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The use of autonomous Unmanned Aerial Vehicles (UAVs) has been increasing,
and the autonomy of these systems and their capabilities in dealing with
uncertainties is crucial. Autonomous landing is pivotal for the success of an
autonomous mission of UAVs. This paper presents an autonomous landing
system for quadrotor UAVs with the ability to perform smooth landing even
in undesirable conditions like obstruction by obstacles in and around the
designated landing area and inability to identify or the absence of a visual marker
establishing the designated landing area. We have integrated algorithms like
version 5 of You Only Look Once (YOLOv5), DeepSORT, Euclidean distance
transform, and Proportional-Integral-Derivative (PID) controller to strengthen
the robustness of the overall system. While the YOLOv5 model is trained to
identify the visual marker of the landing area and some common obstacles
like people, cars, and trees, the DeepSORT algorithm keeps track of the
identified objects. Similarly, using the detection of the identified objects and
Euclidean distance transform, an open space without any obstacles to land
could be identified if necessary. Finally, the PID controller generates appropriate
movement values for the UAV using the visual cues of the target landing area
and the obstacles. To warrant the validity of the overall system without risking
the safety of the involved people, initial tests are performed, and a software-
based simulation is performed before executing the tests in real life. A full-
blown hardware system with an autonomous landing system is then built and
tested in real life. The designed system is tested in various scenarios to verify
the effectiveness of the system. The code is available at this repository: https://
github.com/rnjbdya/Vision-based-UAV-autonomous-landing.

KEYWORDS

autonomous landing, deep sort, distance transform, intelligent autonomous system,
obstacle avoidance, object detection, PID control, YOLOv5

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2024.1450266
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2024.1450266&domain=pdf&date_stamp=2024-10-18
mailto:hjeong@cdu.ac.kr
mailto:hjeong@cdu.ac.kr
https://doi.org/10.3389/frobt.2024.1450266
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2024.1450266/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1450266/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1450266/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1450266/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1450266/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1450266/full
https://github.com/rnjbdya/Vision-based-UAV-autonomous-landing
https://github.com/rnjbdya/Vision-based-UAV-autonomous-landing
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Baidya and Jeong 10.3389/frobt.2024.1450266

1 Introduction

UnmannedAerial Vehicles (UAVs) are gainingwider acceptance
due to their advantages over manned flights (Mohsan et al., 2023).
They are versatile and used in fields such as transportation,
search and rescue, military, surveillance, agriculture, and delivery
(Mohsan et al., 2023). Additionally, they are also cost-effective and
require fewer resources to operate and maintain. In scenarios
like disaster response, firefighting, and hazardous material spills,
UAVs are safer because no human lives are at risk. Furthermore,
autonomous UAVs can transform various sectors, making them a
topic of increasing interest (Hassanalian and Abdelkefi, 2017).

Achieving full autonomy in UAVs requires a robust control
system (Chen et al., 2009). One of the notable challenges to
achieving full autonomy is the ability to land at a marked spot. Even
a minor error during UAV movement can cause significant damage
to the UAV itself and its surroundings, necessitating research
into methods to reduce these risks. Moreover, implementation
of autonomous systems outside of a controlled environment into
real-life scenarios could be much more challenging due to the
unpredictability of the world. So, it is necessary to make these
systems robust to some undesirable situations in the real world.
Some of these situations are detection of multiple landing pads,
the presence of obstructive objects near the landing target or the
inability to find the visual marker indicating the landing target.
These scenarios can be seen in Figure 1. Figure 1A shows the output
of an object detection algorithm where two landing targets are
identified by the object detection algorithm, with one of them being
wrongly classified. Figure 1B shows a scenario of an obstacle in
unsafe proximity of the landing target. Figures 1C,D both show
conditions where the landing pad is not detected at all. While in
Figure 1C the landing pad is fully absent, in Figure 1D the landing
pad is not properly visible due to reflection of light. These kinds of
undesirable situations can be considered explicitly to build systems
around them to deal with these cases.

This paper first presents a simple method to perform
autonomous landing with a quadrotor UAV using visual cues
on top of a designated marker. Then the discussed undesirable
scenarios are accounted for to increase the reliability.The considered
scenarios are:

• The presence of multiple markers indicating the landing pad.
• The presence of obstacles near the marker.
• The inability to detect the designated visual marker or the
absence of the marker altogether.

The overall system is built based on the Proportional-Integral-
Derivative (PID) control, the You Only Look Once (YOLOv5)
algorithm for object detection using a camera input, the DeepSORT
algorithm for tracking, and a simple algorithm based on distance
transform to find the open space. Two PID controllers generate
control values for the left/right and forward/backward movement
of the UAV, which utilize the discrepancies between the center of
the landing target and the center of the image frame obtained from
the camera pointed toward the ground. We trained the YOLOv5
algorithm on images of classes such as “people”, “vehicle,” “helipad,”
and “tree” for recognizing the visual marker and the obstacles.
Before deploying the system in autonomous flights some initial tests
are performed. First, we evaluate the capability of the system to

accurately measure the distance between two points in a camera
frame. To do this, we manually fly the UAV while capturing camera
frames and the altitude of the UAV at the corresponding time. The
distance between a point and a visual marker is then measured
using a measuring tape. Then we calculate corresponding distances.
After ensuring the difference between the measured distance and
calculated distance is negligible, we perform a simulation of the
landing process using the Software in the Loop simulator of
Ardupilot. After finetuning the system in both ways, we deployed
the system in the real world. The final system successfully performs
autonomous landing in the designated spot in case of absence of any
unfavourable scenarios and in a safe spot which may or may not
be the designated spot in presence of some uncertainty. The main
contributions of this paper can be listed as follows:

• Suggest a robust algorithm for safe vision-based autonomous
landing of quadrotor UAVs in undesirable scenarios.
• Designing initial tests and simulation environment for the
initial testing of the system in undesriable landing scenarios.

2 Related works

The escalating demand for autonomous UAVs has led to several
research efforts toward designing autonomous landing and obstacle
avoidance systems for these vehicles. These systems are necessary in
multiple academic and industrial fields, including search and rescue,
agriculture, and package delivery. Various works in the fields of
autonomous landing, obstacle avoidance, and object detection have
been performed.

