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The fusion of wearable soft robotic actuators and motion-tracking sensors can
enhance dance performance, amplifying its visual language and communicative
potential. However, the intricate and unpredictable nature of improvisational
dance poses unique challenges for existing motion-tracking methods,
underscoring the need for more adaptable solutions. Conventional methods
such as optical tracking face limitations due to limb occlusion. The use of
inertial measurement units (IMUs) can alleviate some of these challenges;
however, their movement detection algorithms are complex and often based
on fixed thresholds. Additionally, machine learning algorithms are unsuitable
for detecting the arbitrary motion of improvisational dancers due to the
non-repetitive and unique nature of their movements, resulting in limited
available training data. To address these challenges, we introduce a collider-
based movement detection algorithm. Colliders are modeled as virtual
mass-spring-damper systems with its response related to dynamics of limb
segments. Individual colliders are defined in planes corresponding to the
limbs’ degrees of freedom. The system responses of these colliders relate
to limb dynamics and can be used to quantify dynamic movements such
as jab as demonstrated herein. One key advantage of collider dynamics is
their ability to capture complex limb movements in their relative frame, as
opposed to the global frame, thus avoiding drift issues common with IMUs.
Additionally, we propose a simplified movement detection scheme based on
individual dynamic system response variable, as opposed to fixed thresholds
that consider multiple variables simultaneously (i.e., displacement, velocity, and
acceleration). Our approach combines the collider-based algorithm with a
hashing method to design a robust and high-speed detection algorithm for
improvised dancemotions. Experimental results demonstrate that our algorithm
effectively detects improvisational dance movements, allowing control of
wearable, origami-based soft actuators that can change size and lighting
based on detected movements. This innovative method allows dancers to
trigger events on stage, creating a unique organic aesthetics that seamlessly
integrates technology with spontaneous movements. Our research highlights
how this approach not only enriches dance performances by blending
tradition and innovation but also enhances the expressive capabilities of
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dance, demonstrating the potential for technology to elevate and augment
this art form.

KEYWORDS

activity recognition, movement detection, colliders, wearable sensors, inertial
measurement units (IMUs), soft robots, dance

1 Introduction

Dance is an art form that has been present in human
society for thousands of years. From ancient tribal dances
to contemporary styles, dance has always been a means of
expression and communication. In recent years, the intersection of
technology and the performing arts has given rise to innovative
approaches aimed at pushing the boundaries of artistic expression.
The amalgamation of soft robotics and wearable technologies
has paved the way for a novel avenue of exploration, where
human movements become a canvas for the synchronization of
mechanical augmentation. The usage of technology is becoming
an increasingly important aspect of modern dance with the
abundance of insight it can provide to the dancers and the
audience. For example, Moriaty and Sykes (2022) presented the
use of haptic feedback systems for audiences to influence the
direction of performance. Haptic pads have been used to allow
the audience, especially the blind, to feel the performance through
vibrations corresponding to the dancers’ movements (Lycouris et al.,
2012). Danceroom Spectroscopy is a tool that uses quantum
molecular dynamics algorithms and depth sensors to render human
movements as energy landscapes in a simulated environment
(Glowacki et al., 2012). Allen d’Ávila Silveira et al. (2022) have
developed a soft robotic wearable device that guides lower limb
movements to inspire and challenge dancers by constraining
and enabling new performance possibilities. Translating dance
movements into physical formof feedback or input requires complex
algorithms with short computational times that may be addresses by
developing novel techniques.

Motion tracking in the context of detecting movements during
dance performances presents a multifaceted challenge that stems
from the intricacies of human movement and the need for real-
time responsiveness. Traditional external motion tracking systems
that use cameras often struggle to accurately capture the dynamic
and nuanced motions inherent in dance, where fluidity, rapid
changes, and intricate gestures are integral components. To avoid
issues of occlusion prevalent in optical motion capture, IMUs
have been added to some external camera-tracked solutions
(Matsuyama et al., 2021). Nam and Kim (2018) presented a
dance training game that employs wearable devices and motion
capture technology to analyze and replicate dance movements
for health and fitness purposes. Recently, Ami-Williams et al.
(2024) examined the challenges of capturing the movement of
dancers wearing traditional African masquerade garments, and
developed an efficient pipeline for digitizing and visualizing these
performances using a combination of motion capture technologies.
The general use of movement detection algorithms and human
motion capture have been greatly influenced by other areas outside
of dance. For example, the IMU motion capture is used in various
applications including rehabilitation (Gu et al., 2023), animation

