of the unaffected arm
during tasks. Furthermore, using voice information, the tasks
and detailed movements that the user wants to perform can be
captured without limiting the patient’s movements, covering cases
where movement intentions or detailed movement information
are difficult to capture with the BES of the paralyzed arm or the
movement information of the unaffected arm. By using BES, motion
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FIGURE 1
Issues of conventional methods for cooperative work with the unaffected arm and solution by the proposed method. (A) Conventional methods. (B)
Proposed method.

information from the unaffected arm, and voice information, it is
possible to realize robot hand-arm movements according to the
user’s intentions. Therefore, we propose a cybernic robot hand-arm
that is connected to the user via this information and functions
according to the user’s intention information with a combination
of voluntary and autonomous control. This allows the autonomous
execution of movements such as fine adjustment of gripping
force and hand movement corresponding to the task (Figure 1B).
By incorporating the user’s body information and motor control
functions into the control system, the cybernic robot hand-arm
can become part of the user’s body and smoothly perform tasks
alongside the unaffected arm, reflecting the user’s intentions. Even
intention information that is not applicable to detailed operations
can be used as input in such a control system. Moreover, if
a cybernic robot hand-arm can learn the intention information
input to the system and the support actions according to the task
during application in daily life, it will be possible to smoothly
support various cooperative tasks that are repeatedly performed in
daily life.

The purpose of this study is to propose and develop a cybernic
robot hand-armwith the following features to address the difficulties
faced by patients with a single upper limb dysfunction in performing
daily tasks: 1) input of BES that reflects the intention to move
from the paralyzed arm, motion information from the unaffected
arm, and voice-based intention information; 2) autonomous control
of support movements according to the unaffected arm and work
phase; 3) a control system that integrates voluntary and autonomous
control by combining 1) and 2) allowing for smooth work support
in cooperation with the unaffected arm, reflecting intention as
a part of the body; and 4) a learning function to provide such
work support across various tasks in daily use. We confirmed
the feasibility and usefulness of the proposed method through a
pilot study involving three patients.

2 Cybernic robot hand-arm

2.1 Overview of the proposed method

The proposed system is not a substitute for the patient’s difficult
bimanual tasks but instead supports these tasks in cooperation with
the unaffected arm, complementing the role of the paralyzed arm.
We define “work support” as the support provided for bimanual
tasks in cooperation with the unaffected arm. The features of the
proposed method are as follows: 1) input of BES that reflects the
intention to move from the paralyzed arm, motion information
from the unaffected arm, and voice-based intention information;
2) autonomous control of support movements according to the
unaffected arm and work phase; 3) a control system that integrates
voluntary and autonomous control by combining 1) and 2), allowing
for smooth work support in cooperation with the unaffected arm,
reflecting intention as a part of the body; and 4) a learning
function to provide such work support across various tasks
in daily use.

Wefirst developed a robot hand-arm systemcapable of acquiring
and linking the information on the user’s intentions and movements
(Figure 2A). A sensor system was installed to measure the BES of
the paralyzed arm as intuitive intention information reflecting the
paralyzed arm’s intention to move (Figure 2A(a)). We incorporated
a sensor system in the robot hand to capture the movement
information for the unaffected arm, considering the characteristics
of cooperative work where both hands interact with an object.
These include tactile force sensors to detect the direction of force
applied by the unaffected arm on the object gripped by the system
and distance sensors to capture the motion of the unaffected arm
moving the work object closer to or away from the system’s hand
(Figure 2A(b) (c)). Additionally, to cover detailed movement and
task information that may be difficult to capture through the BES
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of the paralyzed arm or movement information from the unaffected
arm, we also developed a voice recognition unit (Figure 2A(d)).
We developed a portable robot hand-arm system equipped with
these sensor systems that is about the same size as a human and
can be used for cooperative work with the unaffected arm in
daily life.

Cooperative work involving both hands comprises movement
phases and phase shifts, such as moving, gripping, and releasing
one hand in correspondence and coordination with the other
hand. Therefore, we developed a work support learning and control
function. The system learns to support new tasks by working with
the user through an operating function that does not require the
unaffected arm (Figure 2B(1)). The system divides the support
actions into movement phases and learns the phase-shift conditions
from the sensor information about the user’s intention and motion
(Figure 2B(2) (3)). During the learned task support, when the input
of the user’s intention information via BES from the paralyzed
arm, unaffected arm’s motion, and voice is determined to satisfy
the phase-shift condition (Figure 2C(1) (2)), phase shifts and
corresponding actions are performed at any time (Figure 2C(3)).
This enables the system to autonomously perform learned support
actions through voluntary phase shifts based on input related to
the user’s intentions and movements, thereby realizing seamless
cooperative work and work support that correspond to and are
linked to the user’s intentions and the unaffected arm without
requiring detailed operations. The key feature of this method is that
by incorporating the user’s physical information and motor control
function into the control system—such as BES from the paralyzed
arm and motion information from the unaffected arm—the system
becomes part of the user’s body and can smoothly perform
cooperative work with the unaffected arm through autonomous
motions that reflect the user’s intentions.

Details of the robot hand-arm system are provided in
Section 2.2, while details of the learning and control function are
described in Section 2.3.

2.2 Robot hand-arm system

This section describes the reasons for determining the
specifications and provides details of the hand-arm and sensor
systems shown in Figure 2A.

2.2.1 Robot hand-arm
The specifications of the robot hand-arm were determined

assuming the support of a tabletop for the patients. The paralyzed
side of the patient is vulnerable to joint dislocation due to muscle
weakness and relaxation, as well as sensory disturbances such as
numbness and pain (Raghavan, 2015). Consequently, the robot
hand-arm was designed to be placed on a tabletop to accommodate
these factors. It can be easily attached there with a clamp. To
ensure portability and compatibilitywith the unaffected armwithout
obstructing surrounding objects or limiting the workspace, the arm’s
size is approximately the same as a human arm. This enables the
robot to be applied to the movements performed by the paralyzed
side as well as to the living environment where the space is already
available for work with both hands. Assuming work support for a
patient whose unaffected arm became the dominant hand, the arm

part of the device has six degrees of freedom to support work in
various positions and postures, and the hand part has two sets of
two fingers facing each other to enable pinching with two fingers
and stable grippingwith four fingers, enabling the system to perform
tasks that are mainly performed by the non-dominant hand such
as gripping, fixing, and moving objects. An analysis of functionality
and disability in everyday life using the International Classification
of Functioning, Disability, and Health (ICF) revealed that lifting
items weighing 0.4 kg or more accounts for approximately 10%
of lifting actions in daily life (Shiraishi et al., 2010). Hence, if
the system can lift an object weighing 0.4 kg, approximately 90%
of daily activities can be performed. In this study, we included
a 500-mL PET bottle as a work object, necessitating a payload
capacity of 0.6 kg. Specialization for the targetedmovements and the
monocoque structure have enabled the development of a compact
and lightweight system with a reach of 619 mm and a total weight of
2.9 kg, including the sensor system.

2.2.2 Sensor system for capturing intentions and
motion information

The proposed method employs a control system that combines
voluntary and autonomous control for performing movements in
coordination with the unaffected arm, using, as input, information
that reflects the intention to move both hands cooperatively.
We determined the specific intention and motion information to
be acquired and developed and integrated a sensor system for
its acquisition, considering the characteristics of patients with
a single upper-limb dysfunction and cooperative work with the
unaffected limb.

