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In this paper, we present a global reactive motion planning framework designed
for robotic manipulators navigating in complex dynamic environments. Utilizing
local minima-free circular fields, our methodology generates reactive control
commands while also leveraging global environmental information from
arbitrary configuration space motion planners to identify promising trajectories
around obstacles. Furthermore, we extend the virtual agents framework
introduced in Becker et al. (2021) to incorporate this global information,
simulating multiple robot trajectories with varying parameter sets to enhance
avoidance strategies. Consequently, the proposed unified robotic motion
planning framework seamlessly combines global trajectory planning with local
reactive control and ensures comprehensive obstacle avoidance for the entire
body of a robotic manipulator. The efficacy of the proposed approach is
demonstrated through rigorous testing in over 4,000 simulation scenarios,
where it consistently outperforms existing motion planners. Additionally,
we validate our framework’s performance in real-world experiments using
a collaborative Franka Emika robot with vision feedback. Our experiments
illustrate the robot’s ability to promptly adapt its motion plan and effectively
avoid unpredictable movements by humans within its workspace. Overall, our
contributions offer a robust and versatile solution for global reactive motion
planning in dynamic environments.

KEYWORDS

autonomous robotic systems, guidance navigation and control, real-time collision
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1 Introduction

1.1 Motivation

In recent years, the prerequisites of industrial production and assembly have changed
significantly and the ensuing challenges are constantly evolving. Continuously decreasing
product life cycles, uncertain product volumes and rapidly growing product variants
due to the growing trend towards mass customization have led to an increasing
demand for flexible, adaptive multi-purpose manufacturing and assembly systems
(El Zaatari et al., 2019; Krüger et al., 2009; Reinhart and Loy, 2010; Fechter et al., 2016).
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Although classical industrial robots have proven to be efficient
tools for repeatable tasks in traditional mass production, they need
to be operated behind safety fences in dedicated areas to ensure
the safety of human coworkers, which limits their flexibility and
reusability while increasing their changeover times, costs and space
requirements (Matheson et al., 2019; Barbazza et al., 2017).

Human robot interaction (HRI) is generally seen as a
promising solution to increase flexibility while reducing production
and assembly costs in continuously changing and uncertain
market environments (Matheson et al., 2019; Kragic et al., 2018;
Fechter et al., 2016; Krüger et al., 2009; El Zaatari et al., 2019;
Faccio et al., 2019; Meziane et al., 2017). However, despite the
widely recognized potential and the long-standing availability of
the technology, the use of collaborative systems is still almost
exclusively limited to areas where no direct contact with humans is
necessary and the workspaces are structurally separated from each
other. Moreover, robots employed in industry typically adhere to
rigidly pre-programmed trajectories and routines and possess only
limited capabilities to interact or react to changing environmental
conditions (Kragic et al., 2018; El Zaatari et al., 2019).

To cope with the challenges in the dynamic and unpredictable
environments around humans, robots must be able to adapt quickly
to changing conditions and generate new trajectories in real time
(Kappler et al., 2018; Liu et al., 2022).

Collision avoidance is a key component for solving such motion
planning problems andwhile a lot of research has been conducted in
this field, challenges persist, in particular in dynamic environments
Huang et al. (2019); Niloy et al. (2021).

1.2 Related work

The subsequent overview of the related work is organized by
following the allocation from (Kappler et al., 2018), which classifies
motion planning approaches into the categories sense-plan-act,
locally reactive control and reactive planning.

System architectures that follow the sense-plan-act paradigm are
characterized by a rather strict separation of perception, motion
planning and control. Typically, sensor feedback is considered at the
initial stage to update an environment model. The motion planner
then uses this model to identify a preliminary, coarse path towards
the goal. Subsequently, a separate controller is employed to track this
collision-free path (Kappler et al., 2018). Due to the vast amount
of research in this field, we focus our review on sampling-based
planning approaches in this category.

Sampling-based planners typically establish a connectivity graph
between the initial and goal configurations of the robot by
connecting random samples in the search space. The concept
received significant attention in the field of motion planning over
the last decades due to its ability to handle high degrees of freedom,
and its straightforward implementation (Connell and La, 2018).

The rapidly-exploring random trees (RRT) (LaValle, 1998) and
the probabilistic roadmap method (PRM) (Kavraki et al., 1996)
are two of the most commonly used sampling-based approaches
in robotics (Short et al., 2016).

The RRT algorithm incrementally constructs a search tree in the
robot’s configuration space to find a feasible path to the goal pose
starting from the initial robot configuration. A disadvantage of the

RRT planner and its variants is the lack of quality in terms of path
length, which led to the development of an asymptotically optimal
variant, the RRT∗ planner (Karaman and Frazzoli, 2011). Given
enough run-time, the RRT∗was shown to converge to an optimal
solution by rewiring the search tree and continuously adding new
nodes even after an initial solution was found.

In contrast to RRT approaches, the PRM algorithm consists of
two phases, a learning phase and a query phase. During the learning
phase, the configuration space of the robot is randomly sampled and
robot configurations that collide with known obstacles in the task
space are rejected. Afterwards, the resulting roadmap is used as a
basis for the query phase, where the shortest path from a start to
a goal pose is calculated (Kavraki et al., 1996). Similar to RRT, an
asymptotically optimal variant, the PRM∗was developed, which led
to significantly improved path quality (Karaman and Frazzoli, 2011).

Despite recent advances and efficient implementations with
replanning capabilities, such as the RRT∗FN-Dynamic (RRT∗FND)
planner (Adiyatov and Varol, 2017), Batch Informed Trees
(BIT∗) (Gammell et al., 2020), the Bidirectional Informed
RRT∗(BI2RRT∗) (Burget et al., 2016) and a dynamically replanned
RRT∗(Connell and La, 2017), sampling-based approaches still face
significant challenges. They tend to have high computational costs
(Grothe et al., 2022) and often require post-processing steps to
smooth and shorten the generated trajectories (Schulman et al.,
2014). Additionally, their performance can degrade notably when
navigating through narrow passages (Li and Dantam, 2023).

A seminal work in the area of locally reactive control is
the artificial potential field (APF) approach, where the robot
is controlled by artificial repulsive and attractive forces for a
collision-free motion to the goal pose (Khatib, 1986). While the
algorithm requires low computational resources, it suffers from
local minima. This can cause the robot to converge towards them
instead of reaching the goal pose, depending on the environment.
Many variants of APFs or related approaches were proposed to
overcome this limitation and to enable goal convergence in a wider
range of applications, notably the harmonic potential functions
(Connolly et al., 1990), which was further extended by Khansari-
Zadeh and Billard (2012), and successfully used to avoid static
and dynamic obstacles with the endeffector (EE) of a 7-degree of
freedom (DoF) manipulator. Related methods use repulsive forces
or velocities for collision avoidance of the whole structure of the
robot, which were either applied on predefined control points along
the robot structure (Chen and Song, 2018; Li et al., 2019) or use
the closest distance between robot and obstacle (Wang et al., 2018).
Further extensions exploit the robot’s nullspace in order to achieve
collision avoidance and simultaneously maintain a predefined EE
trajectory, e.g., the approach from Cefalo et al. (2017), where a focus
is placed on parallel computation and collision checks on a GPU.
Similarly, the approach by (Flacco et al., 2012) developed a fast
method for the minimal distance calculation, which was employed
to determine repulsive forces for collision avoidance and successfully
implemented on a 7-DoF robot.

Inspired by the behavior of charged particles in electromagnetic
fields, the authors in (Singh et al., 1996; Singh et al., 1997) developed
the circular field (CF) approach. CFs apply a virtual force similar to
the Lorentz force on the robot, which results in smooth trajectories
around obstacles. The virtual force does not induce any additional
energy into the system as it always acts perpendicular to the robot’s
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velocity and thus does not suffer from local minima. The original
algorithm was extended in Haddadin et al. (2011) as it suffered
from oscillations due to inconsistently defined artificial currents.
Therefore, a rotation vector is introduced for each obstacle in order
to define a consistent artificial current flow for each obstacle. An
alternative approach was presented in a series of works (Ataka et al.,
2018a; Ataka et al., 2018b; Ataka et al., 2018c; Ataka et al., 2022),
enabling the algorithm to be used in unknown environments.This is
achieved by projecting the robot’s velocity vector onto the obstacle to
define a continuous artificial current, thus avoiding the calculation
of the rotation vector.

Nevertheless, current CF and APF approaches can only serve
as local planners and perform poorly for finding global optimal
or even suboptimal solutions because of their limited exploration
possibilities.

Reactive planners are hybrid motion planners designed to
respond quickly to local changes while improving and correcting
the global path in response to larger environmental changes
(Kappler et al., 2018). Such hybrid approaches have been extensively
studied in the literature of mobile robotics and unmanned aerial
vehicles (UAV). Implementations often combine PRM and APF
(Ravankar et al., 2020), RRT and APF (Yingqi et al., 2021) or
variations of existing sampling-based strategies with custom reactive
controllers, e.g., lazy PRM with a reactive controller for dynamic
obstacles (Sánchez et al., 2006) or RRT-connect with a reactive
control law employing a sliding mode control scheme (Elmokadem
and Savkin, 2021).

While these hybrid planners work effectively in lower DoF
mobile robotic systems, their applications to systems with
higher DoF, such as robotic manipulators, are relatively sparse
(Kappler et al., 2018). For example, (Liu and Jiang, 2018) proposes
an approach that alternates between RRT for static obstacles and an
APF variant for dynamic obstacles, while (Li et al., 2021) deform
the trajectory of an RRT planner using locally reactive control for
a 7-DoF manipulator. Similarly, the elastic strip framework (Brock
and Khatib, 2002) modifies global candidate paths using APF for
real-time reactions to environmental changes.