(Roetenberg et al., 2009), and teleoperation of robots (Miller et al.,
2004; Kobayashi et al., 2014; Zhu et al., 2022). IMU sensor-based
tracking has been used in applications such as slip prevention
through detection of gait perturbations (Trkov et al., 2019), or in
kneel assist devices to reduce occupational hazards for construction
workers on roofs (Chen et al., 2021b; Chen et al., 2021a). The
challenge with tracking and responding to dance movements lies
in developing a system that not only accounts for the diverse
range of movements performed by dancers that include whole-body
multi-degree-of-freedom motions but also operates seamlessly, in
real-time, is compact, and can operate for the whole duration of
performance.

Dance motions and movements of limbs can be detected based
on various IMU sensors-based algorithms. One of the widely used
methods to estimate upper limb use is by applying a specific
threshold to the measured IMU acceleration (Subash et al., 2022).
Meghji et al. (2019) developed an algorithm for tracking and
quantifying change of direction in athletes using IMU sensor
signals partly by using a piece-wise linear thresholding algorithm.
Detecting turns among Parkinson disease patients has been
performed using different thresholds for head, neck, and ankle
orientations sensed by IMUs (Rehman et al., 2020). All of the above-
mentioned algorithms use a threshold-based algorithms, which
require simultaneously checking of multiple variables (i.e., linear
and angular displacements, velocities, and accelerations) of multiple
limb segments that is computationally intensive and requires setting
multiple thresholds. A possible alternative approach is to capture
motion dynamics through introducing virtual mass-spring-damper
elements that capture the dynamic response and simplifies the
detection algorithm as discussed in this study.This concept has been
used in a few robotics applications in different scenarios. Virtual
spring-mass-dampers were used as virtual restrictions between
arm and end-effector of two robots to impart obstacle avoidance
capability (Jin et al., 2004). Swarm cohesion was achieved between
multiple non-holonomic mobile robots (Wiech et al., 2018) as well
as spacecraft formation control was demonstrated (Chen et al., 2015)
using virtual spring-mass-damper connections between individual
entities. A concept of virtual spring forks has also been used to obtain
realistic visual force feedback from objects manipulated in virtual
environments (Koutek and Post, 2001). The virtual representation
of mass-spring-damper elements may be used to reflect naturalistic
reaction of attached objects.

Dance performances can visually augment human movements
by using wearable technologies that can produce visual stimulus
through lighting or changes in shape or size of wearable articulating
objects. Soft actuators, composed of flexible, compliant materials
can mimic such natural movements and have found applications
in various fields, including robotics, medicine, and the arts. Unlike
traditional rigid actuators, soft actuators provide safe and adaptive
interaction with their environment, making them suitable for
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delicate tasks and wearable technologies (Shintake et al., 2016;
Polygerinos et al., 2015), including safe, close interaction with
the dancers. In the arts, soft actuators are employed to create
dynamic and interactive installations that respond to audience
presence or environmental changes. For example, collaboration
between artists and engineers has led to utilizing soft robotics
to develop kinetic sculptures that move and transform in fluid,
organic ways, enhancing the sensory experience and engaging
viewers more deeply (Jørgensen, 2019). These actuators enable
artists to explore new forms of expression, pushing the boundaries
of traditional media by incorporating movement and interactivity
into their work. An example of soft actuators that can achieve
such large deformations with pre-programmable deformations was
enabled by origami-inspired design with soft (Li et al., 2017) or
rigid panels (Robertson et al., 2021). This emerging approach has
been used for the development of soft actuators used in this work to
augment dancers’ main stage performance.

In this paper, we present a wearable system for visually
augmenting dance performance through novel collider-based
movement detection algorithm and control of wearable soft robots.
The colliders function as a mass-spring-damper dynamic system
which response is taken as the only parameter in the detection
algorithm, thus reducing the number of variables to be tracked.
Importantly, the colliders operate in a relative reference system
thus present a particular advantage to overcome drift of inertial
sensors to guarantee precise tracking over the long period of time. In
addition, we implemented the hash chains to store the sequence of
detected events that significantly reduce the time complexity of the
detection algorithm compared to traditional logic tree conditions
checking. The advantages of the algorithm were validate through
several experiments demonstrating no affect of drift on detection,
reduction in computational time, and accurate detection of dance
movements.