In this study, the robot hand-arm served as a replacement for
the paralyzed arm. Therefore, as long as the information we utilized
reflected the intention to move obtained from the paralyzed arm,
it would be possible to input intuitive intention information that
follows the motion that the user wants the robot hand-arm to
perform without disturbing the user’s other physical movements.
Although the patient’s paralyzed arm was unable to perform tasks
because itsmotor functions were limited owing to paralysis, it would
be possible to capture the paralyzed arm’s intention to move from
the ability of the BES to reflect the intention to move from the
brain (Sankai, 2011; Saita et al., 2018). Even when paralysis makes
jointmovement difficult, it is possible to detect weak neuromuscular
activity from the BES and estimate the intention tomove (Saita et al.,
2018). The BES that reflects the intention to move from the user’s
brain to the target part of the body can be measured by attaching
electrodes to that part for which the system wants to estimate the
user’s intention to move. Therefore, a BES measurement circuit is
installed inside the system to estimate the intention to move the
paralyzed arm (Figure 2A(a)).

Additionally, since cooperative work involves actions performed
by one arm in conjunction with the other, information on
corresponding actions can be obtained from the motion of the
unaffected arm during tasks. This information can be acquired by
attaching sensors, such as motion sensors, to the unaffected arm.
However, it is difficult for the target patients to attach sensors to
the unaffected arm by themselves. Although placing a sensor in the
working environment to capture the movements of the unaffected
arm is another possible approach, in order to reduce the number
of items to carry and the effort required for setup, we considered
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FIGURE 2
(A) Overview of the cybernic robot hand-arm. (B) Overview of the work support learning that reflects the user’s intention and cooperates with the
unaffected arm. (C) Overview of the work support based on learned data that cooperates with the unaffected arm according to the user’s intentions.

a method that could be completed with just the hand-arm system.
Leveraging the characteristic of cooperative work where both hands
interact with the target object, we developed a sensor system that

acquires the motion information of the unaffected arm through the
object via the robot hand. For situationswhere the system is gripping
an object, a tactile force sensor capable of measuring force and the
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center of force (COF) (Toyama et al., 2020) is embedded in the tip
link of each robot finger to detect how the gripped object is pulled
by the user’s arm (Figure 2A(b)). The finger surfaces are made of
gel sheets with a human skin-like softness, and the surfaces are
coated with polyurethane resin with a high coefficient of friction. By
capturing movements of the COF on the surface of each of the two
opposing fingers caused by the gel-sheet deformation, the systemcan
detect the direction of the force applied by the unaffected arm to the
gripped object, such as rotation or pulling movements. This allows
it to capture the movement information of the unaffected arm that
cannot be visually detected. We confirmed that this method enables
the acquisition of specific movements of the unaffected arm that
are useful for the cooperative work between the robot’s hand-arm
and the user’s (Toyama et al., 2019). This finger with the sensor also
provides flexible contact with the object and adjusts the gripping
force. For situations where the unaffected arm is gripping an object,
distance sensors are mounted between the two fingers facing each
other to capture the motion of the unaffected arm moving the object
closer to or away from the system’s hand (Figure 2A(c)). Dynamic
changes in distance values capture the motion of the unaffected
arm. These sensors are also used to determine the gripping form
according to the object. The system determines the gripping form
as follows: if both distance values fall within the system’s gripping
range, four fingers are used for gripping; if only one distance value
is within the range, two corresponding fingers are used.

Some intentions and fine movement information may be
difficult to capture from the BES of the paralyzed arm or the
motion information of the unaffected arm. In such cases, voice
input can cover such information without limiting the patient’s
movements; it can also recognize detailed information such as what
kind of task support or supportive actions the user is requesting,
as well as the name of the object to be handled. Therefore, we
developed and integrated a voice recognition unit (Figure 2A(d))
which includes a microphone, speaker, and language processing
system capable of recognizing input speech information and reading
out generated character strings. The unit also provides feedback to
the user, such as requesting work support instructions for unlearned
tasks. Google assistant SDK was utilized for speech recognition and
text-to-speech.

2.3 Learning and control function for work
support that reflects intention and
cooperates with the unaffected arm

Patients face difficulties in performing daily tasks, with
variations among them in the types of tasks, target objects, and
required support actions. Sensor information obtained during work
support, such as movement data from the unaffected arm and BES
readings from the paralyzed arm, is assumed to differ based on the
user’smotion anddegree of paralysis. To address these, we developed
a function that enables the system to learn support actions that
constitute work support and their implementation conditions from
sensor information about the user’s intentions and movements; it
does this by actually performing cooperative work while the user is
teaching support actions with an operation function which does not
rely on the unaffected arm.

The overview of work support learning is depicted in Figure 2B.
Learning is conducted for each individual task, such as opening a
PET bottle. The task name is recognized through the user’s voice
input, and if the task has not yet been learned, the learning process
begins. The learning is conducted as the user performs the task
with the system using an operating function that does not rely
on the unaffected arm (Figure 2B(1)). This operating function is
achieved using voice and BES from the paralyzed arm, with further
details provided in the following subsection. The taught series of
support actions is divided into three movement phases based on
the type of movement: move, grip, and release (Figure 2B(2)). For
the phase-shift conditions for each movement phase that constitute
the learned work support, the following sensor information on the
user’s intention and motion can be utilized within this learning
framework: BES from the unaffected arm, COF on the surface of
the robot finger and distance information between the robot hand
and the work object as motion information of the unaffected arm,
and voice information (Figure 2B(3)). The change in the sensor
information before and after each movement phase serves as the
phase-shift condition. The details are provided in the following
subsection. Consequently, the user’s voice and the BES of the
paralyzed arm are used in two situations: operation for motion
teaching and conditions for performing learned support actions.

The overview of work support after learning is depicted in
Figure 2C. The selection of learned data is based on the task name
recognized from voice information. During work support, the BES
of the paralyzed arm, motion information of the unaffected arm,
and voice information are collected as information on the user’s
intention andmotion, as in the case of learning (Figure 2C(1)). Once
this information meets the phase-shift condition (Figure 2C(2)),
the phase shifts and corresponding actions (support actions)
are executed at any time (Figure 2C(3)). This allows for learned
support actions to be executed through a voluntary phase shift
based on the user’s intentions and movements, thereby realizing
seamless cooperative work and work support that correspond to
and are linked to the user’s intentions and the unaffected arm
without necessitating detailed operations. By incorporating the
user’s physical information and motor control function into the
control system, such as the BES from the paralyzed arm and the
motion information of the unaffected arm, the system becomes
a part of the user’s body and can smoothly perform cooperative
work with the unaffected arm to reflect intention as a part of the
body. Moreover, by learning the intention information input to
the system and the support actions according to the task during
application in daily life, it becomes possible to smoothly support
various cooperative tasks that are repeatedly performed in daily life.

In the following subsections, we describe in detail the operating
function that does not rely on the unaffected arm, the division
of support actions into movement phases, and the phase-shift
condition learning in this function.