The authors in Kappler et al. (2018) use global Riemannian
motion optimization and locally reactive control for several
experiments with a 7-DoF robot arm. In their work, they conduct
a comprehensive comparison of sense-plan-act methods, locally
reactive control and reactive planning. Their findings suggest
that reactive methods have distinct advantages over traditional
approaches, particularly in dynamic and uncertain environments.
Even in static environments, reactive planners showed competitive,
and sometimes superior, performance over traditional planning
methods, due to their ability to initiate movement without excessive
pre-planning. Reactive planners, by integrating global information,
provide superior adaptability in complex environments compared
to purely local methods.

However, a significant limitation of these existing hybrid
approaches is the strict separation between global and local
planning. In such methods, the global planner and local planner
are typically treated as distinct modules, with the local planner
often following the global planner’s path without fully leveraging
the global insights. This can lead to inefficient planning, where
local reactivity may disrupt global goals, or the global planner’s
computational cost is prohibitive in dynamic environments.

In our previous work Becker et al. (2021), we introduced
the circular field predictions (CFP) method, which enhanced
the original CF approach by incorporating a predictive virtual
agent framework for global path exploration. The CFP planner
demonstrated computational efficiency and high-quality path
generation on a 7-DoFmanipulator. In subsequentworkBecker et al.
(2023b), we provided rigorous proofs of collision avoidance and goal
convergence, validating the theoretical soundness of the approach.
However, these efforts were primarily focused on end-effector
obstacle avoidance and did not fully explore full-body obstacle
avoidance for manipulators.

This paper builds on these previous efforts by extending the CFP
planner to handle full-body obstacle avoidance. Unlike traditional
methods, which often focus only on the end-effector or parts of
the robot, our approach ensures that the entire manipulator avoids
obstacles while maintaining smooth, collision-free trajectories. This
full-body approach is particularly useful in environments where
dynamic and cluttered obstacles pose significant challenges to the
whole body of the robot.

One significant advantage of our approach over existing hybrid
planners is the efficient use of global planning insights within the
local planning strategy. By avoiding the strict separation between
global and local planning found in other methods, our approach
ensures that global information is dynamically leveraged in real-
time, leading to more efficient and smooth obstacle avoidance. This
allows the local reactive controller to not just follow the global
path but to dynamically adjust the trajectory based on the global
strategy. Moreover, our motion planning strategy is flexible enough
to integrate arbitrary global planners, allowing the framework to
adapt to different problem settings and robot configurations.

In summary, traditional motion planning methods, while
effective in handling high DoF systems, often face significant
computational challenges, especially in dynamic environments.
Reactive planners provide advantages in real-time reactivity but
struggle with global optimization and goal convergence. The
proposed approach presents a hybrid planning framework that
balances global trajectory planning with local reactivity, ensuring
full-body obstacle avoidance in highly dynamic and uncertain
environments. This novel approach extends the state of the art
in motion planning for robotic manipulators, offering a scalable,
computationally efficient solution for future robotic applications in
complex environments.

1.3 Contribution

In this paper, we extend the CFP algorithm to encompass full-
body avoidance for the entire structure of a robotic manipulator,
thereby developing a comprehensive robotic motion planning
framework that bridges the gap between global trajectory planning
and reactive control. The main contributions of this paper are.

• Development of a motion planning framework for full-body
obstacle avoidance of robotic manipulators by introducing
additional control points along the robot structure and
defining suitable control forces.
• Integration of global environment information
from arbitrary global planners in the virtual agent
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framework from (Becker et al., 2021) resulting in the informed
circular field (ICF) planner.
• Two algorithms for leveraging global information about
promising avoidance directions with the reactive ICF planner.
• The performance of 20 different global planners within the
framework is compared in 10 different environments with a
total of 4,000 simulations.
• Extensive comparison of the ICF planner against widely used
global and local motion planning approaches in a total of more
than 200 simulations.
• Verification of the proposed algorithm in real-world
experiments, where a 7-DoF Franka Emika Research 3 robot
avoids dynamic motions of a human in its workspace.
• Making the planning framework available for the community
by providing the source code1.

1.3.1 Relationship to previous publications
Note that a preliminary version of parts of this paper has

appeared in the conference paper (Becker et al., 2023a). In contrast
to our prior work, this article provides a more thorough description
of the planner details. Specifically, we expand on the motivation
and related work section, provide a detailed description of the
calculations for all forces and methods involved in generating robot
control commands, and explain the extension of the virtual agent
framework, including the new reward function and its structure
in detail–elements that had to be omitted in Becker et al. (2023a)
due to space limitations. Furthermore, we extend the methodology
for the robot control signal calculation, provide an open-source
implementation of our code base, and conduct additional extensive
simulations to determine appropriate global pre-planners. Lastly,
we implement the planning framework on a 7-DoF Franka Emika
robot, integrating a vision system for the detection and tracking
of humans within the robot workspace for performing real-world
experiments to demonstrate the efficacy of the motion planning
framework.

2 Motion planning framework

In this section, we introduce our unified motion planning
framework that consists of a reactive CF obstacle avoidance
algorithm inspired by electromagnetic fields combined with a
global motion planning approach. The global planning component
leverages the results from existing joint space motion planners by
extracting information about potential avoidance directions around
obstacles, which are subsequently exploited by a virtual agent
framework for efficient global exploration.

2.1 Reactive motion planning

We start the description of the reactive planning component
with an introduction to the steering forces acting on the EE of the
robot. Then, we continue with a presentation of the forces for full-
body obstacle avoidance and additional forces and supplementary

1 https://gitlab.com/roboterfabrik1/icf_planner

methods for enhancing the overall motion planning strategy of
robotic manipulators. The combination of all control commands
for generating a total reference signal for joint space control is
described in Section 2.1.9.

Our reactive vector-field approach is based on the definition of
several virtual forces to generate efficient, collision-free trajectories,
which are superimposed to form the resulting steering force f s for
controlling the EE

f s = f vlc + f cf + f cf,rep . (1)

It consists of an attractive potential field force f vlc for goal
convergence and CF-based obstacle avoidance forces f cf and f cf,rep,
which are explained in detail in the following sections.

2.1.1 Attractive goal force
In order to guide the robot EE to its goal pose, we extend the

definition of potential field attractor dynamics with the proposed
velocity limiting controller (VLC) from Khatib (1986). For this
purpose, we define an artificial desired velocity in the form

vd =
kp
kv
(xg − x) ,

where x ∈ ℝ3 is the current robot position, xg ∈ ℝ
3 is the

translational part of the goal pose, kp > 0 is the position gain and kv >
0 the velocity gain. Note that the orientation is considered separately
below. The virtual attractive force f vlc,t is then calculated from the
difference of the current robot velocity ẋ and the artificial desired
velocity vd

f vlc,t = kv (νvd − ẋ) .

The factor ν is used to limit the force when the robot velocity reaches
a defined maximum magnitude ẋmax in the direction of the goal

ν =min(1,
ẋmax

||vd||
) .

Compared to a classical potential field, the resulting control law
is more appropriate for longer distances between the robot and
the goal pose. In fact, the generated virtual force is equal to zero
when the robot moves towards the goal pose at maximum velocity
[as shown in (Becker et al., 2023b)].This leads to a constant velocity
magnitude except in the vicinity of the start, goal and obstacles when
the robot is subject to further virtual forces. Note that while the
VLC controller explicitly enforces a velocity limit, the acceleration
limit is only implicitly considered in the current formulation, and
it is not directly constrained. Furthermore, even though the control
force is restricted by the velocity limit, the gains kp and kv should
still be selected with caution to avoid undesirable dynamic behaviors
such as oscillations or overshooting. The VLC controller functions
similarly to a proportional-derivative (PD) controller, where the
balance between these gains is critical. In particular, to achieve stable
and smooth control, the gains should be chosen to approximate
critical damping in a PD-control scheme, which typically requires
setting kv ≈ 2√kp. By choosing kp and kv carefully, the robot can
maintain smooth and stable motion even in challenging scenarios,
while adhering to the velocity limits imposed by the controller.

We extend the approach to include an additional rotation for
the robot to achieve the desired orientation xg,r represented in Euler
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angles. To do this, we define an artificial desired angular velocity
ωd based on the orientation error xg,r − xr. This error is calculated
using the difference between the quaternion representing the robot’s
current orientation, p = (p0 p⊤im)

⊤ = (p0 p1 p2 p3)
⊤, and the

quaternion for the desired goal orientation, pg = (pg,0 p⊤g,im)
⊤ =

(pg,0 pg,1 pg,2 pg,3)
⊤, as described by Yuan, (1988)

xg,r − xr = p0pg,im − pg,0pim − pim × pg,im.

In this formulation, p0 and pg,0 are the scalar components, while
pim and pg,im represent the vector (imaginary) components of the
quaternions describing the robot’s current and desired orientations,
respectively.

The resulting rotational component is then calculated with.

ωd =
kp
kv
(xg,r − xr) ,

νr =min(1,
ωmax

||ωd||
) ,

f vlc,r = kv (νrωd −ω) ,

whereωmax defines themaximum angular velocity andω the current
angular velocity of the robot. Please note that the rotation of the
robot is only used for reaching a desired orientation and not for
avoiding obstacles. This also implies that the additional scaling kvlc
is not needed for the calculation of f vlc,r.The total attractive force is
a concatenation of the translational and rotational part

f vlc = [

[

f vlc,t
f vlc,r
]

]
.