The proposed system has been used for dance movement
detection to control actuator contractions and lighting effects by
changing the visible color and its intensity. This produced a unique
organic aesthetic of the main-stage performance that was possible
through the collaborative effort between artists and engineers.
Overall, the main contributions of this paper are threefold: (i) we
present a novel collider-based approach that uses a virtual mass-
spring-damper system in a relative frame to capture dynamics
of human limb using a single variable that is not affected by
the drift of inertial sensors, (ii) we demonstrate that hash chain
method significantly speeds up the detection time of complex
movements compared to traditional logic tree condition checking,
and (iii) we demonstrate the use of soft actuators and collider-based
algorithm can be used for visually augmenting dance performances.
In subsequent sections we elaborate on the technical materials
and methods used in this work, the corresponding results, and a
concluding discussion.

2 Materials and methods

2.1 Origami inspired actuator

The design of the soft actuators was iteratively developed
through experiments. The actuators have to be large enough to

be visible to the audience, while still allow dancers to perform
improvisational movements. The initial simple inflatable pouch
designs made of silicone rubber were omitted due to the required
large amount of pressurized air for their operation making
them unpractical. Thus origami-inspired structures were developed
with electric motors to operate their contraction (see Figure 1).
We fabricated the actuators out of translucent thermoplastic
polyurethane (TPU) by 3D printing them on an Ender CR-10
FDM printer. An LED light was embedded inside as shown in
Figure 1A, to provide additional visual effects and augment the
dance performance.Themain body of the actuator has a bellow-like
structure that can fold upon itself. The actuator can be compressed
by internal pulleys driven by two servo motors (see Figure 1B).
Each actuator is independent and all the mechanical and electrical
elements and circuits are contained within the TPU body. The
actuators receive signals from the IMU trackers mounted on
individual limb segments of a dancer and use them to control
the desired actuator motions and LED color selection as guided
by the colliders-based tracking algorithm described subsequently.
Detected movements triggered simple on/off responses in the
soft robots, which included both LEDs and electric motors.
We did not incorporate proportional control, which could have
allowed for more nuanced, continuous robot actions. Future work
could explore more advanced control schemes involving multiple
sequenced control gestures, enhancing the system’s responsiveness
and adaptability.

2.2 Wireless IMU trackers

The IMU trackers are equipped with Bosch BNO055 and Bosch
BMI270 sensors, designed for precise motion tracking. The Bosch
BNO055 is a sophisticated 9-axis “absolute orientation sensor”
that incorporates a 3-axis accelerometer, a 3-axis gyroscope, and
a 3-axis magnetometer. It features a built-in micro-controller for
sensor fusion, which processes raw data from these sensors to
provide accurate orientation and motion tracking with minimal
external processing. Conversely, the Bosch BMI270 is a low-
power IMU that includes a 3-axis accelerometer and a 3-axis
gyroscope, optimized for wearables and other battery-powered
applications due to its energy-efficient design. The main reason
for a built-in sensor redundancy is to increase robustness for
magnetically unstable environments. In our implementation, we
average signals from both sensors or the system can switch
to the BMI270, if required due to presence of disturbance, to
maintain reliable tracking. These sensors are paired with an
ESP32-C3 micro-controller, which wirelessly transmits data to a
Raspberry Pi running a local server for forward kinematics (FK)
algorithms.

2.3 Forward kinematics

Forward kinematics is used to convert the orientation
data from the IMU trackers to limb and body positions. The
full FK system consists of 15 tracking points, as illustrated
in Figure 2. Trackers are attached to various segments of the
body including - the head, the chest (upper torso), lower back
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FIGURE 1
(A) Individal soft actuator along with (B) the internal pulley mechanism and LED circuit. (C) The soft actuators on a performer during the
dance sequence.

(lower torso), biceps, forearms, hands, thighs, shins, and feet
as shown in Figure 2A. The FK reference frame is positioned
at the lower torso. For versatile use cases, the system allows
enabling or disabling tracking for the upper and lower body if
required.