2.1 Autonomous landing

Several previous attempts have been made to enhance the
capabilities of autonomous UAVs for autonomous landing. One
such work utilized a combination of Canny edge detection; Hough
transform and Hu invariant moment to detect the landing platform
(Tsai et al., 2006) and then perform the attitude estimation. They
performed testing on a “T-Wing“ V.T.O.L, and were able to get root
mean square errors of 4.8°, 4.2°, and 4.6° during attitude estimation.
Another work utilizing classical image processing technique was
(Saripalli et al., 2002). This work utilized Hu invariant moment
to resolve the position along with differential Global Positioning
System (GPS) to perform the autonomous landing on an UAV
helicopter, while getting an average orientation error of 7° (Fan et al.,
2008). deployed a system to perform noise removal using median
filtering, then enacted imaged segmentation using a fixed threshold
onZernikemoments to find the landing platform.Their experiments
demonstrated that Zernike moments are superior to Hu moments
in identifying the landing point robustly, even in the event of
landing pad rotation. They also demonstrated R.M.S error of
4.21 cm, 1.21 cm, and 0.56° in x-position, y-position and orientation
respectively (Wenzel et al., 2011). presented a method to trace a
unique arrangement of infrared lights on a platform using an
infrared camera to locate the landing point. While this method
was successful 90% of the time it was only suitable for indoor use.
Another work utilized optical flow estimation to track a textured
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FIGURE 1
Exhibition of different undesirable scenarios during vision-based autonomous landing in UAV: (A) Object detection algorithm misclassifying another
object as a landing pad (black box is manually drawn to help better identify the detections), (B) presence of obstacle nearby the landing pad, (C)
absence of the visual markers denoting the landing pad, (D) the present landing pad is not properly identified due to reflection of light on the pad.

platform for non-linear controller of vertical take-off and landing
(VTOL) UAV equipped with a simple sensors setup of only camera
and inertialmeasurement unit (IMU) (Herissé et al., 2011; Lee et al.,
2012) utilized image-based vision servoing (IBVS) to track a landing
platform in a two-dimensional image and estimated the required
velocity to be used as an input to the adaptive sliding mode
controller. The disadvantage of this work was its reliance on a single
marker tomark the landing platform,making it susceptible to loss of
themarker.There has been other work to solve the problem of losing
the marker by using fish-eye cameras. However (Kim et al., 2014),
utilizes simple color-based tracking, which is highly susceptible to
false detections, even more so in the outdoor environments. Also
(Baca et al., 2017) utilizes prior knowledge of the expected path of
the target. Additionally, many works also utilize fiducial markers for
a vision-based navigation during the landing (Araar et al., 2017). has
an average error of 13 cm from the landing pad but is only tested
in indoor environments (Salagame et al., 2022). fails when there is a
large change in speed or direction.

In recent years, deep-learning algorithms have been increasingly
used for landing target detection in vision-based autonomous
landing systems (Chen et al., 2017). used faster regional neural
networks (Faster R-CNN) to detect the landing pad and obtained
an average error of 2.23°, 1.18 cm, 1.31 cm and 1.29 cm while
estimating yaw, orientation in x-axis, y-axis and z-axis respectively.
In (Nguyen et al., 2018), LightDenseYOLO was used instead of
template matching, and the accuracy was further improved by
implementing Profile Checker (Truong et al., 2020). suggested
utilizing deblur generative adversial network (DeblurGAN) to
deal with non-unifrom motion-blurred inputs and furthermore
YOLOv2 for the detection of the landing area (Neves et al.,
2024). presents a multimodal transformer-based detector for
precise UAV landing and a reinforcement learning model for

decision-making, achieving high reliability and rapid inference
times even in diverse and challenging conditions (Aikins et al.,
2024). introduces a robust deep reinforcement learning
approach using LSTM networks, called RPO-LSTM, which
significantly enhances UAV autonomous landing on moving
platforms under partial observability, outperforming existing
methods in challenging conditions with sensor impairment and
environmental noise.

2.2 Obstacle avoidance

Numerous research has been performed for detecting and
avoiding the obstacles around the UAV. Multiple such research
is based on traditional methods (Mori and Scherer, 2013).
detect obstacles based on the relative size changes of image
patches. They utilize speeded-up robust features (SURF) for
feature matching alongside template matching to compare relative
obstacle sizes with different image spacing. Many works also
utilize optical flow for performing obstacle avoidance (Souhila
and Karim, 2007). utilizes optical flow for obstacle avoidance
in an autonomous mobile robot (Muratet et al., 2005). utilizes
optical flow alongside inertial information to avoid collisions in
an autonomous helicopter (Peng et al., 2016). combine the depth
cues with optical flow to detect the obstacles in a quadrotor
system (Müller et al., 2024). introduce an ultrasonic sensor-based
system inspired by bats to enable nano-drones to navigate
autonomously and avoid obstacles (Zhang et al., 2024). propose
a lightweight CNN depth estimation network using Channel-
Aware Distillation Transformer (CADiT) inspired by knowledge
distillation for obstacle avoidance in nano-drones with limited
computing power.
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2.3 Object detection

Conventional approaches for object detection utilize feature
extraction methods such as Histogram of Oriented Gradients
(HOG) (Dalal and Triggs, 2005) or Scale Invariant Feature
Transform (SIFT) (Lowe, 2004), which require a significant amount
of manual input and time. In recent years, research on object
detection has shifted towards deep learning approaches that can be
broadly categorized as anchor-based or anchor-free object detection
architectures, based on their use of pre-defined sliding windows.