2.1.2 Endeffector obstacle avoidance
In this section, we present our adaption of the CF algorithm,

which is used in our motion planning framework to efficiently
avoid obstacles in the robot’s environment. First, we present the
definition and our extensions to nominal boundary following CFs.
Then, we introduce the second obstacle avoidance force, which
adds a repulsive component. Our proposed algorithmworks directly
with point-cloud data, thus avoiding computationally intensive and
error-prone segmentation of obstacle surfaces. For this purpose, we
consider j = 1,…,no obstacles which are each characterized by a
cloud of points j

ixo ∈
j𝕆 ⊂ ℝ3×lj , where i = 1,…, lj. As a result, each

point j
ixo in an obstacle point cloud j𝕆 generates its own magnetic

field and its own obstacle avoiding force instead of relying on
obstacle surfaces. Moreover, in contrast to a majority of approaches
in the literature, we exploit more information about the obstacles
beyond the single obstacle point with the minimum distance. This
approach reduces sensitivity to sensor noise and improves avoidance
behavior in the presence of multiple obstacles, without causing
oscillations. The computational load can be managed by reducing
the resolution of the sensor point cloud through downsampling.
Furthermore, our implementation offers the option to include
only the closest mj ∈ [0, lj] points of each obstacle for the force
calculations. We assume that the obstacle data originates from
common motion tracking devices such as laser scanners or camera
modules and make the assumption that the point cloud points are
reasonably evenly distributed.

2.1.2.1 Nominal circular fields
CFs were first introduced in Singh et al. (1996) and are

inspired by the forces acting on a moving charged particle in an
electromagnetic field. More specifically, the law of Biot-Savart states
that the magnetic field in a distance x from a wire of infinitesimal
length dl carrying the current I is defined by

dB (x) =
μ0
4π

Idl× x
||x||3

and will apply the Lorentz force

F = qẋ ×B

on a particle charged with q and moving with velocity ẋ, where μ0
specifies a permeability constant (Halliday et al., 2013). The Lorentz
force acts perpendicular to the direction of motion of the charged
particle, altering its direction of movement without changing its
velocity magnitude.

In our application on collision avoidance, we use this physical
law as an inspiration and interpret the robot as a charged particle
that moves in virtual electromagnetic fields which are generated
by virtual currents c on all obstacles points. Figure 1 illustrates the
virtual electromagnetic fields generated by a single obstacle in two-
dimensional (2D) space and the resulting force on the robot. The
direction of the virtual current vector defines the direction of the
CF force originating from an electromagnetic field of an obstacle
point. As stated in Haddadin et al. (2011), the original definition of
the current vector from Singh et al. (1996) is not sufficient because
inconsistent orientations of the current vectors on an obstacle lead
to oscillations. In order to generate consistent current vectors, we
define a magnetic field vector jb ∈ ℝ3 with ||jb|| = 1 for each obstacle
j, which determines the direction of the current vectors uniformly
over the entire obstacle [cf. (Haddadin et al., 2011)].

Note that the magnetic field vector is a crucial element in our
obstacle avoidance strategy as it is used to calculate the virtual
current vectors, and thus defines the direction inwhich the robotwill
pass an obstacle. The choice of the magnetic field vectors therefore
has a decisive influence on the overall behavior of the robot and can
also be interpreted as the global planning component of our motion
planning framework (cf. Section 2.2).

After the definition of the magnetic field vector, the artificial
current vector for a point i of an obstacle j can be calculated with

j
ic =

j
in ×

jb,

where j
in is the normalized obstacle surface normal pointing

outside of the obstacle. Various approaches for surface normal
approximation of point clouds exist in the literature. Throughout
this paper, we use the functionality provided by the Point
Cloud Library (Rusu and Cousins, 2011).

In contrast to previous approaches, our definition of the
current vector (12) leads to a continuous current direction over
the surfaces of the obstacles (in contrast to (Singh et al., 1996))
and can be easily used to explore multiple trajectories to evade
obstacles without depending on the current robot velocity (in
contrast to (Ataka et al., 2018b)).

We modify the Biot-Savart law for the use-case of obstacle
avoidance, and in our formulation, each point i on an obstacle j
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FIGURE 1
Generation of circular fields (black) and CF force (green) for an
obstacle (light red), that is approximated by a point cloud (dark red
points) in 2D. In this figure, we use the convention of representing 3D
vectors perpendicular to the plane of the diagram with circles: a circle
with a dot indicates a vector pointing out of the plane towards the
viewer (positive z-direction), while a circle with an inscribed cross
represents a vector pointing into the plane, away from the viewer
(negative z-direction). A coordinate system is provided to clarify the
orientation of the vectors. In this example, the magnetic field vector
(white) is defined as jb = (0 0 1)⊤ and points outside of the page.
The current vectors j

ic are shown in light blue and the surface normals
j
in in dark red. The resulting circular fields j

iB are depicted in black and
point either in the positive or negative z-direction.

generates its own artificial electromagnetic field, that is, its own
CF defined as

j
iB =

j
ic ×

j
iḋ

||jiḋ ||
.

Here, jid =
j
ixo − x is the distance vector between the robot’s position

x and the position of the obstacle point jixo and
j
iḋ is the respective

relative velocity. An example of the electromagnetic fields on a static
obstacle is shown in Figure 1.

When the robot moves in such a virtual electromagnetic field,
the CF force (a modified version of the Lorentz force) is generated

j
i f̂ cf = kcf(g1 (

j
id) +

g2 (
j
id)

j
id
) 

j
iḋ

||jiḋ ||
× jiB,

where kcf > 0 describes a constant gain and j
id = ||

j
id || − ds is the

distance between an obstacle and the robot including a safety
margin ds. We also use the logistic amplitude functions g1(

j
id) and

g2(
j
id) defined as

gr (
j
id) =

1
2
(1+ tanh(γsl,r (γd,r −

j
id))) . (2)

Here, the subscript r refers to the parameters associated with the
logistic scaling functions g1 and g2, whichmodulate the circular field
force magnitude based on the distance between the robot and the
obstacle [inspired by Luo et al. (2014)]. These parameters, γsl,r and
γd,r control the slope and activation distance of the force, ensuring
a smooth activation of the CF force. The subscript r is used to
distinguish between different scaling parameters that are applied

in the calculation. The effect of the scaling factor (g1(
j
id) +

g2(
j
id)

j
id
)

FIGURE 2

Visualization of the resulting scaling factor g1(
j
id) +

g2(
j
id)

j
id

using the

settings γsl,1 = 20.0,γd,1 = 0.2m,γsl,2 = 30.0,γd,2 = 0.01m.

is illustrated in Figure 2.This definition of the CF force guides the
robot along the boundary of obstacles, preventing collisions. To
improve computational efficiency and tomitigate disturbances from
obstacle points which are not relevant for the immediate avoidance
maneuver, the planner will ignore obstacle points that.

1. Are outside of a range limit around the robot: ||d|| ≥ dmax,
2. Are not directed towards the robot, i.e., the absolute value of

the angle between the obstacle surface normal n and the robot-
obstacle distance vector d is smaller than 90°: n ⋅ d ≥ 0,

3. The robot moves away from: n ⋅ ḋ
||ḋ||
≥ cos φ and at the same

time the relative velocity points towards the goal: (xg − x) ⋅ ḋ >
0. Here, φ describes the angle between the obstacle surface
normal and the relative velocity, and is set in this paper to
85°. This choice ensures that the robot takes into account all
obstacle points within a 190° area in front of it, including those
to which it moves parallel. The additional condition that the
relative velocity points towards the goal is needed to ensure that
the robot is able to evade trap-like obstacle shapes.

Using these criteria, the CF force takes the form

j
i f cf =

{{{{{{{{{
{{{{{{{{{
{

0,

if j
id ≥ dmax

if j
in ⋅

j
id ≥ 0

if j
in ⋅

j
iḋ

||jiḋ ||
≥ cos(jiφ) ∧ (xg − x) ⋅

j
iḋ > 0

j
i f̂ cf, otherwise.

The total CF force from no obstacles withmj relevant obstacle points
(applying the above criteria) then results in

f cf =
no
∑
j=0

1
mj

mj

∑
i=0

j
i f cf . (3)

Note that the CF force only acts on the translation of the robot, i.e.,
f cf ∈ ℝ

3. Thus, we append zeros to the force vector for calculating
the steering force in Equation 1.
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In contrast to other reactive controllers, e.g., the APF approach,
our CF planner has multiple advantages. The force is perpendicular
to the robot’s velocity, thus it does not dissipate any energy from
the system and will not change the velocity magnitude of the robot.
Moreover, as shown for point mass robots in Becker et al. (2023b),
the planner does not suffer from local minima and consequently will
not change the convergence property of attractive fields when no
collision with obstacles occurs.

2.1.2.2 Repulsive circular fields
Although the boundary following CF force definition is typically

sufficient to prevent collisions, we introduce an additional repulsive
force to enable a more robust behavior when themotion of the robot
is constrained and the guiding force in Equation 3 might not be
sufficient to keep a safe distance to the obstacle. Towards this end, we
add an additional repulsive CF-like force, where the artificial current
is defined as the negative distance vector

j
i f̂ cf,rep = −kcf,rep g3 (

j
id) 

j
iḋ

||jiḋ ||
×(

j
id ×

j
iḋ

||jid ×
j
iḋ ||
), (4)

and we use the scaling factor kcf,rep ≥ 0 and the definition of g3(
j
id)

from Equation 2. Note that Equation 4 is a simplification of the
force from Ataka et al. (2022), which pushes the robot away from
the obstacle while maintaining the useful properties of the original
CF force, i.e., it is perpendicular to the robot velocity and therefore
does not induce local minima.