During the initial system calibration, the user wearing the
trackers assumes a T-pose (see Figure 2A). At this stage, an offset
quaternion for each tracked limb is computed and saved. This
calibration ensures accurate alignment of the virtual model with the
user’s physical movements, facilitating precise motion tracking for
applications ranging from movement analysis of dance performers
to biomechanical human gait analysis. In operation, the Raspberry
Pi server receives the quaternion values from all the IMU trackers.
These quaternions are then converted to Euler angles - roll,
pitch, and yaw, that define the orientation of each limb segment
in space using Equation 1. Variables qw, qx, qy, and qz are the
quaternion components and ϕ, θ, and ψ are the roll, pitch, and yaw
Euler angles, respectively. A unit vector in the direction defined by
Euler angles and the limb lengths are then used to determine the
position of the body in space.

[

[

ϕ
θ
ψ
]

]
= [[[

[

atan2(2∗ (qw ∗ qx + qy ∗ qz) ,1− 2∗ (qx
2 + qy

2))
−π/2+ 2∗ atan2(√1+ 2∗ (qw ∗ qy − qx ∗ qz),√1− 2∗ (qw ∗ qy − qx ∗ qz))

atan2(2∗ (qw ∗ qz + qx ∗ qy) ,1− 2∗ (qy
2 + qz

2))

]]]

]
(1)

2.4 Colliders

Colliders provide a novel method for quantifying and detecting
user movements based on measured limb kinematics, such as
from wearable IMUs. The colliders function as virtual mass-
spring-damper systems anchored to the current limb position of
a subject (see Figure 3). They are defined in a relative coordinate
system with respect to the individual limbs, which offers an
important advantage of effectively mitigating sensor drift issues
commonly present in inertial-based sensor measurements. Each
collider is oriented in its respective axis representing linear or
rotational degree-of-freedom.The limbmotion is used as an input to
the virtual mass-spring-damper systems andwe observe its dynamic
response. To detect a specific motion, we predefined a virtual
space/bounds around the initial response signal and when collider’s
dynamic motion intersects (i.e., collides) with that virtual bounds, it
activates and enters a refractory period, during which it cannot be
reactivated.The colliders’ responses inherently encompass dynamics
associated with the position, velocity, and acceleration of the input
(e.g., limb segment) that are instead combined in a single output
response variable and thus reduce the number of tracking individual
variables. Importantly, colliders maintain functionality regardless of
potential sensor drift because their inputs are primarily based on
relative velocity and acceleration. The following equations govern
the mechanics behind movement detection using the colliders.
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FIGURE 2
(A) Representation of a performer wearing the IMU trackers and standing in T-pose for calibration. (B) Schematic of the overall system. (C) Schematic
electronic circuit of each IMU tracker.

M ̈qn = −C(q̇n−1 − ̃q̇n)) −K(qn−1 − ̃qn) (2)

In Equation 2, M represents the mass (or inertia) of the virtual
collider, C is the damping, and K is the spring stiffness. ̈qn, ̈qn, and
qn represent the collider’s response to the limb position ̃qn, and the
limb velocity ̃q̇n at any n

th instant.The update for the collider state is
obtained using simple integration Equation 3.

q̇n = q̇n−1 + ̈qndt

qn = qn−1 + q̇ndt
(3)

The collider-based detection is based on checking the relative
position of the limb and the collider-response. A movement is
detected once the collider state crosses a preset upper bound
around the limb state and then the lower bound, in that sequence.
This movement detection method is particularly ideal for use
cases involving extended performances, such as dance routines,
where traditional methods might require frequent re-calibration.
Compared to conventional threshold-based approaches, colliders
are adaptive, eliminating the need for setting static, predefined
values for each individual. This adaptability significantly reduces
setup time, as the process of determining actions associated with
specific triggers only needs to be done once, enhancing efficiency
and consistency in motion tracking. Collider performance is
demonstrated and assessed in this study using a simple punch
movements and through detecting dancemovements.The detection
of these events using colliders is compared to the detection
using fixed thresholds. The method of colliders also offers an
advantage in reducing the computational cost as large output sets
bound by thresholds can be computationally expensive due to
condition checking.