Anchor-based methods involve the classification of object
boxes into distinct bins, followed by box rectification. Region-
CNN (RCNN) (Girshick et al., 2014), Spatial Pyramid Pooling
(SPP) network (He et al., 2015), Fast RCNN (Girshick, 2015),
Single Shot multibox detector (SDD) (Liu et al., 2016), the You
Only Look Once series of models: YOLOv1 (Redmon et al., 2016),
YOLOv2 (Redmon and Farhadi, 2017), YOLOv3 (Redmon and
Farhadi, 2018), YOLOv4 (Bochkovskiy et al., 2020), YOLOv5
(Jocher et al., 2020) are some examples of anchor-based methods.
Conversely, anchor-free methods do not engage with computations
pertaining to anchor boxes, instead employing alternative
methodologies. Fully Convolutional One stage (FCOS) (Tian et al.,
2019), Feature Selective Anchor Free Module (FSAF) (Zhu et al.,
2019), YOLOX (Ge et al., 2021) are some examples of the anchor-
free methods. Furthermore, some attention based methods
such as (Ouyang et al., 2023) are also used for object detection
(Ouyang et al., 2023). propose Efficient Multi-scale Attention
(EMA) module that improves feature representation and
computational efficiency by grouping channel dimensions and
using cross-dimension interaction, achieving superior performance
in image classification and object detection tasks compared to
recent methods. Additionally, object detection is also performed
in infrared images (Zhang et al., 2021). introduce a backbone
network, called Deep-IRTarget,for combining frequency and spatial
feature extractors with a dual-domain resource allocation model,
significantly enhancing object detection in infrared images.

Object detection in general images is much different than object
detection in the images captured from the field of view of UAVs.
In the context of UAV-captured images, object detection poses
significant challenges, chiefly due to the wide variation in shape
and size of the objects of interest, as well as the potential for a
high number of objects to be detected. Additionally, computing
resources on UAVs are inherently limited, further complicating
the task of object detection. Works like Peele (Ozge Unel et al.,
2019), ClutDet (Yang et al., 2019), and DMNet (Li et al., 2020)
focus on the object’s size and deploy coarse-to-fine frameworks.
M-CenterNet was also introduced to deal with minimal sized
objects in frames captured from aerial devices (Ding et al., 2021).
Transformer Prediction Head YOLOv5 (TPH-YOLOv5) modified
YOLOv5 architecture to accommodate the needs of object detection
in UAV images (Zhu et al., 2021). TPH-YOLOv5 added an extra
prediction head to solve the issue of object detection of small
objects and employ self-attention mechanism in the prediction
head. Additionally, convolutional attention model (CBAM) has
also been utilized in TPH-YOLOv5 to locate the region of
interest in scenarios characterized by densely packed objects.
Another work further modified the architecture of TPH-YOLOv5
to using ConvMixers instead of transformers in the prediction

heads, to make the architecture more computationally efficient
(Baidya and Jeong, 2022). Finally (Zhao et al., 2023), introduce
YOLOv7-sea, an enhanced object detection algorithm incorporating
additional prediction heads and attention modules, along with data
augmentation techniques, achieving improvement over YOLOv7
in detecting small targets and reducing sea surface interference in
maritime search and rescue scenarios.

3 Methods

In this section, we will discuss the solutions to the undesirable
scenarios that the system deals with, the overall algorithm and the
individual components used in the system. The content discussed
in this section will be in the following order: undesirable scenarios,
their solutions and the overall algorithm, YOLOv5 and DeepSORT,
meters per pixel calculation, PID Controller, algorithm to find the
empty space.

3.1 Undesirable scenarios, their solutions
and the overall algorithm

We propose different methods to deal with the undesirable but
highly plausible scenarios during vision-based autonomous landing.
Here we will discuss how the targeted undesirable scenarios are
dealt with.

• False detection of landing pad: Object detection techniques
may not always be reliable and sometimes there may be
instances where false detections are encountered. The system
is designed such that it only considers the detections of the
landing pad where the confidence score is above 50%, the
probability of failure of the system due to such false detections
are reduced.
• Absence of a marker denoting landing pad: There are
possibilities that the visual marker denoting the landing pad
is not detected by the object detection algorithm. This could
be caused by the reasons such as presence of the landing pad
in an area out of field of view of the camera, obstruction of the
landing pad, absence of the helipad altogether or sometimes
even the inability of the object detection algorithm to detect
the visualmarker. In any of such scenarios, the designed system
is capable to land in a safe landing spot. After reaching the
end of the mission, in case the landing pad is not recognized,
the UAV is elevated slowly to 5 m higher than the altitude
at the end of the mission. If the landing pad is recognized
at any point while raising the altitude of the UAV then the
UAV proceeds towards landing in the landing pad, otherwise
a nearby alternate safe landing spot is considered based on the
algorithm described in Section 3.5.
• Presence of multiple landing pads: The object detection
algorithm can also sometimes detect two landing pads in a
single frame due to actual presence of such landing pads or
due to some false detection. Our system only considers only
the landing detection with the highest confidence and the one
closest to the location at the end of the mission. Additionally,
landing pad choosen are also kept in track using the Deep Sort
algorithm.

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2024.1450266
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Baidya and Jeong 10.3389/frobt.2024.1450266

Input: Queue storing captured camera frames

“q_frames”; YOLOv5 model loaded with pre-trained

weights ‘yolo’

Output: list of the landing pad detections with

their position and confidence scores “helipad”;

list of obstacle detections with their position

and confidence scores “obstacles”; position of the

largest open space available “safe”

while landing is not complete do

 pred← yolo(q_frames.get()) ⊳ yolo returns the

detections with their class labels, confidence

scores, and positions

 empty← binaryimageframewithasmallborder

 for each detection p in pred do

  if p. class is one of obstacle class then

   obstacles.append(p)

   draw rectangular blob of size of p on empty at

the position of p

  else if p. class is of landing pad then

   helipad.append(p)

 safe← DistanceTransform(empty)

Algorithm 1. Algorithm to save information regarding the landing pad,
obstacles and the alternate safe landing space.

• Presence of obstacles nearby the landing target: There are
possibilities of presence of obstacles nearby the landing pad,
which may move or remain stationary during the landing
process. Eitherway, our system can proceed with the safe
autonomous landing. Upon detection of obstacles nearby
landing spot the system will sound a buzzer so as to notify
that the drone is proceeding with landing. While sounding the
buzzer, the system waits for 10 s so to observe whether or not
the landing pad is devoid of any obstacles. If the landing pad
is cleared within 10 s then the system proceeds with landing.
Otherwise, the system proceeds to land in an alternate safe
landing spot as per the algorithm discussed in Section 3.5.