Additionally, the definition employs similar criteria as the
nominal CF force to exclude obstacle points from force generation
and superimposes the forces from all obstacle points

j
i f cf,rep =

{{{{{{{{{
{{{{{{{{{
{

0,

if j
id ≥ dmax,rep

if j
in ⋅

j
id ≥ 0

if j
in ⋅

j
iḋ

||jiḋ ||
≥ cos(jiφ) ∧ (xg − x) ⋅ ḋ > 0

j
i f̂ cf,rep, otherwise,

f cf,rep =
no
∑
j=0

1
mj

mj

∑
i=0

j
i f cf,rep ,

where dmax,rep ≤ dmax is the distance limit for the repulsive CF force.

2.1.3 Attractive force scaling
The combination of the attractive force with obstacle avoidance

forces can introduce new problems such as oscillations of the
robot, or even induce new local minima and goal convergence
issues as discussed in Ataka et al. (2018b). These problems are
particularly noticeable in scenarios involving large or non-convex
obstacles, where the robot has to move in a direction opposite
to the goal position, causing a mutual cancellation of attractive
and obstacle avoidance forces. In such cases, a potential solution
is to follow the surface of obstacles until they are successfully
bypassed, leveraging the boundary-following property inherent in
CF forces. Furthermore, in our approach, safety is prioritized by
giving precedence to obstacle avoidance over goal convergence.
As a result, scaling factors are used exclusively to modify (or
potentially deactivate) the attractive force, leaving the CF force
unchanged. This strategy ensures that safety concerns are satisfied
while addressing the challenges associated with more complex

environments, which we show in our goal convergence analysis in
a simplified planer setting in Becker et al. (2023b). Therefore, we
modify the translational part of the attractive force by introducing
the scaling factor kvlc

f vlc = [

[

kvlc f vlc,t
f vlc,r
]

]
.

Please note that the rotation of the robot is only used for reaching
a desired orientation andnot for avoiding obstacles.This also implies
that the additional scaling kvlc is not needed for the calculation of
f vlc,r. The goal force scaling factor is defined as

kvlc =
{
{
{

0 if ẋ ⋅ f vlc ≤ 0∧ ||ẋ|| ≤ vmin ∧ ||xg − x|| > ξ

w otherwise
(5)

with w = w1w2w3 and w1,w2,w3 ≥ 0.
Note that the CF force does not change the magnitude of the

robot velocity (cf. Becker et al., 2023b), which is therefore only
modified by the VLC. Using Equation 5 and therefore deactivating
f vlc when it works against the current motion direction while the
velocity is below or equal to a defined vmin, we ensure that the robot
will only decrease its velocity below this minimum, when the robot
is in the vicinity ξ > 0 of the goal pose.

Consequently, when the attractive goal force is deactivated, the
robot does not stop. Instead, the CF forces guide the robot to
follow the obstacle’s boundary, ensuring smooth obstacle avoidance
without halting the motion towards the goal.The first two factorsw1
and w2 are taken from Ataka et al. (2018b).The first factor is used to
limit the VLC force when the robot is close to obstacles

w1 = 1− exp
− ||d||

γodmax ,

where γo > 0 is a constant scaling factor and ||d|| = ||xo − x|| is the
minimal distance between the robot end effector x and the closest
obstacle point xo. When the robot approaches an obstacle, the VLC
force converges to zero, prioritizing collision avoidance over goal
convergence.

The second term reduces the attractive force when an obstacle
is between the robot and the goal position and increases the
force otherwise

w2 = 1−
(xg − x) ⋅ d

||xg − x||||d||
.

This factor is zerowhen the goal vector xg − x and the distance vector
d point in the same direction, it is equal to one if the two vectors are
orthogonal to each other and it doubles the influence of the VLC
force when the vectors point in opposite directions.

The factor w3 is introduced to handle environments with
non-convex obstacles, where obstacle configurations might cause
opposingVLC andCF forces.Thiswould again result in a decrease of
the robot’s velocity as the goal force acts against the robot’s direction
of motion. In such a case the CF force should be dominating to
guide the robot along the obstacles’ boundaries until the obstacle is
passed.This can be achieved by scaling the VLC force with the scalar
product of the normalized VLC force and the current robot velocity
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FIGURE 3
Visualization of possible robot control points including a spherical
approximation of the robot.

in the form

w3 =
{{
{{
{

1+
ẋ ⋅ f vlc
||ẋ||||f vlc||

if ẋ ⋅ f vlc < 0

1 otherwise.

2.1.4 Robot body obstacle avoidance
To enable obstacle avoidance for the entire robot body, we define

ncp additional control points along its structure, as exemplarily
shown for a 7-DoF robot arm in Figure 3. The control points
should be placed on prominent points of the robot so that the
whole structure can be moved away from obstacles. To ensure
that the robot structure keeps a safe distance to obstacles, the
distance to the control points is also calculated using a safety
margin, resulting in a spherical approximation of the robot arm.
Note that for the example in Figure 3, we have refrained from adding
more control points on the lower links as their obstacle avoidance
capabilities are limited. We assume that the robot needs to reach a
Cartesian goal pose and that we do not have any information about
possible final joint configurations. Consequently, we do not apply an
attractive goal force on the control points and the force on a control
point k ∈ [1,ncp] only consists of the respective CF-based obstacle
avoidance forces

kf cp =
kf cf +

kf cf,rep.

2.1.5 Joint limit avoidance
To ensure safe operation of robotic manipulators, it is crucial

to consider their physical constraints, specifically their joint limits.

FIGURE 4
Visualization of the repulsive vector q̇jl for a joint with the limits qmax =
2.8 rad and qmin = −2.8 rad using the settings kjc = 1.0,kjl = 2.0,γsl,jc
= 7.0,γd,jc = 0.4,γsl,jl = 70.0,γd,jl = 0.04.

We use sigmoidal scaling functions as defined in Equation 2 to
construct a repulsive vector that pushes the joints towards their
center position. The repulsive vector consists of two parts. The first
element pushes the joints towards their center with a comparatively
small magnitude to keep the robot in configurations that allow a
wide range of motions. The second component is activated when
a joint is close to its limits and generates repulsive vectors with
greater magnitude to move the robot away from its limits. Towards
this end we first normalize each joint p ∈ [1,ndof] to the range pqn ∈
[−1.0,1.0] using

pqn = −1+ 2
pq − pqmin

pqmax − pqmin
.

Here, pqmin and
pqmax are the minimum and maximum position

limits of a joint p. The repulsive vector is then calculated using each
joint individually

pq̇jl =
{{{{
{{{{
{

kjc gjc (
pqn) + kjl gjl (

pqn) if pqn < 0

−kjc gjc (
pqn) − kjl gjl (

pqn) if pqn > 0

0 otherwise,

where kjc,kjl ≥ 0 are scaling factors of the repulsive vector for
the joint centering and the joint limit avoidance components,
respectively and gjc(

pqn),gjl(
pqn) are sigmoidal functions as defined

in Equation 2. An illustrative example for the magnitude of this
repulsive vector for a single joint is shown in Figure 4.

2.1.6 Manipulability
Themanipulability of a robotic manipulator is a useful criterion

for quantifying the influence of joint movements on the end
effector, thus providing a measure how easy or difficult it is to
change the robots pose in its Cartesian operational workspace.
A high manipulability indicates that only small movements of
the joints are necessary to result in a large motion of the EE
while the manipulability converges to zero when the robot is
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close to a singularity. Thus, it also provides information about
the relative distance to singular configurations. The manipulability
index, introduced in Yoshikawa (1985), is given by

μ (q) = √det(Jee (q) Jee(q)⊤).

The gradient of the manipulability can be used to calculate joint
velocities that maximize the manipulability as presented in Dufour
and Suleiman (2020)

q̇m = km(
∂μ (q)
∂q
)
⊤
,

where km > 0 is a constant gain.

2.1.7 Self-collision avoidance
To avoid self-collisions, we approximate the structure of the

robot by spherical obstacles with a radius dsc and use repulsive forces
similar to Luo et al. (2014)

k
l f sc =
{{{
{{{
{

−ksc gsc (
k
l d) 

k
l dsc
||kl dsc||

if kl d < dmax,sc

0 otherwise

, (6)

where k
l dsc = lxrs −

kxcp defines the distance vector between a control
point k and a repulsive sphere l, gsc (

k
l d) is a sigmoidal function as

defined in Equation 2, and ksc > 0 is a scaling factor. The force is
applied only if the distance k

l d = ||
k
l dsc|| − dsc is less than a threshold

dmax,sc. Similar to the CF forces, the repulsive forces of all nsc self-
collision obstacles are superposed, leading to the following self-
collision avoidance force on a control point k ∈ [0,ncp]

kf sc =
nsc
∑
l=0

k
l f sc,

where the EE is considered as the control point with k = 0.When the
self-collision avoidance force is used, the EE steering force and the
forces on the control points are updated to

f see = f vlc + f cf + f cf,rep +
0f sc ,

kf cp =
kf cf +

kf cf,rep +
kf sc .