2.3.1 Operating functions using information
about intention

When teaching support actions to the system, the unaffected
arm of the patient cannot be utilized, as it works in conjunction with
the system. Additionally, the user must be capable of operating the
system in detail, including controlling the movement position and
posture of the system’s hand. Furthermore, intuitive operation based
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on intention to move the paralyzed arm is considered beneficial, as
the systemperforms themovements of the paralyzed side.Therefore,
we developed a task-based operating function for moving, gripping,
and releasing the system using voice information that enables
detailed movement instructions and BES that reflect the intention
to move the paralyzed arm as an operating method that does not
require the unaffected arm. The force during the gripping operation
is taught and set at the start of the work support teaching. This force
is learned using the previously developed gripping force teaching
function (Toyama et al., 2017). The details of this function will be
provided in Section 2.3.4.2.

In the voice operation, the desired operation’s content is input
directly, enabling accurate and detailed operation. The system
also has a set of format input rules, such as “move 10 cm
forward,” which require input of a specific movement amount
and direction, accepting only inputs that conform to these rules
and thus preventing actions that result from incorrect input or
misrecognition. In addition, commands corresponding to expected
movement requests, such as “Come in front of me,” are provided.
During voice recognition, the LED blinks gradually, and the system
notifies the user with a voice message when recognition fails or
when anunregistered command is input. In the operation usingBES,
the system can be operated according to the user’s own intention
to move by connecting the system with the movement intentions
from the brain–nervous system. This enables intervention in the
motion of a task-based robot hand-arm according to the user’s
intention information based on the BES and facilitates a more
intuitive operation. In this study,we initially assumed that the system
would be applied to patients with severe paralysis who can speak
and determine the use of voice information to specify detailed
tasks and operations. The use of the BES in the paralyzed arm was
adapted depending on the patient. Even if the signal is weak, the
part of the signal reflecting voluntary movement can be used to
operate a corresponding part of the system; for example, the signal
in the flexion/extension of the fingers will be used to trigger the
gripping/releasing operation of the system. Even in cases where
operation by a BES is difficult, it is possible to perform all operations
using voice commands.

2.3.2 Division of support actions into movement
phases

The series of support actions is divided into individual
movement phases based on the three phases of moving, gripping,
and releasing by separating them into different types of movement.
For the “move” phase, the following rules were added to the division,
considering the characteristics of the system operation:

(A) Owing to the characteristics of the voice-operated function
developed in this study, only one direction ofmovement can be
indicated at a time; therefore, the final position and posture are
more crucial than the movement path. Thus, the continuous
part of the moving action is divided into a single movement
phase, where the final position and posture are set as the
target position and posture. In work support based on the
learned data, movement to the target position and posture is
executed using the shortest path that considers the system’s
range of motion.

(B) Even when the moving action is continuous, there may be
situations where the robot is required to stop at a certain

position. Therefore, when the user’s unaffected arm interacts
with the object gripped by the system, the user is prompted
to input a stop command: “Keep it.” When a stop command
is input, the movement is divided into phases before and after
the stop, even if the movement type before and after the stop is
“Move.”

The specific motion information for each movement phase to
be learned is as follows: for movement, the target position and
orientation of the hand; for gripping, the type of grip (two- or four-
finger) and the grip force value; for releasing, the hand opening
with full finger extension. Since the movements and positional
relationships that facilitate the same task are generally consistent,
the system provides identical support actions for each task. This
consistency allows the user to easily anticipate the movements,
contributing to smooth coordination. Furthermore, since the tasks
are performed together with the user’s unaffected arm, slight
misalignments can be compensated for by the unaffected arm. The
important point is that these support actions during the movement
phases are performed according to the user’s intentions, such as the
intention to move the paralyzed arm and the unaffected arm.

2.3.3 Phase-shift condition learning
Regarding the BES of the paralyzed arm, a signal that reflects

the user’s intention is used depending on the degree of paralysis.
Therefore, as a default learning, we developed a learning function
for the phase-shift conditions mainly based on the movement
information of the unaffected arm and voice so that it can be applied
regardless of the user. For user-tailored learning, we developed
a learning function that allows the BES of the paralyzed arm to
correspond to phase-shift conditions in combinationwith or in place
of the default learning conditions. In actual operation, the degree to
which a signal reflecting intention can be obtained from the BES of
the paralyzed arm is first checked, and the information used for the
phase-shift condition is then determined according to the user.

2.3.3.1 Default learning
In default learning, phase-shift conditions primarily rely on

sensor information from the movement of the unaffected arm, such
as the distance data DS between the robot hand and the work object
and the COF on the surface of the robot finger. DS reflects the
movement of the unaffected arm, bringing the work object closer
to or away from the system’s hand. COF indicates the direction in
which force is applied by the unaffected arm to the object gripped
by the system. The system compares sensor information before and
after each movement phase, learning phase-shift conditions based
on the changes in sensor values. The changes in DS and COF before
and after the start of the movement phase—ΔDS and ΔCOF—are
calculated and determined using Equations 1 and 2, respectively.

∆DS = {
DSphase_shi ft −DShold (|DSphase_shi ft −DShold| > ∆DSthreshold).
0 (else)

(1)

∆COF = {
COFphase_shi ft −COFhold (|COFphase_shi ft −COFhold| > ∆COFthreshold).
0 (else)

(2)
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FIGURE 3
The timing of sensor values is held for phase-shift condition learning.
(A)In the case of phase shift from moving, the sensor values are held at
the start of movement. (B)In the case of phase shift from
gripping/releasing, the sensor values are held when the action is
completed.

Here, DSphase_shift and COFphase_shift are the values measured
during the phase shift, and DShold and COFhold are the values
measured and held before it. ΔDSthreshold and ΔCOFthreshold are
thresholds to determine if each sensor value has changed and is
larger than the measurement noise of each sensor. The hold for each
sensor value is based on the following rules:

(A) In the “move” phase, each sensor value is held at the start of
the movement because a transition condition to the next phase
may occur at the completion of the movement; for example, if
there is an object within the grip range after themovement and
the DS value is decreasing (Figure 3A).

(B) In the “grip“/”release” phase, it is assumed that the contact
position between the robot finger surface and the gripped
object changes during the grip/release movement of the
system, leading to potential changes in the COF. In this
study, to capture the changes in the COF caused by the
user’s unaffected arm movement, we removed the component
of the COF change caused by the system movement
by holding each sensor value at the completion of the
grip/release movement (Figure 3B).

TheΔCOF is captured as aCOF vector (ΔCOFx,ΔCOFy) with the
COF hold-value as the origin (Figure 4).TheCOFs of a pair of facing
fingers were used to learn the phase-shift condition. This is because,
in both cases of two- and four-finger gripping, measuring the COFs
in a pair of two fingers enables the system to capture the direction
in which the unaffected arm is applying force to the gripped object.
For two-finger gripping, the system utilized the COF values from
tactile force sensors mounted on the fingers to learn the phase-shift

FIGURE 4
COF vector with the COF hold value as the origin.

conditions. Similarly, for four-finger gripping, the COF values from
tactile force sensors on the upper two fingers were used for learning.