The overall algorithm for autonomous landing requires
information regarding the obstacles, the landing pad and the
alternate safe landing space. These information are continually
extracted and saved such that they are accessible to the rest of
the program. The process of extracting these information and
storing them is shown in Pseudo code 1. The YOLOv5 and the
Deep SORT algorithm are applied to each frames obtained from
the camera. Based on the output of the YOLOv5 algorithm, some
alternate safe landing spots are also identified, using the method
mentioned in section 3.5. The locations of the landing target
detection, the alternate safe landing spot, and the obstacles are
saved to a queue, which is accessible by the rest of the program
while performing the autonomous landing.

Pseudo code 2 shows the overall landing algorithm. The
algorithm initially monitors whether the mission has been
completed and whether the autonomous landing can be started.
Once the mission is complete, the PID controllers are initialized,
and the algorithm searches for the detection of the landing pad in
the queue described above. If there are no landing pad detections in

the queue, the algorithm raises the altitude of the UAV for 10 s by
0.5 m after each time the detections are not present. Even after that
time, if the landing pad is not found, theUAVwill proceed to landing
to the nearest largest empty area. If the location of the landing pad
is found, then the UAV proceeds to land normally. After that, the
algorithm continuously searches for obstacles near the landing spot.
The algorithm proceeds to land normally if there are no obstacles
detected throughout the landing process. In case some obstacles
are seen within 1 m of radius of the landing spot, then the UAV
will wait for 10 s while sounding an alarm to see if the obstacle will
move. When the obstacle moves away from the landing spot, the
alogrithm will continue with landing. During the entire process, the
algorithmfinds the discrepancy between the image frame center and
the landing target center. Based on whether this value is large, the
algorithm decides whether to lower the altitude of the UAV. If the
discrepancy is larger than 2 m, the algorithm only sends the control
values generated by the PID controllers for forward/backward and
left/rightmovement of theUAV.Otherwise, the algorithm lowers the
altitude of the UAV by 0.5 m while also sending the control values
generated by the PID controllers. We consider an altitude of 1 m to
be safe to perform normal landing so, once the altitude of the UAV
is less than 1m, the algorithm sends “LAND” command to the FC.

3.2 You only look once version 5 (YOLOv5)
and simple online and real-time tracking
with a deep metric association (deep SORT)

Our approach utitlizes YOLOv5 for object detection and
DeepSORT for object tracking.This combination allows for efficient
and accurate dection and tracking of objects in video streams.

The YOLOv5 [31] object detection framework is based on
a single shot detection (SSD) approach that processes the entire
input image in a single feed-forward pass. The architecture consists
of three main components: backbone network, neck, and head.
The backbone network, a feature extractor, is responsible for
extracting high-level features from the input image. YOLOv5
uses the CSPNet (Wang et al., 2020) architecture as the backbone
network, which is an optimized version of the ResNet architecture.

The CSPNet (Wang et al., 2020) is composed of a stem layer,
a series of CSP blocks, and a global pooling layer. The stem layer
processes the input image and extracts initial features, which are
then passed through a series of CSP blocks. The CSP block is a
residual block that divides the input features into two branches,
one with fewer channels and another with more channels. The low-
channel branch is then processed through a series of convolutional
layers and concatenated with the high-channel branch, which is
processed through a shortcut connection.

The neck connects the backbone network to the head and is
composed of a combination of convolutional and pooling layers.
The neck uses the SPP (Spatial Pyramid Pooling) (He et al., 2015)
module, which divides the input features into different scales and
applies max pooling to each scale, allowing the network to capture
features at different scales.

The head is responsible for predicting the bounding boxes, class
probabilities, and confidence scores of the objects in the input image.
The head architecture is composed of multiple convolutional and
linear layers that perform the final prediction. The head uses the
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Input: list of obstacles information ‘obstacles’;

list of landing pad information ‘helipad’;

information of largest open space available ‘safe’

while mission is running do

 if mission is completed then

  Break

PID←PID controller initialization to estimate

required drone movement

Target _is _heli ← True

while UAV is not landed do

 If UAV altitude is greater than 1 meter

  Get helipad and obstacles from Algorithm 1

  if Target _is _heli is True then

   if helipadisnotNone then

    if len (helipad) > 1 then

     target← itemwithhighestconfidenceonhelipad

    else

     target← helipad[0]

    error←

discrepancybetweencameraframecenterandtarget

    movement← PID(error)

    if movement > 2 then

     send command to flight controller for

horizontal movement

    else

     if obstaclesisnotNone then

      if any o in obstacles is in close proximity

to target then

       if the counter time_of_wait is not started

then

        time_of_wait←

timertodenotethepresenceofobstacleo

       Wait for obstacle to move away

       if time_of_wait > 10 s then

        Target_is_heli← False

      else

       send command to FC for horizontal +

vertical movement

     else

      send command to FC for horizontal +

vertical movement

   else

    send command to flight controller to raise

Altitude by 0.2 meter

    if

altisgreaterthanaltitudeatendofmissionby5meters

then

     Target_is_heli ← False

  else

   error←

discrepancybetweencameraframecenterandtarget

   movement← PID(error)

   if movement > two then

    send command to FC for horizontal movement

   else

    send command to FC for horizontal +

vertical movement

 else

  Send LAND command to FC

Algorithm 2. Algorithm for safe autonomous landing.

PAN (Path Aggregation Network) (Liu et al., 2018) module, which
aggregates features from different scales and refines them to produce
the final prediction.

YOLOv5 introduces several new techniques, such as anchor-
free detection, that eliminates the need for anchor boxes, which
improves the accuracy of object detection. Additionally, YOLOv5
uses a hybrid approach for training, which combines both
supervised and unsupervised techniques, resulting in improved
model generalization and robustness.

To complement the YOLOv5’s detection capabilities, we
incorporate the Deep SORT (Wojke et al., 2017) algorithm for
tracking the detections. This integration creates a seamless pipeline
from detection to tracking, enhancing the overall performance
of or system.

DeepSORT builds upon the SORT algorithm by incorporating
a deep convolutional neural network to extract discriminative
features from raw image data. These features contain essential
information about the object’s appearance and spatial information;
hence, they tend to be reliable representations of these objects
during tracking. Then Kalman filter-based approach enables the
data association process. Here, the features extracted in the
previous step and the object’s state estimations are integrated
by factoring motion, position uncertainties, and the previously
predicted state. The tracks from the previous and the current
steps are matched using the intersection over union (IoU) measure
between predicted tracks and the actual detections, along with
the deep feature similarities. The Hungarian algorithm is used
for the best assignment of detections and the tracks for accurate
correspondences. Finally, the created tracks are continuously
updated based on their states, with new states being created when
necessary and old ones being deleted to maintain efficiency. The
algorithm adapts to changing scenarios while maintaining tracking
consistency [46].