Note that in practical implementations, many of these repulsive
forces may not be necessary or may even lead to infeasible or
detrimental forces, e.g., if a control point is located on the same
link as a repulsive sphere. Therefore special care has to be taken
when defining the repulsive spheres on the robot structure. In
our implementations, it was sufficient to place a single virtual
repulsive sphere in the base of the robot which generates a force
only on the EE.

2.1.8 Joint velocity damping
We introduce an additional joint velocity component that has a

damping effect using

q̇damp = −kdampq̇,

with the scaling factor kdamp ≥ 0. Adding q̇damp, which opposes
the current velocity direction, to the total velocity control command
resulting from the motion planning strategy, yields a component of
the tracking controller output that has a damping effect and prevents
undamped motions in the nullspace.

2.1.9 Robot control signal
In this section, we describe howwe transform the steering forces,

joint velocity commands and repulsive vectors into feasible reference
signals for joint space control.

Consider the well-known equations of motion for a robotic
manipulator

τee + J⊤ext f ext = J
⊤
ee (q) (Mc (q) ẍ + cc (q, q̇) + g (q)) , (7)

where Mc(q) is the Cartesian inertia matrix, cc(q, q̇) describes the
Coriolis and centrifugal terms, g(q) are the gravitational forces,
Jee ∈ ℝ6×ndof is the Jacobian, describing the relation between the
velocities of the ndof joints and the EE velocity and f ext are external
forces acting on the robot, where Jext is the Jacobian of the
location where the external forces apply. This formulation enables
direct torque control of the robotic manipulator and accommodates
additional external forces commonly encountered during human-
robot interaction, as discussed in Haddadin et al. (2010).

However, this paper specifically focuses on collision avoidance
and we employ a separate joint space tracking controller for robot
control. We assume that this joint space controller sufficiently
compensates for gravity and dynamics. Consequently, we only need
to transform the virtual task space steering forces generated by the
proposed motion planning framework into desired joint reference
signals. Furthermore, recall that we do not consider real forces;
instead we interpret the artificial steering force as the desired EE
acceleration, which allows us to ignore inertial forces. Thus, we
use f see = ẍ, set the inertia matrix in joint space to the identity
matrix M(q) = I and disregard the gravitational and Coriolis terms
in Equation 7. This implies q̈ee = τee and leads to the following
definition of the Cartesian inertia matrix2

Mc (q) = (Jee (q)M(q)−1J⊤ee (q))
−1

= (Jee (q) IJ⊤ee (q))
−1.

This approach simplifies Equation 7, allowing us to eliminate
the inertia matrix from our calculations. This speeds up the
planning process and avoids known issues associated withmodeling
inaccuracies of the inertia matrix (cf. Nakanishi et al., 2008).

Inserting Mc(q) into Equation 7 and neglecting the gravitation
and dynamic components yields

q̈ee = J
#
ee (q) f see ,

where J#ee = J
⊤
ee(JeeJ

⊤
ee)
−1 is the Moore-Penrose pseudo inverse. Note

that we additionally limit each joint individually to its maximum
acceleration.

Ideally, the forces on the control points should be transformed
into the nullspace of the main task, i.e., the control of the EE pose.
However, our experiments indicate that consistently achieving full-
body obstacle avoidance without interfering with the primary EE

2 Note that this simplification is only possible when the planner is used to

calculate a reference trajectory for a tracking controller that considers

the robot dynamics. The actual inertia matrix M(q) should be used when

the resulting torque command τee is directly applied to the robot or when

used in combination with any torque-based control interface.
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task is challenging.Avoiding obstacleswithin the null space of the EE
task is only feasible in few scenarios where simple obstacle avoidance
movements are sufficient. Thus, the forces on the control points are
considered as virtual external forces on the robot body.These forces
are then transformed to joint accelerations using

kq̈cp = kJcp
⊤ (q) kf cp ,

where kJcp is the Jacobian of the position of the kth control point.The
total joint acceleration command is calculated by superimposing the
desired accelerations from all control points

q̈cmd = q̈ee +
ncp

∑
k=0

kq̈cp.

This approach ensures an indirect weighting of the joint
accelerations based on the magnitude of the respective task space
force. The influence of the control point acceleration on the total
robotmotion increases as the control point gets closer to an obstacle.
Additionally, we employ a safety fallback strategy when the distance
between a control point and an obstacle exceeds a lower threshold
(cf. Section 2.2.4). Note that the simplification described above and
the direct application of the forces on the control points affect
the ability of the robot to follow the desired EE trajectory exactly.
However, the proposed approach leads to efficient convergence to
task space goal poses while avoiding obstacles, even in dynamic and
complex settings, as demonstrated in Section 3.

We consider obstacle avoidance as the primary objective and
the supplementary measures for joint centering, manipulability and
damping as less important. Thus, these desired joint velocities and
repulsive vectors are projected into the nullspace of the EE using the
method described in (Siciliano and Khatib, 2008).

Finally, we calculate the reference signals for the next sampling
step of the joint space controller. We integrate the acceleration
control reference for generating appropriate inputs to a desired joint
controller.

q̇cmd = q̇+ q̈cmdTc + (I − J#ee (q) J⊤ee (q))(q̇m + q̇jl + q̇damp) , (8)

qcmd = q+ q̇cmdTc,

where Tc is the control step time. Similarly to the joint acceleration,
each joint is limited individually to its maximum velocities and
angle. In our applications, we use a joint impedance controller, which
considers joint velocity and joint angle reference signals as inputs.

2.2 Unifying global planning and reactive
control

Although our reactive CF-based control component performs
well in a local scope of the environment, it faces inherent
limitations typically associated with locally reactive controllers.
These limitations have been extensively discussed in the
related work (cf. Section 1.2) and primarily stem from the omission
of global environmental information and constrained exploration
capabilities. Traditional CF approaches, which function solely as
local planners, perform suboptimally when attempting to find global
solutions, resulting in trajectories that are generally less efficient.

Moreover, despite the inherent absence of local minima in CFs,
it is still possible to design trap scenarios that restrict the robot’s
movement. Note that this is not equivalent to the local minima
encountered in APF approaches, as the robot does not come to a
standstill but instead becomes trapped in limit cycles.

In (Becker et al., 2021) we developed the CFP planner, which
uses a predictive virtual agent framework to efficiently explore the
global environment by simulating the robot using different settings
for the magnetic field vector. However, in contrast to our previous
work, the extension to roboticmanipulators using additional control
points on the robot leads to a significant increase of virtual
agents, especially in the case of many obstacles. Furthermore, the
framework is not able to determine which avoidance directions
around obstacles of the different control points are not compatible
with each other before simulating the whole robot motion. Thus,
many combinations ofmagnetic field vectors for the different control
points will lead to infeasible trajectories or even to collisions.
Consequently, a considerable amount of computing power is wasted
by simulating these magnetic field vector sets.

To compensate for these disadvantages, we introduce the
concept of ICF, which extends the capabilities of the local CF
approach by incorporating and extracting global environmental
information. The method is not intended to operate as a standalone
global planner; instead, it is tightly integrated into the CF planning
component. The integration aims to unify global planning and
reactive control, bridging the gap between global environment
exploration and reactive collision avoidance.Theheavily parallelized
design enables instantaneous responses to dynamic obstaclemotion,
and unpredictable changes in partially unknown environments,
even when the global component faces challenges in finding
a solution.

The general idea of ICF is to leverage the strengths of global and
local motion planning strategies by extracting useful information
from a global pre-planner. This information is then transferred
to and evaluated by an adapted virtual agents framework to
improve reactive motion generation. Throughout the development,
a significant emphasis has been placed onmaintaining the reactivity
of the CF planner, even when the global planning component fails
to find a solution.

The process of generating a control reference signal within our
ICF framework is divided into four distinct phases.

1. Initially, we employ a global configuration space motion
planner to create a (coarse) joint trajectory (cf. Section 2.2.1).

2. Following this, we extract global information from this coarse
trajectory in the form of magnetic field vectors for all control
points and obstacles, which serves as a basis for reactive CF-
based motion planning (cf. Section 2.2.2). It is important to
note that when referring to control points, the EE is included
unless otherwise specified.

3. Subsequently, multiple predictive agents are created using the
extracted magnetic field vectors to process and evaluate the
global motion plan (cf. Section 2.2.3).

4. The parameters of the best agent are then transferred to the real
robot and used to generate the reactive joint space commands
(as described in Section 2.1.9).

These different phases are executed in parallel, each with its
respective sampling rates.
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2.2.1 Global trajectory generation
Themain purpose of the global pre-planner is to infer estimates

for feasible global trajectories from the current robot pose to
a Cartesian goal pose in the configuration space. In particular,
finding non-conflicting avoidance directions around the obstacles
for all control points is more important than generating short and
smooth paths. Consequently, we use a rather coarse discretization
of the global planner for shorter planning cycles Tglobal. The global
planner is continuously running and restarted after Tglobal seconds
with updated obstacle and robot information. When a successful
trajectory is found during the planning time, the trajectory is passed
to the global information extraction module.

Due to frequently proven successful results, short planning
times, and wide availability, we use sampling-based planners
for the global trajectory generation. In particular, we use the
MoveIt! motion planning framework because it features a variety
of sampling-based planners and supports point clouds as a format
for obstacle representation (Coleman et al., 2014). However, other
configuration space planners can also be used and exchanged easily.
Note that the global motion planning is done in a static snapshot
of the environment while the actual reactive creation of the control
reference (cf. Section 2.1.9) is always done with the most current
environment information.