Since there is assumed to be a certain degree of variability in
the movement of the unaffected arm, which acts as the phase-
shift condition, a value that allows a certain degree of error in the
magnitude of the change for ΔDS and in the norm and direction for
the COF vector is learned as the phase-shift condition; additionally,
if ΔDS and ΔCOF for all sensors at the phase shift are 0—no change
observed in any sensor value—the voice command “next” is learned
as a phase-shift condition. During the work support after learning,
when the phase-shift condition is based on a voice command, the
LED ring at the base of the system turns orange to notify the user.
Furthermore, the first and lastmovement phases of thework support
involve movement from the standby position (home position) and
returning to it, respectively. Therefore, the first movement phase
is learned to automatically phase shift when the work support
starts, and the last movement phase is learned when the previous
movement phase is completed. This process enables automatic
learning of phase-shift conditions from sensor information on
human intention and movement obtained during work.

2.3.3.2 User-specific learning
In default learning, the phase-shift condition to the movement

phase is mainly based on sensor information regarding the motion
of the unaffected arm. Additionally, for users whose BES reflects
their movement intention and can be measured in their paralyzed
arm, the framework allows the user to adapt the BES to the
phase-shift conditions, either in combination with or by replacing
the default learning conditions. If the BES is difficult to detect
owing to paralysis, it cannot be used for detailed operations, such
as moving the system’s hand position. However, by applying the
intention information from the paralyzed arm’s BES to the phase-
shift conditions for the movement phases that constitute learned
work support, cooperative work basedmainly on the paralyzed arm’s
movement intention becomes possible.

2.3.4 Other function details
2.3.4.1 Detection of intention to move from the paralyzed
arm’s BES

In this study, we focus on patients with severe paralysis,
detecting and utilizing the intention of flexion/extension
movements from areas where signals corresponding to their
intention can be confirmed. In the BES of the paralyzed arm, it
is expected that, in addition to weak signals, 1) sparse signals
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FIGURE 5
(A,B) Expected BES of the paralyzed arm. (A',B') Detection method for intention to move based on the BES using the developed system.

(Figure 5A) and 2) sudden involuntary signals (Figure 5(b1)) as
well as signals from the antagonistic muscles (Figure 5(b2)) will
be present (Raghavan, 2015).

To address 1), a first-order lag system-based filter, which uses
the signal peak as input, is utilized to interpolate the sparse signals
into continuous signals while preserving the characteristics of the
voluntary signals (Figure 5A') (Masahiro et al., 2009). The intention
detection considers the involuntary signals mentioned in 2). First, as
a response to the involuntary signals from the antagonistic muscles,
a candidate intention, FEcandidate, is determined by considering the
balance of flexion/extension signals using Equation 3.

FEcandidate =
{{
{{
{

″Flexion″(V flexion > Fthreshold ∩ G flexionV flexion > GextensionVextension)
″Extension″(Vextension > Ethreshold ∩G flexionV flexion < GextensionVextension).
″None″(else)

(3)

Vflexion/extension represents the signals from the flexor/extensor
muscles, which have been interpolated into continuous signals.
F/Ethreshold is the threshold for detecting a signal increase that reflects
the intention to move, and Gflexion/extension is the gain for balance
adjustment. Then, as a response to the sudden involuntary signals,
the final estimation of flexion/extension intention is determined
based on sustained intentions derived from FEcandidate over a specific
period using Equation 4.

FEestimatied =
{{{{
{{{{
{

″Flexion″ (Ftime > Tthreshold)

″Extension″ (Etime > Tthreshold).

″None″ (else)

(4)

Here, Ftime andEtime represent the time duringwhich flexion and
extension were continuously estimated in FEcandidate, respectively,
and T threshold is the temporal threshold for the final estimation of
flexion/extension intention. Each parameter, including F/Ethreshold
and Gflexion/extension, is adjusted for each patient during the initial
application. Through the above process, detection of intention
to move based on the BES from the paralyzed arm (Figure 5B')
is achieved.

2.3.4.2 Grip force learning and control function
The gripping force is learned according to the task and object

using the previously developed gripping force teaching function
(Toyama et al., 2017) (Figure 6A). First, the system’s hand is moved
to a position which makes it easier to teach the gripping force using
voice commands. Then, when the user grips the object from above
the system’s hand and says “Remember,” the system memorizes
the sensor value measured by the tactile force sensor for the task
and object.

When the system grips an object, and the user’s unaffected
arm is involved, such as turning over the lid of a container, the
object is temporarily pressed against the system’s finger surface
depending on the direction in which the lid is turned over,
increasing the contact pressure on the system’s finger surface.
In such cases, a simple grip force control that keeps the force
constant causes the fingers to open to reduce the force or fail
to maintain the balance of forces, leading to the gripped object
being dropped. To address this issue, in addition to the normal
grip force control, a control system was added that memorizes
the finger movement angle when the target grip force is first
reached and limits the extension movement angle based on the
memorized angle (Figure 6B). This enables the system to prevent
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FIGURE 6
(A) State of grip force teaching and learning. (B) Overview of the developed grip force control for the cooperative work.

unintended release of the gripped object during cooperative work
because the motion angle at which the object is gripped is
maintained even when the work object is temporarily pressed
against the system’s finger surface by the motion of the unaffected
arm. In this case, the force applied to the work object temporarily
increases; however, it is considered an increase in the force necessary
to perform the work, such as when the lid of a container is opened
by turning it.

3 Experiments and results

To confirm the feasibility and usefulness of a cybernic robot
hand-arm in assisting the work of patients with a single upper-limb
dysfunction, we conducted a pilot study involving actual patients.
The study was carried out in accordance with the experimental
protocol approved by the ethics committee of CYBERDYNE, Inc.,
where the experiments took place. Prior to the experiment, all
participantswere briefed about the study and their informed consent
was obtained. In Section 3.1, we confirmed the feasibility of the
proposed method for learning cooperative work support with the
unaffected arm and providing work support based on the learned
data with the cooperation of three patients. To learn the phase-
shift conditions, we applied a default learningmethod that primarily
utilized the motion information of the unaffected arm, which is
applicable regardless of the degree of paralysis in the user’s arm. The
BES of the paralyzed arm was used as operational input to teach
the support movements, if available. In Section 3.2, we confirmed
the feasibility of work support based on learned data when a phase-
shift condition using the BES of the paralyzed arm was added as
user-specific learning. This experiment involved a patient for whom
the BES of the paralyzed arm was available. Finally, in Section 3.3,
as an effort to support daily tasks, we applied the system to
various daily tasks that a patient had difficulty performing, with
the cooperation of that patient. We aimed to determine whether
the system is capable of supporting a range of tasks encountered in
daily life.

3.1 Experiment on learning and
implementation of work support in
cooperation with the unaffected arm

3.1.1 Design of the experiment
To confirm that the proposed system can learn work support

in cooperation with the unaffected arm and provide work support
based on the learned data, we conducted experiments involving
upper-limb work support for an individual with paralysis in one
arm. The tasks were “opening a medicine package,” “opening
a PET bottle,” and “eating a jelly cup,” which are difficult for
individuals with a single upper-limb dysfunction because they
require both hands (Sköld et al., 2004; Mancuso et al., 2015). To
maintain a constant task difficulty level, participants received
specific instructions regarding the task details, such as tilting
the jelly cup as its contents decreased. As preparation for the
experiment, the grip force for each task was taught using the grip
force learning function (Toyama et al., 2017), which was developed
and confirmed for its basic performance. Additionally, the BES of
finger flexion/extension from the paralyzed arm were measured and
utilized to trigger the grip/release operation of the robot hand if it
was available as a signal corresponding to the intended movements.
When it was difficult to use the signal as an intention signal, voice
was used for all operations.