3.3 Meter per pixel calculation

Controlling the UAV based on the analysis of the input image
frame in terms of pixels values could be highly inaccurate. For more
precise control of the autonomous UAVs, it is necessary that the
distances are in meters. In this section the formula to convert the
horizontal and vertical meters per pixel is discussed. The horizontal
meters per pixel value can be obtained from Equation 1.

Horizontal Meters per pixel =
2D tan(HFOV

2
)

HRES
(1)

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2024.1450266
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Baidya and Jeong 10.3389/frobt.2024.1450266

FIGURE 2
Visualization of the PID controllers in context of the suggested algorithm.

Similarly, the vertical meters per pixel value can be
obtained from Equation 2.

Vertical Meters per pixel =
2D tan(VFOV

2
)

VRES
(2)

Where, D is the distance between the camera and the object in
frame, which we assume to be equal to the altitude measurement
obtained from the lidar, HFOV and VFOV are the horizontal and
the vertical field of view of the camera respectively, HRES and
VRES are the vertical and horizontal resolution of the camera
respectively.

3.4 Proportional-integral-derivative (PID)
controller for precise movement control

The precise movement of the quadrotor UAV is controlled by
two PID controllers. The structure of the two controllers can be
visualized in Figure 2. The first controller generates the control
values to control the ‘Left/right movement’ using the discrepancy
between the x-coordinate of the center of the obtained image frame
and the x-coordinate of the center of the landing target. In Figure 2,
this controller is placed at the top. The second controller, which
can be seen at the bottom of Figure 2, takes in the difference
between the y-coordinate of the center of the obtained image
frame and the y-coordinate of the center of the landing target
to output the control values to control the “forward/backward
movement” of the UAV. Throughout the landing, the “yaw” of the
drone is constant, and the altitude is slowly decreased by 0.5 m
only if the error between the center of the image frame and the

landing target is negligible and if there are no obstacles nearby the
landing pad.

The overall structure of the two controllers is that of a basic
PID controller. The controllers adjust the system output based on
the error between the desired setpoint and the actual value of
the process variables (Bennett, 2001). For this system, the outputs
are the ‘left/right’ and the ‘forward/backward’ movement of the
UAV. Furthermore, the desired set points are the center coordinates
of the image frames, and the process variables are the center
coordinates of the landing target. The error in each step is the
difference between the center coordinates of the image frame and
the center coordinates of the landing target. The two controllers
adjust the “left/right” and “forward/backward” movement utilizing
the summation of proportional (Kp), integral (Ki) and derivate (Kd)
components of the error.

The equation of the PID controller for the ‘left/right movement
control’ is given by Equation 3.

OutputLR = KP
∗eX (t) +Ki

∗∫
t

0
eX (t)dt+Kd

∗ dex (t)
dt

(3)

Similarly, the equation of the PID controller for the
‘forward/backward movement control’ is given by Equation 4.

OutputFB = KP
∗eY (t) +Ki

∗∫
t

0
eY (t)dt+Kd

∗ deY (t)
dt

(4)

In Equations 1, 2, the OutputLR and OutputFB are the control
values generated by the two controllers for controlling the
left/right and the forward/backward movement of the UAV
and ex and ey are the error in x-coordinate and y-coordinate
respectively.
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FIGURE 3
Flow chart for the algorithm to find the safe alternate landing space.

3.5 Finding safe alternate landing space

Performing autonomous landing on a landing target using visual
cues may not always be a feasible option. The possibility of coming
across some undesirable scenarios like the inability to locate the
landing target, absence of the visual cues denoting the landing target,
and unsafe landing conditions like the presence of other objects near
the landing target, makes it necessary for adding a reliable alternate
method to perform the landing. We suggest a simple algorithm
using input visual cues to find an alternate landing spot without any
obstacles near the drone. The overall process is shown in Figure 3.

To find a safe alternate landing space, first an empty image frame
with all white pixels and a small border of black pixels is initialized.
The size of the initialized image frame is the same as that of input
camera frames. Based on the position of the obstacles identified by
the YOLOv5 on each input frame, the algorithm draws rectangular
black blobs on the initialized image frame where the obstacles are
present. Euclidean distance transform (Rosenfeld and Pfaltz, 1966)
is applied to the obtained image. The distance transform gives
individual values to each pixel of the input frame, which represents

the distance from that pixel to the closest black pixel. The biggest
output value of the distance transform represents the largest open
space in the image frame without any obstacles. The corresponding
position of that value represents its center in terms of pixels.

4 Setups and experiments

The implementation of the overall method was done in various
steps. Initially, a test was performed to check whether the distance
in meters calculated by the system is accurate. To compare the
performance some existing object detection models, these models
were intially trained on a publicly available dataset. Lateron based
on this, YOLOv5s model was selected and trained on a self-
collected dataset. A simulation of the landing conditions was
performed in software before testing the scenarios in real life.
This section will provide the details regarding the test to verify
the accuracy of the distance calculation, selection of the object
detection model, training of YOLOv5s, simulation setup, and the
hardware setup.
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TABLE 1 Results from the test for verifying the accuracy of pixels to meter conversion.

S.N. Image from UAV Measurement taken Altitude Measured Distance Calculated Distance Error

1 20.0 4.3 4.5 0.2

2 20.0 3.2 3.2 0.0

3 20.1 2.5 2.7 0.2

4 20.0 2.6 2.6 0.0

5 20.0 2.0 2.0 0.0

6 20.0 2.3 2.2 0.1

7 20.1 2.4 2.5 0.1

8 20.1 2.2 2.2 0.0

9 20.0 2.7 2.6 0.1

10 20.0 3.0 3.0 0.0
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TABLE 2 Comparison results between different architectures.