2.2.2 Global information extraction
Whenever the global pre-planner finds a successful joint

trajectory, the global information extraction module is triggered.
The joint trajectory is then transformed into separate Cartesian
trajectories for each control point using forward kinematics

kxcp (t) =
kTcp (q (t)) [0 0 0 1]⊤,

where kTcp is the Denavit-Hartenberg (DH) matrix that defines
the transformation from the base frame to the control point
k. The avoidance direction of each control point around each
obstacle is then extracted from the Cartesian trajectories and the
correspondingmagnetic field vectors are calculated using both of the
following algorithms. Visualizations of both algorithms are shown
in Figures 5, 6 in 2D example setups.For each control point k and
for each obstacle j described by the points j

ixo ∈
j𝕆 ⊂ ℝ3×mj , the

following calculations are performed.
The quality of the resulting avoidance motion from both

methods highly depends on the environment and the global
trajectory.The first algorithm captures the avoidance motion only at
the closest obstacle point.Therefore, it only accurately represents the
avoidance movement if the obstacle is avoided through a uniform
motion without any directional changes. In contrast, the second
algorithm defines a surrounding area around the obstacle to recreate
a resulting homogeneous avoidance direction around that region. As
a result, any additional movements or changes in direction within
this area are neglected, as they do not contribute to the avoidance
maneuver. However, in some cases, it may be necessary to perform
additional motions close to an obstacle. The relevance of these
motions always depends on the specific scenario, e.g., additional
motions may be necessary to reconfigure the robot joints and reach
the goal without hitting the joint limits. Therefore, we use both
methods to calculate magnetic field vectors, which are adopted by
the predictive agents as described in the next section. Nevertheless,

FIGURE 5
Visualization of Algorithm 1 in a simplified 2D representation of the
environment.

FIGURE 6
Visualization of Algorithm 2 in a simplified 2D representation of the
environment.

we simplify a potentially complex avoidance motion to a single
vector per obstacle and control point. Thus, the resulting motion of
the ICF planner is expected to deviate from the global trajectory.
However, we would like to emphasize again that we only use the
global planner to estimate feasible, non-contradictory avoidance
directions, which are subsequently simulated and evaluated before
being used to enable reactive control of the real robot.

2.2.3 Adapting the virtual agent framework
After transforming the trajectories of the global pre-planners

intomagnetic field vector sets, we utilize the virtual agent framework
described in Becker et al. (2021) to process this global information.
The framework enables us to identify the influence of selected
control parameters, such as the magnetic field vectors, on the
robot in a current perception of the environment under simplified
dynamics. Within the framework, the robot is represented in this
environment snapshot by virtual predictive agents, each with a
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1. Find the closest point pc of the trajectory

k𝕏cp = {kxcp(t) ∣ t ∈ [0,Tglobal]} to the obstacle j

pc =
kxcp (τ) with

τ = argmin
t∈[0,Tglobal]

( min
j

i
xo∈j𝕆
||kxcp (t) −

j

i
xo||) .

2. Calculate the (approximate) direction of

movement vc at the closest point pc

vc = kxcp (τ+1) − kxcp (τ−1) .

3. Calculate the vector dc pointing from pc to the

closest obstacle point
j
cxo

dc =
j
cxo −pc with

j
cxo = argmin

j

i
xo∈j𝕆
(||j

i
xo −pc||) .

4. Define the magnetic field vector jb as

jb =
dc ×vc
||dc ×vc||

.

Algorithm 1. First option for extracting the avoidance direction around an
obstacle from a pre-planned path. This algorithm captures the avoidance
motion at the closest obstacle point and is particularly effective when the
obstacle is being avoided in a uniformmotionwithout directional changes.

specific set of parameters ℙ. In order to adequately account for
the new information from the global pre-planner, the process for
creating and deleting predictive agents from Becker et al. (2021) is
redesigned as described in the following.

2.2.3.1 Virtual agent creation
Whenever the global pre-planner and information extraction

module generate new magnetic field vectors, new virtual agents
using these magnetic field vectors are created. Moreover, if the
maximum number of predictive agents na,max has not been reached,
additional agents with different parameter sets ℙ are created. The
creation of new predictive agents follows a specific order upon
receiving new magnetic field vectors.

1. Create one agent with the current best parameter set ℙbest and
the current best magnetic field vectors 𝔹best.

2. Create one agent with the current best parameter set ℙbest but
with the new magnetic field vector set 𝔹A1 from Algorithm 1.

3. Create one agent with the current best parameter set ℙbest but
with the new magnetic field vector set 𝔹A2 from Algorithm 2.

4. Create additional agents with a parameter set that differs in an
arbitrary parameter m1 from ℙbest if the number of agents is
less than na,max.

5. Create additional agents with a parameter set that differs in
parameterm1 from ℙbest and uses 𝔹A1 if the number of agents
is less than na,max.

6. Create additional agents with a parameter set that differs in
parameterm1 from ℙbest and uses 𝔹A2 if the number of agents
is less than na,max.

1. Find the first point pin of the trajectory kxcp

in a ball of a predefined radius r around the

obstacle j

pin =
kxcp (τmin) with

τmin = min
t∈[0,Tglobal],

j

i
xo∈j𝕆
(t ∣ ||kxcp (t) −

j

i
xo|| ≤ r) .

2. Find the last point pout of the trajectory kxcp

in a ball of a predefined radius r around the

obstacle j:

pout =
kxcp (τmax) with

τmax = max
t∈[0,Tglobal]

min
j

i
xo∈j𝕆
(t ∣ ||kxcp (t) −

j

i
xo|| ≤ r) .

3. Find the point pm =
kxcp(τ) with τ being the

largest integer less than or equal to the midpoint

in [τmin,τmax], i.e.,

τ = ⌊0.5 (τmax +τmin)⌋.

4. Calculate the vectors vm,in pointing from pm to

pin and vm,out from pm to pout

vm,in = pin −pm,

vm,out = pout −pm

5. jb is defined perpendicular to the plane

through the three points pin, pout and pm

jb =
vm,in ×vm,out
||vm,in ×vm,out||

.

Algorithm 2. Second option for extracting the avoidance direction around
an obstacle from a pre-planned path. This algorithm generalises the
avoidance motion in an environment around the obstacle in order to
better map the resulting total evasive direction and to ignore additional
movements and reconfigurations that do not contribute to the avoidance
direction.

7. Repeat steps 4-6 with other parameters mp or with another
feasible option for the parameter m1 until a total of na,max
agents have been created.

In this paper, we use the virtual agent framework primarily
for the magnetic field vector b ∈ 𝔹 ⊂ ℝncp×no of the ncp control
points (including the EE). However, as described previously other
parameter choices can also be simulated. In our approach, the
supplementary forces described in Sections 2.1.5, 2.1.6 and 2.1.8
are defined as optional parameters for calculating the final control
command [cf. Equation 8]. Consequently, we add binary activation
flags for all supplementary forces to the parameter vector ℙ. This
enables the deactivation of supplementary forces as needed, allowing
for only necessary calculations to be performed at any given
time. For instance, we define m1 to be the activation flag of the
manipulability gradient calculationmethod from Section 2.1.6. As a
result, instead of including the manipulability velocity vector in the
reference command calculation Equation 8 in every simulation, we
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simulate both a set of agents that applies the manipulability gradient
to the resulting velocity command and a set of agents without it.This
procedure ensures that the command for the real robot is calculated
using the optimal set of forces and prevents situations, where, e.g.,
the manipulability gradient might interfere with the force on a
control point that is close to an obstacle.

2.2.3.2 Virtual agent simulation
The virtual agents are then simulated using the control

commands from Section 2.1.9, assuming simplified dynamics and
that the controller follows the joint commands perfectly, i.e.,

q (t+ 1) = q (t) + q̇cmd (t)ΔT

q̇ (t+ 1) = q̇cmd (t)

ẋee (t+ 1) = Jee (q (t+ 1)) q̇ (t+ 1) .

This procedure is repeated until the simulated agent reaches the
goal pose x = xg. However, virtual agents are only simulated for a
defined maximum number of prediction steps nps at a time, after
which the framework proceeds with the simulation of a different
agent. It is essential to note that parallel computation of multiple
agents remains possible and is actively exploited. This method was
introduced to ensure that all agents are treatedwith the same priority
and progress through the simulation at a similar rate. In practical
implementation on conventional computing devices, it is otherwise
difficult to ensure a fair distribution of computing power over
several threads. This is particularly important when more agents
were created than the computation device can handle concurrently.
Specifically, this precautionary measure prevents agents, which
might never reach the goal or follow long suboptimal trajectories
(e.g., due to poor choices ofmagnetic field vectors), from indefinitely
blocking the available computation slots. During the simulation it is
possible to also simulate the motion of dynamic obstacles, for which
we use a constant velocity model in our simulations.

2.2.3.3 Virtual agent evaluation
In contrast to Becker et al. (2021), the evaluation of predictive

agents is performed asynchronously instead of evaluating all agents
simultaneously at a fixed time interval. Each agent is evaluated and
compared to the current best agent immediately after its simulation,
which is interrupted either after nps steps or upon reaching the
goal. If an agent has a higher reward, it is validated whether
the position of the predicted trajectory of the new parameters
for the latest time step approximately matches the latest real
agent position. Discrepancies may arise when the robot took a
different avoidance direction around an obstacle, dynamic obstacles
influenced the robot trajectory, or due to discretization errors. In
order to mitigate the influence of discretization errors, the threshold
for detecting deviations should be adjusted. Nonetheless, with
time, the discretization error is expected to surpass the threshold,
indicating a potentially outdated predicted trajectory. In all cases,
the respective agent is deleted and the parameter set is not updated.
Otherwise, the real robot uses the new best parameter set.