Colliders operate on a complexity scale of O(n), where the
computational load increases linearly with each new collider
added, whereas fixed thresholds operate on O(n+ 1), where the
computational load increases with each new threshold added and
an extra check for verifying if all conditions are being checked
simultaneously. This makes colliders more efficient and scalable for
complex motion-tracking systems.

2.5 Hash chains

Detecting a sequence of motions was implemented using
collider signals and hash chains method shown in Figure 4. Every
time colliders are activated, they log a key into a queue and start a
decay timer. If another collider is activated within this time frame,
the new key is added to the queue, and this repeats until decay timer
expires. When the decay timer expires without any new collider
activations, all keys in the queue are concatenated and sent to a hash
table for verification. If the concatenated keymatches an entry in the
predefined hash table, the associated action is triggered; if no match
is found, the action chain is discarded. This process repeats for the
duration of use.

The advantage of using a sequential hash is its average
computational complexity of O(1), meaning it performs in constant
time regardless of the number of entries. In contrast, traditional logic
trees have a complexity of O(n), where the time required increases
linearly with the number of actions.When comparing our combined
system to traditional tracking setups, the latter typically have a
complexity of O(n2 + n), making them significantly less efficient.
Our proposed collider tracking with sequential hashes operates at
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FIGURE 3
Representation of colliders related to the forearm IMU tracker and the corresponding elbow joint. Masses (M) shown with solid boundaries are for
translation while the rotational inertias (J) with dashed lines are for rotational degrees of freedom.

O(n), offering a more efficient and scale-able solution for complex
motion tracking systems.We demonstrate performance comparison
to validate the results in Section 3.3.

3 Results

3.1 Collider parameter sensitivity analysis

Colliders are considered virtual mass-spring-damper systems.
The selection of parameters associated with this system will affect
how actions are detected in this context. Therefore, we performed
a parameter sensitivity analysis to demonstrate the changes in
system response and use them as a guidance for selection of
parameters. We selected a simple arm extension action as a
reference to evaluate the response of the colliders by varying
virtual mass, spring constant, and damping parameters. Figure 5
shows various cases that were evaluated to finalize a set of
parameters that would work well for the purpose of the pertinent
dance performance. Underdamped (Figures 5A, B, E, F, I, J) and
critically damped (Figures 5C, D, G, H, K, L) conditions are shown
for fast and slow extension movements, simulating a straight

arm punch, wherein the hand position varies from 0 (initial
position) to full arm extension 0.77 m and held for 3 s. Mass
and damping were both varied from 0 to 3 and spring constant
from 0 to 10 in their corresponding units. When varying one
quantity the other two were fixed at 1 in underdamped case
and appropriately calculated for critical damping case using the
equation: C = 2√MK, where C is the damping, K is the spring
constant, and M is the mass.

It is clear from Figure 5 that the critically damped response
is slow and does not reach the reference arm position. Therefore,
this condition is not ideal for movement detection of real-time
performances. Underdamped condition with mass 1 kg, damping
1.5 N s/m, and spring constant 9 N/m were selected. Underdamped
system response is much faster, crosses the reference signal, and is
used for detecting crossing of both upper and lower bounds around
the reference signal as well as the sequence inwhich they are crossed.
These sequences make for simpler conditions to be checked for
detection. For instance, if the sequence of bounds being crossed is
lower-upper-lower it is easy to conclude that the arm was extended
and withdrawn. Similar simple sequences can be created for all
types of movements based on the reference and bounds even for
continuous cases.
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FIGURE 4
Schematics of a collider-based movement detection algorithm. The IMUs measure human kinematics and colliders are computed and checked for
exceeding bounds. If a collider is activated within a set time detection window, t, its ID is added to a hash chain. The process repeats until no more
activations occur within the time detection window, signaling the end of the chain. The completed chain is then sent to check the matching in the
predefined hash table to identify the movement.