Method P (%) R (%) mAP0.5(%) mAP0.5:0.95(%) FPS

YOLOv5n 0.36189 0.28197 0.26161 0.13335 12

YOLOv5s 0.45251 0.3377 0.33179 0.18063 12

YOLOv5m 0.50072 0.37865 0.37837 0.21837 10

YOLOv5l 0.51648 0.39725 0.40004 0.23653 8

YOLOv5x 0.57061 0.39677 0.41358 0.24901 6

TPH-YOLOv5 0.66588 0.54958 0.59177 0.38152 5

CPH-YOLOv5 0.67406 0.55746 0.60015 0.38612 5

The bold values represent the best result obtained for that particular metric.

FIGURE 4
Losses and the metrics of the trained YOLOv5 model. The figure shows the box loss, objectness loss and class loss during training and validation,
precision, recall, mAP0.5 and mAP0.5:0.95.

4.1 Test for accuracy of pixels to meter
conversion

One of the crucial steps to ensure the autonomous landing
is to verify the accuracy of conversions while the algorithm is
running. We performed a test to check whether the conversion
of distance from pixels to meters is accurate. For this, we took
distance measurements between various marked points using a
measuring tape. The pictures of these points are taken from the
camera in the UAV during a flight, and the altitude of the UAV
is continuously recorded for each corresponding frame. Using the
images and the corresponding altitude, the distance between the
marked points is calculated using the formulae in Section 3.4. The
difference between the actual measurements and the calculations

is then checked. Table 1 presents the results of this test. The table
shows the images captured from the drone, the altitude from which
the image was taken, the picture instance of the measurement being
taken for the corresponding points, the calculated distance, the
measured distance, and the error. It can be verified from Table 1
that the distance calculated in terms of meters based on the images
captured from the UAV is accurate enough for the same method to
be used in the autonomous landing algorithm.

4.2 Selection of object detection model

For this we considered two object detection architectures
designed specifically for use in UAV collected images and
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FIGURE 5
Snippets of different parts of the simulation software: (A) Snippet of Ardupilot SITL, (B) Input image of the landing pad, (C) Simulation of the camera
image frame based on the position and orientation of the SITL UAV and the input landing pad image.

also the YOLOv5 (Jocher et al., 2020) family. These models
were trained on the VisDrone dataset and there performance
are compared here. Each of these model were trained using
Adam optimizer on a Nvidia RTX 3090 GPU with a batch
size of 8 and for 300 epochs. Additionally, these models
were run on a Jetson Xavier NX board to compare the
number of frames per second (FPS) that can be processed
by the device for each of the models. These results have
been presented on Table 2. While TPH-YOLOv5 (Zhu et al.,
2021) and CMPH-YOLOv5 (Baidya and Jeong, 2022) tend
to perform better than rest in terms of precision, recall
and mAP, the number of FPS possible to be processed
is ideal in YOLOv5s. So we proceed with YOLOv5s
model.

4.3 Details of YOLOv5 training

Here we will discuss the details of the training process
of the customized YOLOv5 model. This will include the
data set used, the evaluation metrics and the results of
training.

4.3.1 Dataset
The dataset used in this study was self-collected through various

means.A total of 683 imageswere collected,withmost of the pictures
taken by the researchers themselves, while some were generated
using a generativeAImodelDALL-E 2 (Ramesh et al., 2022), and the
rest are from theweb.Thedataset is composed of 4 classes: “Helipad,”
“People,” “Vehicle,” and “Tree.” The “Helipad” class represents the
landing pad and the rest are the obstacles.

4.3.2 Evaluation metrics
The study primarily emphasizes two key performance metrics

for evaluating the effectiveness of the proposed model, namely, the
Mean Average Precision at intersection over union (IoU) threshold
of 0.5 (mAP0.5) and the overall mean Average Precision (mAP).
The Mean Average Precision at intersection over union (IoU)
threshold of 0.5 (mAP0.5) and IoU threshold ranging from 0.5 to
0.95 (mAP0.5:0.95) are commonly used to evaluate object detection
tasks. The mAP measures the average precision of the model across
multiple IoU thresholds, which determines the level of overlap
required between the predicted and ground-truth bounding boxes
to consider them as true positives. The mAP calculates the area
under the precision-recall curve for different IoU thresholds, where
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FIGURE 6
Schematic diagram of the hardware setup.

the precision is the ratio of correctly predicted objects to the total
number of predicted object, and the recall is the ratio of correctly
predicted object to the total number in ground-truth.

ThemAP is given by the Equation 5.

mAP = 1
Nclass

Nclass

∑
i=1

APi (5)

Where Nclass is the total number of classes.
Furthermore, mAP0.5 only considers the IoU threshold

of 0.5, which is a widely used threshold in object detection
benchmarks. This metric measures the model’s ability to correctly
predict bounding boxes that have an IoU overlap of at least
50% with the ground-truth bounding boxes. The mAP0.5 is
given by the Equation 6.

mAP0.5 =
1

Nclass
∫
1

0
P (R)dR (6)

Where Nclass is also the number of classes and P and R represent
precision and recall respectively at IoU threshold 0.5. Precision and
recall are given by Equations 7, 8 respectively.

P = TP
TP+ FP

(7)

R = TP
TP+ FN

(8)

Where TP means true positives, FP means false positives, and
FN means false negatives.

Likewise, mAP0.5:0.95 considers the IoU threshold in the range
of 0.5:0.95. It can be computed by taking the mean of the AP value
across all classes and all IoU thresholds between 0.5 and 0.95 with a
step of 0.05 (0.5, 0.55, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, and 0.95).

4.3.3 Results of training
The results obtained after training the YOLOv5 model on

our dataset have been presented in Table 1. The trained YOLOv5
model obtained a precision value of 0.7498, which means that out
of all the objects detected by the model, 74.298% of detection
was correct. Furthermore, a recall of 0.60224 was obtained which
means that the model was able to detect 60.224% of all the
objects present in the test images. Also, the mAP0.5 value
of 66.158% and mAP0.5:0.95 was obtained. The plots for losses
and the metrics of the trained YOLOv5 model is shown in
Figure 4.