We use the following criteria, prioritized by the reward gains
ϱg ≥ ϱd ≥ ϱtl ≥ ϱjl ≥ ϱs ≥ ϱo ≥ ϱmfv ≥ 0 for evaluating a virtual agent.

1. Reaching the goal with the EE without colliding is typically a
complex task, and thus an agent p that approaches a distance
dgd around the goal gets a high reward ϱg. Otherwise, only a

smaller reward ϱd is granted that decreases exponentially with
a higher remaining distance to the goal

prgd =
{{
{{
{

ϱg if ||xg − pxee (pNps) || ≤ dgd,

ϱde
−
||xg−pxee(

pNps)||

γgd otherwise,

where γgd > 0 is a constant scaling factor and
pNps is the total number

of steps that agent p has been predicted. Appropriate scaling of ϱg
ensures that an agent that reached the goal without collision will
always receive a higher total reward than an agent who has not yet
done so.

2. The distance covered by the EE of a manipulator is often a less
meaningful evaluation criterion than the path length traveled
by a mobile robot. Instead, we use the duration of the current
prediction as a criterion for rewarding shorter motions

prtl = ϱtl −
pNpsTs.

3. We favour trajectories that result in a lower percentage of joint
limit avoidance forces

prjl = ϱjl(1−

pNps−1

∑
n=0

||pq̈jl (n) ||

||pq̈ee (n) + pq̈cp (n) + pq̈jl (n) ||
).

4. We also use the manipulability index to avoid singularities
by rewarding a higher minimum manipulability of the agent
trajectory

prs = ϱs min
n∈[0,pNps]

μ(pq (n)) .

5. We reward agents, which pass obstacles with greater clearance
by including the minimal distance of all control points and the
EE to all obstacles defined as

pdmin = min
n∈[0,Nps],k∈[0,ncp],

j
ixo(n)∈j𝕆(n),j∈[1,no]

(||kpxcp (n) −
j
ixo (n) ||) ,

where k = 0 again denotes the EE.The resulting reward is then given
by

pro = ϱo (1− e
dmin−pdmin) .

6. To prevent abrupt changes in force direction or oscillations of
the robot, we aim to avoid constant switches between agents
with similar scores. This is achieved by rewarding agents that
have similar avoidance directions as the current best agent. We
compare the magnetic field vectors of all control points and
obstacles to determine the similarity
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FIGURE 7
Activity diagram of adapted virtual agent framework from ICF approach.

prmfv = ϱmfv(1−
1

noncp

no
∑
j=0

ncp

∑
k=0
(||jkbbest −

j
kb||)).

The total reward is defined as the sum of all individual rewards

prt =
prgd +

prtl +
prjl +

prs +
pro +

prmfv .

It is important to note that we do not pass the calculated
trajectory to the real robot. Instead, the real robot adapts the
parameters of the best agent and calculates its control command in
parallel to the simulation of the virtual agents and to the planning of
the global pre-planner. This procedure ensures reactive behavior of
the overall planning framework and also allows that the simulation
of the virtual agents are performed with a coarser step time to speed
up the global computation process.

2.2.3.4 Virtual agent validation
In environments with dynamic obstacles, it is natural for the

actual system behavior to differ over time from the prediction
due to the asynchronous simulation and the different time step
discretization. Our approach involves regular validations to ensure
that the predicted trajectory of the current best agent remains
consistent with the actual robot trajectory and avoids collisions
with obstacles, for instance, from motions of dynamic obstacles.
If deviations occur, the predicted trajectory is invalidated, and the
best agent reward is reset to zero. After validation, a new agent is
created with the current robot parameter set and state. This ensures
continuous simulation of the best agent andmaintains comparability
of its reward with new agents. The planner also initiates re-planning
when all agents have either reached the goal or have been deleted.
This process also involves creating a predictive agent at the current

robot state using the best parameter set. Setting the reward to zero
may result in frequent changes of the best agent and could lead
to undesired behavior, such as oscillations. To mitigate this, the
comparison of rewards can be delayed until a minimum number
of agents na,min were evaluated. During this transition period, the
real robot continues moving using the previous best parameters
and using the safety-improving fallback, which is described in the
following section. The whole process is depicted in Figure 7.

2.2.4 Safety-improving fallback
During motion planning, it may happen that none of the

predicted trajectories match the current state of the environment,
either because of unpredictable movements of the obstacles or
because the robot cannot follow the predicted trajectories with
sufficient accuracy. Additionally, this could lead to close distances
between a control point and obstacles. In both cases, collision
avoidance has absolute priority and the robot switches to a safety-
improving fallback behavior. Here, the CF forces on the control
points on the robot structure are replaced by repulsive forces that are
defined similarly to the self-collision avoidance force in Equation 6.
The force scaling from the sigmoidal function (cf. Equation 2)
ensures that only obstacle points within a limited range around the
robot generate a force. The maximum range can be adjusted by the
factor γd, while γsl determines the rate at which its level of influence
increases. The total force from all obstacle points on a control point
is defined by

kf rpf =
no
∑
j=0

mj

∑
i=0

kj
i f rpf .
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TABLE 1 Pre-planner comparison.

Pre-planner Path length [%] Success [%] Path duration [%]

Mean Max Min Mean Max Min

RRT LaValle (1998) 6.13 17.84 3.67 96.5 5.51 47.70 4.86

RRTConnect Kuffner and LaValle (2000) 4.42 19.52 1.93 98.0 4.33 23.09 5.06

RRT∗ Karaman and Frazzoli (2011) 4.28 8.54 3.66 96.5 3.37 9.47 6.67

TRRT Jaillet et al. (2010) 3.20 14.20 2.23 98.5 6.53 52.99 6.57

BiTRRT Devaurs et al. (2013) 4.93 22.44 3.44 96.5 7.90 54.90 8.44

LBT-RRT Salzman and Halperin (2016) 6.79 23.00 3.34 97.5 13.05 73.88 4.86

SBL Sánchez and Latombe (2003) 4.15 11.11 1.97 96.0 4.42 30.65 5.84

EST Hsu et al. (1997) 2.20 10.80 2.82 98.0 3.87 25.61 6.66

BiEST Hsu et al. (1997) 4.13 13.99 2.28 96.5 3.39 27.78 5.53

ProjEST Hsu et al. (1997) 4.14 11.81 1.55 98.0 4.70 32.28 5.60

KPIECE Şucan and Kavraki (2009) 3.18 10.81 2.23 97.5 5.40 44.85 7.13

BKPIECE Şucan and Kavraki (2009) 5.50 27.99 3.73 96.0 4.88 26.26 5.95

LBKPIECE Şucan and Kavraki (2009); Bohlin and
Kavraki (2000)

3.76 10.72 3.22 96.5 6.05 53.49 7.37

PDST Ladd and Kavraki (2005) 4.61 18.92 2.50 97.5 5.82 46.03 6.77

STRIDE Gipson et al. (2013) 5.77 18.23 0.91 97.0 3.79 14.01 5.88

SPARS Dobson et al. (2013) 5.37 15.64 3.39 98.5 4.37 21.62 6.84

SPARS2 Dobson and Bekris (2013) 5.71 21.42 3.82 98.5 7.17 55.44 6.16

PRM Kavraki et al. (1996) 3.90 13.78 1.90 100.0 3.86 37.36 3.94

PRM∗ Karaman and Frazzoli (2011) 4.60 20.82 2.82 98.0 9.96 93.10 8.08

LazyPRM∗ Bohlin and Kavraki (2000); Karaman and
Frazzoli (2011)

4.63 16.80 2.90 98.0 4.83 35.62 6.33

1. Bold values highlight the best results across all methods. 2. Red values indicate at least one occurrence of a collision during the respective run.

Moreover, we change the nullspace of the supplementary forces,
i. e., the manipulability gradient, the joint limit avoidance and
the damping velocity, whenever a control point is close to an
obstacle. Instead of projecting the forces in the nullspace of the
EE pose, the forces are projected into the augmented nullspace
of the EE translation and the translation of the closest control
point. Accordingly, the steering forces and the joint velocity control
reference are calculated with.

f see = f vlc+
0f rpf,

kf cp = kf rpf

q̇cmd = q̇+ q̈cmdTc + (I − J#safe (q) J
⊤
safe (q))(q̇m + q̇jl + q̇damp) ,

where J⊤safe = [J
⊤
ee,t

cJcp,t
⊤] is defined by the Jacobian of the EE

position Jee,t ∈ ℝndof×3 and the Jacobian of the position of the control
point that has the minimum distance to the obstacles cJcp,t ∈ ℝ

ndof×3.
Note that this definition of the repulsive force inherits the same
disadvantages as APF, notably the introduction of local minima.
However, we want to highlight again, that this is a rare occurrence
where collision avoidance takes priority over goal convergence.
Furthermore, it should be noted that the safety improvement
fallback mechanism is disabled once an agent discovers a feasible
path to the goal pose.

3 Simulations and experiments

In this section, we evaluate the performance of the ICF planner
across various static and dynamic environments. Given that the
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FIGURE 8
Simulation environments used for comparisons. Figure adapted from Becker et al. (2023a) (CC-BY-NC-ND).