In the experiment, we initially confirmed that the participant
could operate the system using intention information via voice and
theBES of the paralyzed arm to execute the target taskwhile teaching
support actions.We also confirmed that the system could learn these
support actions and phase-shift conditions corresponding to the
user and the task using the default learning method. Subsequently,
we confirmed that the system could cooperate with the unaffected
arm to perform the target task by providing work support based
on the learned data. The work support based on the learned data
was implemented three times for each task. Lastly, we conducted
a subjective evaluation of the system and its performance using a
questionnaire. The questionnaire details, along with the results, are
described in the following section.
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3.1.2 Participants
Theexperimentwas conductedwith three patientswith paralysis

of one upper limb.
Participant A was a 27-year-old man with severe paralysis of the

left upper limb due to a brachial plexus injury. Although he could
slightly move his left-hand fingers, he was unable to use them for
functional tasks.TheBES in finger flexion/extension of the left upper
limb exhibited a weak and sparse signal; however, it corresponded to
his intention, confirming the system’s ability to detect his intention
to move, thus enabling the operation of the system. Consequently,
the BES in the finger flexion/extension of the left upper limb was
utilized as a trigger for the grip/release operation of the robot hand,
while voice was employed for other operations.

Participant B, a 56-year-old man, experienced right hemiplegia
due to the aftereffects of cerebral hemorrhage, resulting in severe
paralysis of the right upper limb. Despite attempts, he was unable
to move his right upper limb. Additionally, he reported a slight
slurring of the tongue following the illness. No signal corresponding
to intention was detected in the BES of the right-hand fingers
during flexion/extension. It was confirmed that the participant could
execute all system operations using his voice. Consequently, voice
was employed for all operations.

Participant C, a 68-year-old man, had right hemiplegia due to
cerebral infarction, resulting in right upper limb paralysis. Although
he could move his right upper limb, his grip strength was weak,
and he experienced difficulty in movement. He also reported
approximately 20% lower speech ability compared to his normal
state. The BES in the finger flexion/extension of his right upper limb
exhibited a signal corresponding to his intention, confirming the
system’s ability to detect his intention to move and thus enabling
the operation of the system. Additionally, it was confirmed that the
participant could operate the system using voice. Consequently, the
BES in finger flexion/extension of the right upper limb was utilized
as a trigger for grip/release operation of the robot hand, while voice
was employed for other operations.

Participants B and C had scheduled rehabilitation sessions
before or after the experiment. To minimize their burden, the
experiment was divided into 3 days, with each day focusing
on one task.

3.1.3 Results
3.1.3.1 Learning of work support

It was confirmed that each participant could successfully
complete the target task while operating the system and teaching
support actions using intention information from voice and the
BES of the paralyzed arm. Additionally, it was confirmed that
the system could learn support actions and phase-shift conditions
corresponding to the participants and tasks. An example from
Participant A is provided below.

Figure 7 shows the experiment for the “eating a jelly cup” task.
First, the participant verbally input the name of the task for which
he wanted work support (Figure 7A). As work support had not been
learned, the system prompted the participant to teach the support
action (Figure 7B). Next, the participant instructed the system to
move its hand to the open work position, which the system executed
(Figure 7C). The unaffected arm then brought the jelly cup into the
gripping range of the system. Subsequently, the intention to flex the
fingers was detected by the BES of the paralyzed arm (Figure 7D),

and the system performed the gripping action. Adjusting to the
size and position of the jelly cup, the system’s four fingers gripped
it firmly (Figure 7E). The participant then instructed the system
to hold the jelly cup in that position (Figure 7F) and opened it
using the unaffected arm (Figure 7G). Following that, the participant
instructed the system to move the jelly cup close to his mouth
to facilitate eating, which the system executed (Figures 7H, I).
Afterward, the participant instructed the system to hold the jelly
cup in position (Figure 7J) and ate the jelly using a spoon with the
unaffected arm (Figure 7K). As the jelly cup approached emptiness,
the participant instructed the system to tilt the cup and hold it in that
position (Figures 7L, M). Upon finishing the jelly, the participant
instructed the system tomove the cup to a positionwhere it would be
easier to receive it (Figures 7N, O). As the unaffected arm received
the cup, the intention to extend the fingers was detected from the
BES of the paralyzed arm (Figure 7P), and the system released the
cup (Figure 7Q). After the participant received the cup, the system
was instructed to complete the learning (Figure 7R); the system’s
hand returned to its initial position, completing the work support
and learning process.

Figure 8 shows the sensor data measured during the
experiment, and Table 1 lists the learned data obtained. From this
learning, the taught sequence of support actions was divided into
seven phases: Move A, Grip A, Move B, Move C, Move D, Release A,
and Move E. The phase-shift conditions for the first and last phases,
Phases 0 (Move A) and 6 (Move E), respectively, were learned to
automatically perform the phase shifts according to the developed
learning algorithm. For the phase-shift condition to Phase 1 (Grip
A), the movement of the unaffected arm carrying the jelly cup
into the gripping range of the system was learned as a decrease
in the distance to the working object at distance sensors 1 and
2. For the phase-shift conditions to Phases 2 (Move B), 3 (Move
C), and 4 (Move D), voice commands were learned as conditions
because no change was detected in the sensor information before
and after the phase shift. For the phase-shift condition to Phase
5 (Release A), the force exerted by the unaffected arm in the
direction of receiving the jelly cup was learned as the movement
of the COF measured on the surface of the robot finger gripping the
jelly cup.

3.1.3.2 Work support based on the learned data
It was confirmed for each participant that the system executed

each support action in response to and in conjunction with the
work phase and the movement of the unaffected arm. Phase shifts
to each movement phase were based on the learned data and
sensor information, ensuring that the participant could complete
the target task. All participants were able to successfully complete
all three trials for each task. Table 2 illustrates a comparison
of work time with and without teaching support. Work time
significantly decreased with the implementation of work support
based on learned data. An example from Participant A is
provided below.

Figure 9 shows the work support of the “eating a jelly cup” task
based on the learned data shown in Table 1, and Figure 10 shows
the sensor data measured during the work. First, the participant
entered the name of the task for which he wanted work support
through voice input (Figure 9A). As work support for the target
task had already been learned, it was initiated (Figure 9B). Phase 0
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FIGURE 7
The work support learning the “eating a jelly cup” task. (A) Participant inputs task name; (B) System prompts for support action teaching; (C) Participant
instructs to move hand to open work position; (D,E) Intention to flex fingers is detected by BES of paralyzed arm, and system grips jelly cup; (F)
Participant instructs to hold cup; (G) Cup is opened with unaffected arm; (H,I) Participant instructs to move cup close to mouth; (J) Participant
instructs to hold cup in position; (K) Participant eats jelly; (L,M) Participant instructs to tilt cup and hold it in position as it nears emptiness; (N,O) Upon
finishing jelly, participant instructs to move cup to position for easier receiving; (P,Q) Intention to extend fingers is detected by BES, and system releases
cup; (R) Participant instructs to finish learning.