3.2 Colliders in long performances not
affected by drift

Drift is one of the leading reasons for errors when using IMU
sensors over a long period of time that affect sensor signals. Contrary,
colliders are bound to the reference and the colliders’ origin moves
along with the sensor signal. In cases like dance movement detection,
where the exact joint angle measurement are not of primary goal
and detecting dance movements is the primary focus, colliders can
help offset the effect of drift. Fixed thresholds may either miss or
incorrectly detect the movement if a sensor signal has drifted over
time. We evaluated the effect of drift by detecting a similar arm-raise
movement initially when the sensors were turned ON and then about
60 min later after allowing the sensors to drift. The results of this
evaluation are shown in Figure 6. The left side of the figure shows the
first movement at the start during the first 10 s. It can be seen that
the signal crosses fixed threshold for this movement and both fixed
threshold and collidermethod detect themovement. However, on the
right side of the figure when the action is repeated after 60 min, the
sensor has drifted (8 deg), and the fixed threshold is never crossed

meaning movement was not detected. Contrary, since the collider’s
origin moves with the reference signal, the collider is still able to
detect the movement. The signal used here is the shoulder extension
angle involved in raising the arm. The collider detects the movement
at about 0.22 s later than the fixed threshold at the start because the
colliderhas tomakeafixednumberofmandatorychecksof thecollider
state. However, with colliders and hash chain implementation, the
execution time remains constant even if the number of movements to
be detected (conditionals) increases.The subsequent section discusses
the advantage of hash chains as conditionals increase.

3.3 Performance comparison of hash chain
with traditional logic tree checking

Hashchainsusedwith collidersprovide away tomaintain the time
complexity of themovement detection algorithm constant even when
the total number of actions/conditionals is increased. Traditional if
statements with single threshold and nested threshold checks when
evaluated for increasing the number of conditionals clearly show a
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FIGURE 5
Collider responses for fast and slow arm punch movements for different combinations of collider’s mass, spring constant, and damping parameter.
Effect of virtual mass variation is shown for (A) underdamped fast punch response, (B) underdamped slow punch response, (C) critically damped fast
punch response, (D) critically damped slow punch response. Response of varying damping parameter is shown for (E) underdamped fast punch, (F)
underdamped slow punch, (G) critically damped fast punch, (H) critically damped slow punch. Demonstration of spring constant variation on (I)
underdamped fast punch response, (J) underdamped slow punch response, (K) critically damped fast punch response, (L) critically damped slow
punch response.

FIGURE 6
Impact of IMU sensor drift on motion detection and demonstration of successful functioning of colliders in a drift-affected system where traditional
thresholds fail to detect events. At the start of a test, fixed threshold and collider-based algorithm both correctly detect the motion (i.e., shoulder
extension); left plot. After 60 min of data collection and presence of drift in a reference signal, fixed threshold does not detect the event, while collider
successfully detects the motion; right plot.
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FIGURE 7
Comparison between the performance of fixed thresholds with decision statements and colliders with hash chains for detecting movements
represented by the mean time taken for execution and the corresponding standard deviation as the number of conditionals is increased.

linearly increasing time requirement as seen in Figure 7. The single
threshold checks involve checking only one type of movement at a
time.Whereas thenested thresholdchecksevaluate compoundactions
comprisedofmultiplemovementshappening inaparticular sequence.
In the current scenario, three types of threshold checkswere evaluated
with each check consisting of conditionals in a range of 0–1,000.
For nested thresholds case, the conditionals were nested inside each
threshold check. In Figure 7, the standard deviation also increases due
to the fact that the time of execution varies between the fastest and
slowest depending on the number of conditionals being checked. It is
also clear that the collider-based method with hash chains executes
with constant time even with an increase in the number of colliders
and the number of conditionals in the hash chain. The maximum
number of colliders possible for our wearable system is 90, with a
maximumof 15 trackers per subject andwith 6 colliders for each limb
tracker. The collider method has a constant performance even with
zero conditionals because there are a set number ofmandatory checks
to be conducted based on the number of colliders. While colliders
outperform the fixed threshold checking, even the worst-case collider
andhashchainmethodperformance is seentobebetter thanthatof the
thresholdmethodas thenumberof conditionals increasesbeyond200.
Thismakescollidersandhashchainsbetter forreal-worldperformance
situations where the types of distinct movements can be very high.