4.4 Simulation setup

The landing simulation was performed using a Python script
that converts real-world 3D coordinates to 2D image coordinates
and generates a simulated camera frame based on the GPS and
UAVorientation information of theUAV simulated on theArdupilot
Software inThe Loop (SITL) software. First, an instance of Ardupilot
SITL needs to be launched using which the Python script connects
to the simulated UAV and continuously receives information like
latitude, longitude, altitude, pitch, roll, and yaw of the simulated
UAV. An image of the landing area can be passed to the script,
and the image can be changed based on the desired scenario to be
tested. The script simulates image frames as if they were received
from the camera attached to the bottom of the UAV. The position
of the landing pad is fixed to a particular location so that it would
be visible in the image frames if it was in the field of view of
the simulated camera. Figure 5 shows the snippets of the different
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FIGURE 7
Fully assembled UAV from different fields of view: (A) Front view, (B) Top view, (C) Side view, (D) Bottom view, (E) Tilted view, (F) Back view.

parts of the simulation performed. In Figure 5, (a) is the snippet
of the Ardupilot SITL software, (b) is the input helipad image, and
(c) is the simulated output of the camera image frame which is
based on the location and orientation of the UAV simulated in
SITL software, and the input image of the landing pad. First, both
the 3D real-world coordinates of the landing pad are projected
onto the 2D image plane of a hypothetical camera attached to
the bottom of the UAV and pointed towards the ground. The
projected 2D coordinates are matched to the image coordinates, and
the frames are rendered by applying perspective transformations.
The script continuously receives the UAV position and orientation
information and generates the camera frames till the UAV landing is
complete.

The written script then controls the position of the simulated
UAV based on the simulated frames of the attached camera and the
algorithm described in Section 3.5. Additionally, different landing
scenarios can be simulated based on the input image of the landing
pad. For example, an empty frame without any visual marker
denoting a landing pad can be input to simulate the situation where
there is no landing pad visible. Similarly, an input image with an
object nearby can be input to the software to simulate the scenario
of the presence of an unwanted object near the landing pad. In all
these conditions, a simulation of the autonomous landing can be

performed using Ardupilot SITL and the written Python script. The
Pseudo code for this is given by 3.

4.5 Hardware setup

Figure 6 shows the schematic diagram of the UAV hardware
setup. The parts used in the hardware setup are as follows:

• Frame: Quadcopter
• Flight Controller: Pixhawk 5 ×
• GPS: Pixhawk4 GPS module
• Telemetry radio: HoIybro 433 MHz 100 mW
• Propellers: 22-inch, pitch: 11
•Motors: MN605-S kv170
• Controller: Taranis x9d
• FRSky x8r

The companion computer, Jetson Xavier NX is where all the
computation occurs. The companion computer is loaded with
a script to connect to the flight controller Pixhawk 5x, extract
images from the Intel Realsense 455D camera, perform the required
processing, and then send the control commands to the flight
controller. The script loaded on the companion computer also has
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FIGURE 8
Output for the optimum landing scenario. The images show the (A–L) image frames captured by the camera during different states of flights, graphs
for the: (I) altitude, (J) buzzer state, and the control values of: (K), left/right and (L) forward/backward movement of the UAV with time throughout
landing process. The different state of flight in (A–H) are: (A) after take-off is completed, (B) after first way-point is reached, (C) after final way-point is
reached and autonomous landing is started, (E) while the UAV is moving to make landing pad appear at center, (F, G) after the center of frame and
position of landing pad have descrepancy of less than 2 m, (H) when the UAV altitude is less than 1 m and “LAND” command is sent to flight controller.

the YOLOv5 algorithm loaded on it with the trained weights for
the recognition of the landing pad and other objects to perform
autonomous landing. For getting the accurate altitude of the UAV,
a Benewake TF03 lidar is also connected to the flight controller.
Human interference may also be necessary during emergencies, so
a remote controller is connected to the flight controller using an
FRSky x8r receiver.The status of the UAVmay be monitored using a
ground control station with software like Mission Planner.The UAV
after complete assembly can be seen in Figure 7.

5 Results of real-life implementation
of autonomous landing in different
scenarios

In this section, we present the results obtained in various
scenarios. First this test, two different ways points are inputted into
the UAV mission. The final waypoint is set to be near the position
of the landing pad. The script running in the companion computer
continuously monitors the state of the mission. Once the mission
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FIGURE 9
Output when the visual marker for landing pad is not placed. The images show the (A–L) image frames captured by the camera during different states
of flights, graphs for the: (I) altitude, (J) buzzer state, and the control values of: (K), left/right and (L) forward/backward movement of the UAV with time
throughout landing process. The different state of flight in (A–H) are: (A) after take-off is completed, (B) after first way-point is reached, (C) after final
way-point is reached and autonomous landing is started, (D) when landing pad is not detected, (E, F) while the UAV is moving to make the empty spot
appear at the center, (G) after the center of frame and position of empty spot have discrepancy of less than 2 m, (H) when the UAV altitude is less than
1 m and “LAND” command is sent to flight controller.

is completed, the script starts the autonomous landing based on
the algorithm mentioned in Section 3.5. The real-life tests of the
autonomous landing were performed in the following scenarios:

• The first scenario is the most optimum landing condition
when the landing pad is clearly visible once the mission is
completed and there are no obstacles nearby the landing pad
throughout the landing process. The results for this have
been shown in Figure 8.

• The second scenario is created by not placing any visual
markers that denote the landing target.The results for this have
been shown in Figure 9.
• The third scenario is created by placing a plant and a human
near the landing pad after it has been a while since the landing
has started. The results for this have been shown in Figure 10.
• The final one is created by moving the position of the
visual markers denoting the landing pad multiple times
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FIGURE 10
Output when obstacles appear mid-way during the autonomous landing and remain for more than 10 s. The images show the (A–N) image frames
during different states of flights, graphs for the: (K) altitude, (L) buzzer state, and the control values of (M) left/right and (N) forward/backward
movement of the UAV throughout the landing process. The different states of flight in (A–J) are: (A) after take-off, (B) after first way-point is reached,
(D) after final way-point is reached and autonomous landing is started, (D) while the UAV is moving to make landing pad appear at center of frame, (E)
when the center of frame and position of landing pad have discrepancy of less than 2 m, (F) when obstacle is detected nearby the landing pad, (G) after
switching to alternate spot with largest empty space on frame as the target landing spot, (H) while the UAV is moving to make the empty spot appear at
the center, (I) when the center of frame and position of empty spot have discrepancy of less than 2 m, (J) after the altitude is less than 1 m and “LAND”
command is sent.

during landing procedure. The results for this have
been shown in Figure 11.