(Move A) was performed automatically (Figure 9C), and the phase
shift to Phase 1 (Grip A) was performed when the jelly cup was
brought into the gripping range of the system by the unaffected
arm and the distance to the work object in the two distance sensors
fell below a threshold value set based on learned data (Figures 9D,
10A). Phase shifts to Phases 2 (Move B), 3 (Move C), and 4 (Move
D) were triggered when the voice command “Next” was input at
the intended timing by the participant (Figures 9E–G, 10B–D. The

participant confirmed the voice command’s effect by observing the
orange illumination of the system’s LED. Phase shift to Phase 5
(Release A) occurred when the participant attempted to receive the
jelly cup with the unaffected arm; the norm of the COF vector due
to the COF movement exceeded the threshold, and the angle was
within the threshold (Figures 9H, 10E). Finally, a phase shift to Phase
6 (move E) was automatically performed (Figure 9I). Thus, each
support action corresponded and linked with the work phase and
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FIGURE 8
Sensor data measured in learning the “eating a jelly cup” task. The red circles show the characteristic changes in sensor values observed when the next
action occurs.

movement of the unaffected armbyphase shifting to eachmovement
phase based on learned data and sensor information, enabling the
completion of the target work.

3.1.3.3 Subjective evaluation by questionnaire
Table 3 presents the results of a questionnaire administered

after the experiment. Each item is rated on a 5-point scale, with
“1” indicating strongly disagree and “5” indicating strongly agree.
Participant B provided detailed answers, including decimal points
for some of the evaluation items, which were used in the evaluation.
The questionnaire survey confirmed that the system’s operation and
work time were generally highly evaluated in the work-support
learning experiment. Additionally, for the work support experiment
based on the learned data, high overall evaluations were obtained
for both work support and time. Furthermore, in both experiments,

participants A and C, who used BES for operation during learning,
experienced the system as if it were their own arm.

3.2 Experiment using a voluntary control
system in which the phase-shift function
using BES is added to the control system
after learning

When the BES are difficult to detect owing to paralysis, it
is difficult to use them for detailed operations such as adjusting
the system’s hand position, even though it is possible to estimate
movement intentions at a basic level, such as flexion/extension
and weakness/non-weakness. However, for the movement phases
constituting learned work support, intention information from
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TABLE 1 Learning result of the “eating a jelly cup” task with participant A.

Phase Movement Phase-shift condition

0 Move A
Position (350, 0, 30) [mm]
Posture (0, 90, 0) [deg]

Automatic

1 Grip A: 4.4 [N] ΔDistance1 ≦ −112 [mm]
ΔDistance2 ≦ −119 [mm]

2 Move B
Position (350, −100, 180) [mm]
Posture (0, 90, 0) [deg]

Voice command

3 Move C
Position (350, −100, 180) [mm]
Posture (0, 90, 30) [deg]

Voice command

4 Move D
Position (350, 0, 30) [mm]
Posture (0, 90, 0) [deg]

Voice command

5 Release A Norm1 ≧ 3.1 [mm]
Norm2 ≧ 2.0 [mm]
−57 ≦ Angle1 ≦ 3 [deg]
−62 ≦ Angle2 ≦ −2 [deg]

6 Move E
Position (250, 0, 400) [mm]
Posture (0, 90, 00) [deg]

Automatic

Position (x, y, z), Posture (Roll, Pitch, Yaw)

TABLE 2 Comparison of work time.

Participant A Participant B Participant C

WT [s] WLD [s] WT WLD WT WLD

Opening a medicine package 48 26 ± 2.2 (46%↓) 96 36 ± 4.5 (63%↓) 70 39 ± 5 (44%↓)

Opening a PET bottle 51 29 ± 0.5 (44%↓) 66 27 ± 1.7 (60%↓) 74 34 ± 2.1 (55%↓)

Eating a jelly cup 104 59 ± 1.7 (44%↓) 152 63 ± 2.5 (58%↓) 126 80 ± 0.9 (36%↓)

WT: Work time with teaching WLD: Work time with learned data, represented as mean ± standard deviation Numbers in parentheses indicate the reduction in time when comparing the mean
value of WLD to WT

the paralyzed arm’s BES regarding movement intentions, such as
moving, gripping, and releasing, can be utilized as the trigger for
phase shifts, even at a basic level. This allows for the provision of

work support based on the movement intentions of the paralyzed
arm. Therefore, we conducted a work support experiment where
the BES was incorporated into the phase-shift conditions for the
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FIGURE 9
The work support of the “eating a jelly cup” task based on the learned data. (A) Participant inputs task name; (B) Work support for target task is initiated;
(C) Move A is performed automatically; (D) Grip A is performed when cup is brought into system’s hand; (E–G) Move B, Move C, and Move D are
triggered by voice command “Next”; (H) Release A is performed as participant attempts to receive cup with unaffected arm; (I) Move E is performed
automatically.

learned data to confirm that phase shifts could be performed
according to the movement intention based on the BES of the
paralyzed arm and that work support could be provided in
cooperation with the unaffected arm according to the user’s
intention.

The experiment was conducted with the cooperation of
participant A, who had paralysis in his left upper limb due to
nervous system damage (see Section 3.1.2). In the subjective
evaluation of the system and work, questionnaire items related
to work support based on learned data were selected from
the evaluation items used in the experiment described in
Section 3.1. The learned data for the work support of “eating
a jelly cup” obtained in the previous experiment (Section 3.1)
was utilized for this experiment. For movement phases (Phases
2, 3, and 4), where voice commands were initially learned

as phase-shift conditions, the BES reflecting the intention to
move the paralyzed hand-arm position were used instead.
These captured the intention to move the fingers and wrist,
and the motion intention of flexion/extension was used as a
phase-shift condition. This decision was based on observations
from preliminary measurement tests, where small, complex
movements of the fingers and wrists were observed when
the participant was consciously attempting to move the hand
position of the paralyzed arm. Owing to the overlapping muscle
groups responsible for each movement, the same electrode was
used for measurement. The work support was implemented
three times.

Figure 11 shows the experiment andmeasured sensor data. Each
support action was performed in response to and in conjunction
with the work phase and movement of the unaffected arm,
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FIGURE 10
Sensor data measured in the work support of the “eating a jelly cup” task based on the learned data. (A) Phase shift to Phase 1 (Grip A) occurs when jelly
cup is brought into system’s hand and distance values fall below a threshold set based on learned data. (B–D) Phase shifts to Phases 2 (Move B), 3
(Move C), and 4 (Move D) are triggered by voice command “Next”; (E) Phase shift to Phase 5 (Release A) occurs as participant attempts to receive cup
with unaffected arm; the norm of the COF vector due to COF movement exceeds the threshold, and the angle is within the threshold.

TABLE 3 Questionnaire results of the experiment by participants. (five-grade evaluation).