3.4 Detection of dance movements using
colliders

3.4.1 Arm punch detection
Detection of specific movements was first demonstrated on

a simplified example of a straight-arm punch. The movement

was detected based on the extension of the elbow. Nine repeated
movements were completed and recorded. Figure 8 shows the
detection of the punch using a rotational collider at the elbow joint
and fixed threshold. The punch is detected when the arm is fully
extended and the elbow is almost parallel to the horizontal reference
as shown by the schematic poses in Figure 8B. Both the collider and
fixed threshold algorithms detect the first twomovements; however,
the last punch does not cross the threshold and is only detected
by the collider. The limitation of using a fixed threshold is seen in
Figure 8D where the signal misses the threshold by a very small
margin and is not detected. Figure 8C shows the detection delay of
the collider as compared to the fixed threshold method.The delay is
0.2 s for the first and 0.37 s for the second punch.The collider always
detects the punch by checking the following sequence wherein the
collider signal first crosses the upper bound (see Figure 8B), then
the lower bound of the collider steady region (see Figures 8C, D).
The underdamped nature of the collider allows for this behavior of
the collider signal and it can be extended to all kinds of movements
by selecting any appropriate limb angle or translation obtained from
the kinematics computation.

3.4.2 Dance movement detection
Two different dance poses were mimicked by two different

subjects simulating movements performed by dancers, bending
backward and full arm extension out to the sides from a tucked-
in position. The back bending portion was detected using six
rotational colliders with three colliders (one in each rotational axis)
respectively placed on the hip/lower back and upper back segments
(i.e., Chest XYZ and Hip XYZ). The arm extension was detected
using twelve rotational colliders such that one collider was placed
on each axis (i.e., X-, Y-, and Z-axis) of the left bicep, left forearm,
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FIGURE 8
(A) Detection of nine consecutive straight arm punch movements using fixed threshold and collider methods. (B) Detail showing detection for three
consecutive punches with representative limb positions. (C) Detail showing detection using both threshold and collider-based methods. (D) Detail
showing instance when fixed threshold method does not detect one of the punches (fixed threshold is set at 0 deg), while collider method successfully
detects the movement.

right bicep, and right forearm. Figure 9 shows the detection of dance
pose events using these colliders. The detection event is registered
as the performer comes to the limits of their pose and begins to
hold the pose.

As seen in Figure 9A the peaks of the angles about X-axis are
good indicators of the back bending movement and the collider
detects this just after the peak when the collider signal has registered
the required sequence of keys similar to those described in the
previous section describing the simple arm punch movement.
Similarly, in Figure 9B the collider detects themovement after all the
keys for all the involved angles are satisfied in the desired sequence.
The checking of all involved collider signals for keys proves to
be a simple and effective way to detect compound movements
involving multiple limbs. Importantly, successful detection results
also shows that the same set of colliders can be used for different
performers without the need for making a new set of thresholds,
which significantly simplifies the implementation and emphasizes
practicality of this approach.

4 Discussion

The motivation behind this work was the requirement for
movement detection for a dance performance. Soft actuators were
developed to depict reactive naturalistic motions based on the
movements of the performer. We acknowledge that our motions
were not performed by the dancers and were simulated to replicate
the motion observed. Regardless, the results demonstrate the
successful motion detection on data from two subjects that validates
the proposed algorithm.

The results present the use and advantage of colliders over fixed
thresholds. Initially, it is necessary to select a set of parameters for
the colliders to suit the type of application. Therefore, an analysis
of collider behavior with varying virtual mass, spring constant, and
damping values is presented and an underdamped system with
1 kg mass, 9 N/m spring, and 1.5 N s/m damping was selected as
it gives a fast response. The fast response as well as overshoot
was desired for movement detection in the current application
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FIGURE 9
Detection of actual actions performed by two separate subjects. (A) Detection of back bending backwards using 6 colliders (i.e., Chest XYZ and Hip
XYZ). (B) Detection of double full arm extension out to the side from arms tucked in position using 12 Colliders (i.e., Left Bicep XYZ, Left Forearm XYZ,
Right Bicep XYZ, Right Forearm XYZ).