The results shown in Figures 8–11 include the image
frames of key moments captured from the camera, the
graphs of altitude, control values sent for the left/right
and forward/backward movement of the UAV, and the

buzzer state throughout the landing process for the four
scenarios.

In Figure 8, the altitude continuously decreases due to optimum
conditions and the buzzer state is also constantly low due to
the absence of obstacles near the landing target. The control
values for the left/right movement seem erratic and change
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FIGURE 11
Output when position of landing pad is changed multiple times during landing. The images show (A–N) frames captured during different states of flights
and graphs for: (K) altitude, (L) buzzer state, and control values of (M) left/right and (N) forward/backward movement of the UAV. The different states in
(A–J) are: (A) after take-off, (B) after first way-point is reached, (C) after final way-point is reached and autonomous landing is started, (D) when the
UAV is moving to make landing pad appear at center of frame, (E, F) after the center of frame and position of landing pad have discrepancy of less than
2 m, (G) when the location of landing pad is changed and the UAV should re-positioned, (H) when the UAV is moving to make landing pad appear at
center of frame, (I) after the center of frame and position of landing pad have discrepancy of less than 2 m (J) after the UAV altitude is less than 1 m and
“LAND” command is sent. Here (G–I) happen multiple times so the buzzer runs multiple times, the images are present to make it managable.

continuously, but these values are small, so the system is still
very stable. The graph for the forward/backward movement
control values is smooth, indicating smooth control of the UAV
forward/backward movement.

In Figure 9, the altitude of the UAV initially seems to be
increasing, which indicates that the landing pad is not identified

after the completion of the mission. Ten seconds later, the
algorithm deviates the UAV to land in an alternate safe spot.
Subsequently, the altitude gradually decreases. During the initial
phase where the landing spot is not identified, the control values
are generated for the left/right and forward/backward movement
of the UAV.
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 Input:location of SITL UAV in terms of metres

from a reference point ‘vehicle_location’;

attitude of SITL UAV ‘vehicle_attitude’;landing

pad image ‘target’

 vehicle_location← location of SITL UAV

 vehicle_attitude← attitude of SITL UAV

 target_location← location of landing pad

 while the program is running do

  vehicle_location← updated location of SITL UAV

  vehicle_location_p ← vehicle_location converted

in terms of pixels

  corners← coordinates of corners oftarget

  new_corners← corners translated in terms of

vehicle location and attitude

  new_corners← new_corners translated in terms of

camera frames

  perspective_transform← matrix for translation

of corners to new_corners

  warp perspective of target based on perspective_

transform

  display warped target

Algorithm 3. Algorithm for simulating the camera frames based on SITL
information.

In Figure 10, initially, the altitude is gradually decreasing
however, after awhile a constant altitude ismaintained. At this point,
obstacles are present near the landing pad. During this period the
buzzer state is also high. Even after a certain period, the obstacle is
still present, so theUAV ismaneuvered toward an alternative landing
spot. During this, the control values for the forward/backward and
left/rightmovement initially change drastically since the safe landing
spot without obstacles must be farther away from the UAV position
because of the present obstacles.

In Figure 11, the altitude is constantly decreasing except for a
few periods where the UAV maintains a constant altitude. During
this, a human changes the position of the landing pad, and the
human appears as an obstacle.The buzzer states are also high during
these periods.

6 Discussion and conclusion

In recent years, the usage of autonomous UAVs has seen a
significant rise in various applications, such as aerial photography,
surveying, and monitoring. One of the critical aspects of
autonomous UAVs is their ability to perform autonomous landings
even in adverse conditions of the real world. In this paper, we
present a system for vision-based autonomous landing system with
robust capabilities to perform autonomous landing in real-world
undesirable scenarios like the inability to detect the designated
visual marker or the absence of the marker altogether, the presence
of multiple such markers, and the presence of obstacle nearby
the marker. The proposed landing system encompasses multiple
key algorithms that are integrated to collectively strengthen the
system’s performance. The integration of version 5 of You Only

Look Once (YOLOv5), DeepSORT, Euclidean distance transform,
and a Proportional-Integral-Derivative (PID) controller forms the
foundation of this robust autonomous landing solution. YOLOv5 is
employed to address the task of identifying both the designated
landing area’s visual marker and potential obstacles such as
pedestrians, vehicles, and trees. The DeepSORT algorithm plays a
vital role in tracking identified objects. The utilization of Euclidean
distance transform in conjunction with object detection provides
the systemwith the ability to discern open spaces devoid of obstacles
within the designated landing area. The PID controllers form
the control strategy of the system, generating precise movement
commands for the UAV based on the visual cues of the target
landing area and the detected obstacles. This controller ensures
smooth and controlled maneuvers, enhancing the accuracy of
the landing procedure. To establish the efficacy and safety of
the proposed system, a comprehensive approach to testing and
validation is adopted. Initial tests are conducted to evaluate the
system’s functionality, followed by a software simulation to further
analyze its performance in a controlled environment. This stepwise
validation strategy mitigates potential risks and allows for refining
the system before real-world tests. Subsequently, a hardware system
is developed, incorporating the autonomous landing system,
and rigorously tested in real-life scenarios. The hardware testing
validates the feasibility of implementing the proposed solution
in practical applications and offers insights into its performance
under dynamic conditions. In conclusion, this paper presents a
comprehensive and innovative autonomous landing system tailored
for quadrotor autonomous UAVs. The integration of YOLOv5,
DeepSORT, Euclidean distance transform, and a PID controller
forms a synergistic approach to address the challenge of precise
landings in varying conditions, including the presence of obstacles
and the absence of visual markers. The system’s effectiveness is
established through a rigorous testing process, which encompasses
initial functional tests, software simulations, and real-life hardware
testing. The outcomes of these tests demonstrate the system’s ability
to successfully navigate complex landing scenarios, confirming
its robustness and reliability. The presented autonomous landing
system holds significant potential for enhancing the autonomy and
adaptability of UAVs in critical missions, including search and
rescue, surveillance, and package delivery. As UAV applications
continue to expand, the advancement of such autonomous
landing solutions becomes pivotal for ensuring safe and efficient
autonomous operations.
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