Questionnaire Participant A Participant B Participant C

M, P, J M P J P M J

1. About work while teaching work support to the robot

1.1 Were you able to operate the robot as intended? 5 4 4 5 5 5 5

1.2 Do you think the working time is within the range that you can do in your daily life? 5 3 5 5 5 5 5

1.3 Did you feel that the robot was like your arm? 5 1 1 1 5 5 5

2. About work after teaching

2.1 Did the robot help you with the work as you intended? 5 3 5 3 5 5 5

2.2 Do you think the working time is within the range that you can do in your daily life? 5 3.5 5 4 5 5 5

2.3 Did you feel that the robot was like your arm? 5 1.5 1 1 5 5 5

M: opening a medicine package, P: opening a PET bottle, J: eating a jelly cup
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FIGURE 11
Measured sensor data in the work support with a control system with BES added as phase-shift conditions instead of the learned conditions(voice
command). (A–C) Phase shifts based on BES of paralyzed arm.

resulting in the completion of the target task in all trials. As
shown in Figures 11A–C, phase shifts to the movement phases with
phase-shift conditions based on the BES were performed when the
intention of flexion/extension was detected from the BES of the
fingers/wrist, reflecting the intention to move the hand position of
the paralyzed arm. For the BES of the paralyzed arm, the phase-
shift condition was the intention to flex or extend the fingers and
wrist. However, focusing on the motion intention of the wrist, it was
observed that the motion intention based on the BES during the
phase shift corresponded to the detailed movement content of the
system. During the movement to bring the gripped jelly cup close
to the mouth, the intention to flex the wrist to bring the paralyzed
arm’s hand close to the mouth was detected (Figure 11A). During
the wrist-tilting movement, the intention to flex the wrist of the
paralyzed arm was detected (Figure 11B). When the jelly cup was
lowered onto the desk, the intention to extend the wrist to lower
the paralyzed arm’s hand downward was detected (Figure 11C). The
average work time was 59 s, with a standard deviation of 1.7 s before
changing the phase-shift conditions from voice commands to BES;

however, in this experiment, it was significantly reduced to 44 s, with
a standard deviation of 0.9 s.

The results of the questionnaire after the experiment were as
follows. “Did the robot help you with the work as you expected?”
received a score of 5, “Do you think the working time is within the
range that you can do in your daily life?” received a score of 5, and
“Did you feel that the robot was like your arm?” also received a
score of 5. High scores were confirmed for work support and time.
Furthermore, the participant felt that the system was similar to his
arm. Additionally, the participant commented, “I felt as if the robot
was my arm more than in any other experiment I have done so far.”.

3.3 Effort to support daily tasks

By applying the system to various tasks with which the
participant had difficulties in daily life, in addition to the three
tasks targeted in Section 3.1, we confirmed that the system could
support a variety of tasks in the users’ daily lives. The experiment
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was conducted with Participant A’s cooperation.The following seven
tasks were deemed safe to perform with the system from among
the tasks with which the participant actually had difficulties in
daily life: 1) opening packaged bread, 2) putting toothpaste on
a toothbrush, 3) stapling papers together, 4) cutting paper with
scissors, 5) administering eye drops, 6) applying lip balm, and 7)
applying medicine. The system was applied to these tasks, and
it was confirmed that each task could be performed (Figure 12).
Considering the burden on the participant due to the large number
of tasks, the work support after learning was conducted once
for each task.

4 Discussion

Patients with a single upper-limb dysfunction face various
challenges, such as difficulty or impossibility in performing tasks
and overloading on one arm owing to their inability to use
the other arm. A robot hand-arm to replace the paralyzed limb
would be beneficial in addressing this fundamental problem.
However, conventional robot hand-arms for persons with upper-
limb dysfunctions have been designed for individuals with bilateral
upper-limb dysfunction, and tasks are performed only by the
robot hand-arm. None have been designed to perform cooperative
tasks with the unaffected arm of individuals with a single upper-
limb dysfunction. In conventional methods, there have been
issues such as restricting the physical movements necessary for
cooperative tasks that include the unaffected arm and the inability
to achieve smooth coordination with the unaffected arm in motions
that reflect the user’s intentions (Figure 1). In response to these
issues, this study proposed and developed a cybernic robot hand-
arm that functions based on intention information, utilizing a
control system that combines voluntary and autonomous control.
The system autonomously executes support actions (movement
phases) according to the user’s unaffected arm and the work
phase, using input of BES from the paralyzed arm and the
movement information of the unaffected arm as the information
that reflects the intention to move in cooperative work involving
both hands, as well as voice intention information. This would
enable seamless cooperative work andwork support that correspond
to and are linked to the user’s intentions and the unaffected
arm without requiring detailed operations. The system learns
such work support for various tasks in daily use. Consequently,
we achieved support for various upper-limb tasks for people
with a single upper-limb dysfunction which were previously
difficult.

4.1 Experiment on learning and
implementation of work support in
cooperation with the unaffected arm

In this experiment, we confirmed the feasibility of the proposed
method for learning cooperative work support with the unaffected
arm and for performing work support based on the learned data
with the cooperation of three patients with a single upper-limb
dysfunction, each with varying degrees of disability. To learn the
phase-shift conditions, we employed a default learning method that

mainly relies onmotion information from the unaffected arm rather
than the BES of the paralyzed arm, making it applicable regardless
of the extent of paralysis. One participant was unable to generate
a BES reflecting his intention but could utilize the system by using
voice for all operations related to teaching support movements.
These findings suggest that the system can be employed across
a diverse range of patients, irrespective of the condition of their
paralyzed arm.

In learning the work support, cooperative work between the
system and the participant’s unaffected arm became feasible through
the operation using intention information from voice and the
BES of the paralyzed arm. Each participant successfully completed
the target task while teaching the support action to the system.
Moreover, the system learned the support actions and phase-
shift conditions tailored to the participants and tasks during the
actual work. Furthermore, the questionnaire (Table 3) subjectively
confirmed that the intended operation could be performed and that
the work time was sufficient to perform the operation in daily life.
These results confirm that the participants were able to complete the
target task while operating the system and teaching support actions
using their intention information. Only the evaluation of work time
for the “opening a medicine package” task by Participant B was
lower compared to the evaluations for the other tasks. Participant
B commented, “The medicines I usually take are in pill form, so I
can open them with one hand. Considering this, opening them with
one hand is faster.” This suggests that the lower evaluation for this
task was due to comparing the work time to opening a tablet-type
medicine, which can be done with one hand.

In the work support based on learned data, it was confirmed
that the system executed each support action in response to and
in conjunction with the work phase and the movement of the
unaffected arm through phase shifts to each movement phase
based on the learned data and sensor information, allowing each
participant to complete the target task. The results indicated that
the learned data were appropriate for cooperative work with
the participant’s unaffected arm and for providing work support.
Additionally, work time significantly decreased for all participants
compared to before learning (Table 2). For example, in the task of
opening a medicine package, all participants were able to complete
it in approximately half the time after learning. This reduction is
attributed to the proposed method, which features a control system
combining voluntary and autonomous control and autonomously
performs actions based on the input reflecting the user’s intention,
allowing seamless cooperation between the system and the user’s
unaffected arm without requiring detailed operations. Furthermore,
the questionnaire revealed that the work support and work time
were generally highly evaluated (Table 3), subjectively confirming
that work support was provided according to the patient’s intention
and that the work time was sufficient to perform the tasks in daily
life. These results confirm that work support based on learned
data enables cooperation with the unaffected arm according to the
user’s intention and smoother execution of the target task. The
evaluation of work time was highly rated in the questionnaire even
for the work with teaching. This can be attributed to the fact that
the tasks could not originally be performed with one hand, or, if
possible, required a significant amount of time. This indicates that
the teaching process for new tasks can be conducted in a stress-
free manner and that smoother work is realized after learning. The
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FIGURE 12
Work support based on the learned data for target tasks 1 to 7.

slightly lower ratings for “opening amedicine package” and “eating a
jelly cup” in Participant B compared to the other participantsmay be
due to the following reasons. Regarding the task “opening amedicine

package,” as mentioned earlier, this may have been influenced by
the comparative evaluation with tablet-type medicines. For the
jelly-eating task, Participant B commented, “I felt that I could not
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fine-tune the system’s hand position additionally, and if that was
the case, I felt that the previous experiment (learning of work
support) was better because I could adjust it more freely.” This
comment reflects a lower evaluation compared to the previous
experiment (learning of work support). Regarding the operation
requests mentioned in the comment above, we aim to improve work
support based on learned data so that fine adjustment of the hand
position can be performed as needed.