of dance movements. An expected behavior of a second-order
underdamped system with an overshoot is purposely utilized to
set the expected sequence of detecting when the system response
crosses collider’s steady region. Importantly, the collider’s response
always follows the reference movement. This characteristic was
beneficial when considering the case where sensors may drift
in magnitude over time. Even with the drift of magnitude of a
movement, the movement pattern and associated dynamics are
preserved, which preserves the functionality of a collider and
performs check of its position signal with respect to its upper and
lower bounds of collider’s steady region to successfully detect the
movement. Whereas, a fixed threshold which is set at the start
may not be able to detect the movement if the sensors drift during
a performance. Lakshmiprabha et al. (2015) proposed a method
for drift reduction of IMUs using sensor fusion with vision data
with an extended Kalman filter, at regular intervals; however, they
report that the method may not be robust enough to account
for different types of drifts for different IMU sensors. Another
method, which uses local IMU accelerations for dead-reckoning
drift reduction to estimate kinematic chain (like the human body)
positions in space-like environments, is limited is limited and cannot
be used for our application due to by presence of gravity and
considering slow movements (Stretton and Koulieris, 2024). The
method introduced in this work also presents limitations in the fact
that different environmentswill require different collider parameters
for accurate results.

Colliders are also implemented along with hash chains to
store the movement sequences and to register multiple movements
that are performed in series. This implementation has a constant
time of execution even if the number of movements/conditionals
to be detected increases. With fixed thresholds, checking for
each condition and a sequence of conditions takes increasingly

more time. This advantage of the colliders and hash chain
method is particularly clear when there are more than 200
uniquemovements/conditionals. In the detection of movements, we
implemented a simple straight-arm punchmovement which showed
how the fixed threshold is not able to detect the movement as
the reference signal does not cross the threshold line. This specific
example shows another important advantage of the collider signal
which continuously follows the reference signal and will always
detect themovement even if themagnitudes change. In other words,
this means that it is not necessary for each punch to be executed
in the exactly same manner with the total arm extension, as the
colliders can capture the essence of the movement even for shorter
punches, as demonstrated in Figure 8.

Increasing the number of conditionals for situations with large
number of involved variables and conditions, increases complexity
of movement detection and computational time (see Figure 7). The
hash chain algorithm is perfectly suitable for such applications as
the computational time remains constant. Event keys representing
sequence of collider detection can be defined for variousmovements
and checked simultaneously in specific instance of time. In our
specific demonstration, he backwards back bending and double-
arm extension movements shown in Figure 9B were presented as an
example of detecting compoundmovements usingmultiple colliders
simultaneously by checking simple keys. These keys can be further
expanded in the future for detecting multiple events of movements
and used in dance performances or general event detection.

We acknowledge that the presentedmethod has also limitations.
For example, collider detection is slightly delayed as compared
to the fixed threshold detection (see Figures 8, 6); however,
this was not considered as significant in the present context
and our specific application. Nevertheless, the colliders can be
tuned to detect earlier by making the virtual mass-spring-damper
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system more underdamped (i.e., decreasing damping ratio ζ =
C

2√MK
≪ 1), which will increase the speed of colliders’ response as

demonstrated in Figure 5. Another potential limitation is that the
inertia of the actuators with respect to the limb motion may induce
noise in the sensor reading and could affect the algorithm accuracy.
As per feedback from the dancers, one of the constraints that the soft
structures imposed on dancers was that they limited some specific
dancemovements that could not be performed due to the placement
of the actuators at specific body locations. For example, rolling over
on the side was not possible if the actuator was placed on the arm.
In addition, wired IMUs were replaced with wireless modules at the
initial stages of the study, to facilitate better dance movements.

In summary, this paper presents a novel virtual collider-
based movement detection approach. The colliders, modeled as
virtual mass-spring-damper elements, were shown to have the
capability of detecting naturalistic movements in real time for
artistic performances or other movements. The audience was able
to appreciate the use of this technology for an immersive experience
during a recent dance performance. In the context of our application,
the gesture-based control system creates a versatile toolbox of
effects, each tied to specific gestures that dancers can naturally
integrate into their movements. This setup ensures responsiveness,
allowing dancers to trigger effects, and create visual augmentation
using technology during a dance performance, reliably without
needing to worry about exact positioning or constant re-calibration
during their performance. Beyond dance, this system could have
applications in the fields such as healthcare, enabling gesture-
controlled assistive devices, or gaming, where it could offer more
immersive virtual reality experiences. In addition, the proposed
system can be used in the industrial settings, where gesture
control could streamline machine operation, providing an intuitive
and efficient interface. Its flexibility makes it a powerful tool for
enhancing user interaction across a wide range of fields.
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