In both the learning of work support and work support based
on learned data, it was observed from the questionnaire that all
the participants who used the BES for operation while learning
perceived the system as a part of their body, with the highest
rating of 5 (Table 3). In contrast, the participant who used only
voice for operation gave a rating of 1. Thus, when the BES of
the paralyzed arm is used, the system provides a sense of unity
with the body. This may be because the system was connected to
the user’s intention to move from the brain nervous system and
performed movements in place of the paralyzed arm according to
the user’s intention. It is thought that this perception of oneness
with the body was maintained in work support based on learned
data that did not include BES in the phase-shift condition. The
phenomenon of sensory integration between the system and the
user’s body is a significant discovery, and we believe that it will
further strengthen the development of the field of cybernic robot
hand-arms.Therefore, we aim to increase the number of participants
and conduct experiments with a group that uses BES and a group
that does not to verify this phenomenon. Additionally, the use
of BES from the paralyzed arm provides an opportunity to move
the arm that could not be used for work owing to limited motor
functions caused by paralysis within its possible range of motion.
Consequently, secondary effects such as the maintenance of residual
functions and prevention of disuse are expected. Because it is
beneficial to be able to obtain these secondary effects on a daily
basis through working with the system, future research will include
the verification of these secondary effects during the long-term
application of the system.

4.2 Experiment using a voluntary control
system in which the phase-shift function
using BES is added to the control system
after learning

In this experiment, we confirmed that phase shift based on the
intention to move using the paralyzed arm’s BES and cooperative
work support with the unaffected arm according to the intention
were possible in the movement phase where the phase-shift
condition was replaced with the BES from the default learning
condition. From the results, it is inferred that even if the BES
is challenging to detect and utilize for detailed operations during
learning, work support aligned with the movement intention of the
paralyzed arm is feasible by incorporating the BES into the phase-
shift conditions of the movement phases that constitute the learned
work support. The average work time was 59 s, with a standard
deviation of 1.7 s before changing the phase-shift conditions from
voice commands to BES; however, in this experiment, it was
significantly reduced to 44 s with a standard deviation of 0.9 s.
This result is likely because the BES from the paralyzed arm input

that directly indicates the intention to move in the coordinated
movements of the two hands contributed to the realization of
more integrated movements with the body compared to voice
information. Furthermore, compared to before the addition of this
function, where the BES was solely used for operations during
teaching support actions, an increased sense of unity with the
body was confirmed. This is believed to be due to the enhanced
execution of support actions in accordance with the intention to
move using the BES for work support. In this experiment, we applied
the system by replacing the default learned phase-shift condition;
however, it can also be used in combination, and various forms of
application can be attempted depending on the user. For example,
for a patient with many involuntary signals in their paralyzed arm’s
BES, a hybrid condition with other sensor information may realize
phase shifting and work support according to the intention of the
paralyzed arm to move. Additionally, various BES not limited to
the flexion/extension of fingers, such as those from the elbow and
shoulder, can be employed for the system. A system capable of these
diverse applications was developed in this study. We aim to verify
which form of application is more effective for different disability
situations when the number of research participants increases in
the future.

4.3 Effort to support daily tasks

In this study, we applied the system to seven tasks that were
difficult for the participant in his daily life and confirmed that
each task could be performed. The proposed method enables the
user’s arm to perform tasks such as using tools like scissors, which
are difficult for robots owing to safety and hardware limitations.
Therefore, tasks that are challenging for robots alone or for
individuals with a single upper-limb dysfunction alone can be
accomplished through the cooperation of both the robots and the
user. Additionally, the proposed method includes a framework that
can learn the work support corresponding to each user and task.
Hence, the system can be applied to support various tasks in the daily
lives of patients, improving their quality of life by enabling them
to perform tasks that were previously difficult, including those in
this study, throughwork support that cooperates with the unaffected
arm according to the user’s intention. Currently, there are some
limitations to the applicable tasks, such as the inability to support
cooking tasks owing to waterproofing issues. However, it is expected
that more tasks will be supported by making the system waterproof
and preparing attachment-type end effectors specialized for work
environments such as cooking. Additionally, the gripping force is
fixed according to the force learned for each task in this study. To
address more diverse tasks, such as adjusting the gripping force to
prevent slipping when the weight of the object increases during a
task, we aim to implement a function that adjusts the gripping force
in response to changes in the object’s weight. The tactile force sensor
installed in our system can detect the forces applied to the gripped
object and is also effective in detecting weight changes.

Through these experiments on patients with a single upper-limb
dysfunction, we confirmed the feasibility and usefulness of various
cooperative tasks and work support that reflect the user’s intention
using the developed cybernic robot hand-arm.
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5 Conclusion

In order to provide support for upper-limb tasks in daily life
for patients with a single upper-limb dysfunction, a challenge
that has been difficult to overcome, we proposed and developed
a cybernic robot hand-arm with the following features: 1) input
of BES that reflects the intention to move from the paralyzed
arm, motion information from the unaffected arm, and voice-
based intention information; 2) autonomous control of support
movements according to the unaffected arm and work phase;
3) a control system that integrates voluntary and autonomous
control by combining 1) and 2), allowing for smooth work
support in cooperation with the unaffected arm reflecting intention
as a part of the body; and 4) a learning function to provide
such work support across various tasks in daily use. The system
learns to support new tasks by working with the user through
an operating function that does not require operation by the
unaffected arm. The system divides the support actions into
movement phases and learns the phase-shift conditions from the
sensor information on the user’s intention. After learning, the
system autonomously performs learned support actions through
voluntary phase shifts based on input of the user’s intention via
BES from the paralyzed arm, the unaffected arm’s motion, and
voice, enabling smooth collaborative work with the unaffected
arm. We conducted a pilot study involving three patients and
confirmed that the system could learn and provide smooth work
support in cooperation with the unaffected arm that reflected
the user’s intention, successfully completing tasks that had been
difficult for them. Additionally, the questionnaire confirmed that,
subjectively, cooperative work according to the user’s intention was
achieved, and that the work time was within a range feasible for
daily life. These results confirmed the feasibility and usefulness
of the proposed method. Additionally, it was observed from the
questionnaire that participants who used BES for the control
system as their intention information perceived the system as
part of their body. In future research, we aim to increase the
number of patients and tasks to which the proposed method is
applied in order to further verify its range of applicability and
usefulness, as well as the phenomenon of sensory integration with
the body.
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