ICF planning framework can be used in combination with arbitrary
global motion planning approaches, we first conduct a comparative
analysis to determine the most suitable pre-planner within our
proposed framework (cf. Section 3.1). Subsequently, in Section 3.2,
we compare the ICF planner in combination with the two
most effective pre-planners against other state-of-the-art motion
planners, encompassing sampling-based, optimization-based, and
reactive planning approaches.

Finally, we demonstrate the efficacy of the motion planning
framework in a dynamic real-world scenario, where a Franka Emika
Research 3 robot has to reactively avoid colliding with a human in
its workspace (cf. Section 3.3).

The simulative evaluations are conducted in a kinematic
simulation environment without disturbances, wherein the current
positions and velocities of the obstacles are known, but their
future behaviour is not. We use a C++ implementation on a
computer equipped with an AMD® Ryzen 9 5950X CPU with
16 cores, operating at 3.4 GHz and an NVIDIA GeForce RTX
2070 Super GPU.

The same computer is used for calculating the planning
commands in the real world experiment. These commands are send
to an Intel® Core i7-6700 CPUwith 4 cores, 3.4 GHz running a real-
time kernel, which is necessary for controlling the Franka Emika
robot. For detecting and tracking the human, we use a Sterolabs
ZED 2 camera and the corresponding ZEDROSwrapper3 on a third
computer with an Intel® Core i7-6700 CPU with 16 cores, 3.4 GHz
and an NVIDIA GeForce RTX 4060 GPU.

Our simulations and experiments involve complex
environments with multiple dynamic obstacles. Thus, we
uploaded videos of the execution of all scenarios in our
accompanying repository Becker et al. (2024). The repository

3 https://github.com/stereolabs/zed-ros-wrapper

includes comprehensive listings of the parameters utilized in all
simulations and experiments.

3.1 Performance of different global
pre-planners

First, we evaluate the performance of the ICF planner using
different global pre-planners. Towards this end, we employed 20
different sampling-based planners from the MoveIt! framework,
executing them in five static and five dynamic environments. Each
global motion planner was configured with a maximum planning
time of Tglobal = 0.2s. To account for the stochastic nature of the
sampling-based planners, each planner performed 20 runs in each
scenario, resulting in a total of 4,000 simulations. We employed
several performance metrics, including the average, minimum, and
maximumpath length of the EE and the path duration for successful
runs. A run was deemed successful if the robot reached the goal
within 60s without colliding with any obstacles.

The results are presented in Table 1, with the best results
highlighted in bold. Success rates highlighted in red indicate at
least one run resulting in a collision. To facilitate cross-scenario
performance comparison, we utilized a relative metric. This metric
compares the results of each pre-planner against the shortest path
length and shortest path duration for each scenario, with aminimum
of 0% representing the best value across all scenarios. For instance, a
value of 100% in the metric of maximum path length indicates that,
on average across all environments, the longest paths generated by
the pre-planner were twice as long as the respective shortest paths.

The absolute values of the performance metrics for each
individual scenario and planner and illustrations of all scenarios are
presented in the accompanying repository Becker et al. (2024). As
observed in Table 1, the performance variation among different pre-
planners is not substantial. This can be attributed to the predictive
agent simulation of the ICF planner, which filters out suboptimal
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TABLE 2 Motion planner comparison.

Env. Method Length [m] Duration [s] Success Iter. Time [ms]

Static 1

PRM 1.81 - 100% 190.0∗

RRTConnect 1.51 - 100% 74.6∗

RRT∗ 1.71 - 100% 500.0∗

STOMP 1.34 - 100% 120.1∗

Khatib 1.65 17.81 True 0.020

Ataka 1.86 19.56 True 0.018

CFP 1.49 13.00 True 0.019

ICF-PRM 1.41 11.88 100% 0.018

ICF-RRT∗ 1.49 11.78 100% 0.019

Static 2

PRM 2.02 - 100% 237.3∗

RRTConnect 2.01 - 100% 257.8∗

RRT∗ 2.00 - 62% 500.0∗

STOMP 1.72 - 43% 163.3∗

Khatib - - False 0.039

Ataka - 60.00 False 0.045

CFP - - False 0.209

ICF-PRM 1.88 30.45 100% 0.057

ICF-RRT∗ 2.15 26.51 100% 0.053

Dynamic 1

Khatib 1.50 11.46 True 0.029

Ataka 1.53 10.87 True 0.030

CFP - - False 0.053

ICF-PRM 1.31 12.55 100% 0.035

ICF-RRT∗ 1.48 13.13 91% 0.033

Dynamic 2

Khatib 1.68 33.81 True 0.020

Ataka - 60.00 False 0.021

CFP 1.47 12.75 True 0.029

ICF-PRM 1.51 11.96 100% 0.016

ICF-RRT∗ 1.54 12.55 100% 0.014

Complex

Khatib - - False 0.082

Ataka - - False 0.080

CFP - - False 0.126

ICF-PRM 2.12 27.42 71% 0.048

ICF-RRT∗ 2.20 28.46 62% 0.058

1. Bold values highlight the best results across all methods. 2. Red values indicate at least one occurrence of a collision during the respective run. 3. Iteration times marked with an asterisk (∗)
correspond to the planning time of global planners. Unmarked iteration times denote the computation time for generating a control reference in reactive planners.
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FIGURE 9
Excerpt from the experiment demonstrating the robot’s ability to avoid
humans, as shown by the red path of its avoidance movement.

FIGURE 10
Excerpt from the experiment demonstrating the robot’s ability to avoid
humans, as shown by the red path of its avoidance movement.

choices for the magnetic field vector. For further evaluations and
comparisons with other motion planners, we selected two well-
performing planners: PRM, owing to its flawless success rate, and
RRT∗, which exhibited the most best values.

Note that the pre-planner comparisons presented here were
performed using a slightly different calculation method described
in detail in Becker et al. (2023a). However, we only conduct a
relative comparison to identify suitable pre-planners. Therefore, the
modifications introduced in this chapter do not affect the relative
performances, which we also verified in empirical tests.

3.2 Comparisons to other motion planners

Next, we compare our ICF planner in combination with the
chosen pre-planners against other reactive and global motion
planning approaches in five additional challenging environments,
which are illustrated in Figure 8.

The reactive approaches considered in the following
comparative analysis include the APF approach fromKhatib (1986),

the CF approach from Ataka et al. (2018b) and our extension
of the CFP framework for robotic manipulators introduced in
Becker et al. (2021). In order to enable a fair comparison of the
force command generation, our implementations of the locally
reactive controllers integrate our safety-improving fallback method
from Section 2.2.4, and our definition of the attractive force from
Section 2.1.1. We also compare our planning approach against
the global sampling-based planners PRM (Kavraki et al., 1996),
RRT∗(Karaman and Frazzoli, 2011) and RRTConnect (Kuffner
and LaValle, 2000). For a comparison with optimization-based
motion planers, we included the MoveIt! implementation of the
stochastic trajectory optimization for motion planning (STOMP)
planner from Kalakrishnan et al. (2011). The selection of these
planners is based on their widespread use, good results in the
previous pre-planner analysis, and availability in the MoveIt!
framework.

The sampling-based planners and the STOMP planner
exclusively consider static obstacles and are consequently tested
only in the two static environments, in which a maximum planning
time of 0.5s was allowed. If no solution was found in this time, the
attempt was considered a failure. All non-deterministic planners
were executed until ten successful runs were recorded for each
planner in each environment. A path duration exceeding 60s is also
considered a failure. Note that iteration time refers to the planning
time for global planners (depicted with a ∗ in Table 2) while it is
used to specify the calculation time for a control reference for the
reactive planners. Also note that the path duration depends highly
on the allowed maximum velocities. While the EE velocity of the
force-based methods can be specified via a Cartesian maximum
velocity, the random-based planners used here operate exclusively
in joint space. Specifying an EE velocity by means of constraints in
the joint space is not straightforward, therefore, a measurement of
the duration for the affected planners was omitted.

Overall, the results in Table 2 demonstrate that the ICF planner
outperforms the other tested motion planners. Despite its path
length in static environments being slightly larger than that of the
optimizing STOMP planner, it remains within a comparable range
while additionally being capable of reactively avoiding dynamic
obstacles. The advantage of the ICF planner becomes particularly
evident in the second static environment. Although the environment
may not appear complicated at first, a relatively complex joint
movement of the robot is required to avoid collisions with the
obstacles. This complexity leads to challenges for the optimizing
STOMP and RRT∗, reflected in significantly lower success rates.The
CFP planner also faced challenges in this environment due to the
extensive number of predictive agents created, resulting in increased
iteration times. Consequently, no suitable combination of avoidance
directions could be found, and opposing forces on the control points
led to a collision.

The complex environment (cf. Figure 8) requires simultaneous
avoidance motions of the EE and the body, aiming to test the limits
of the motion planners; our ICF planner was the only planner able
to reach the goal successfully without a collision. However, as can
be seen in Table 2, it did not succeed in all runs. The ICF planner
failed when the pre-planner repeatedly could not find a path to
the goal within the given planning time of 0.2s. In such cases, the
ICF planner utilized the safety-improving fallback method, and the
obstacles pushed the robot into configurations close to the joint
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FIGURE 11
Excerpt from the experiment demonstrating the robot’s ability to avoid humans. The figure displays a sequence of timeframes where the human
obstructs all potential paths to the goal pose, causing the robot to deviate from its original path.

limits, where no avoidance was possible, leading to an inevitable
collision. Similarly, in one execution in the environment Dynamic
1, the ICF-RRT∗ planner ended up in a configuration close to the
joint limits and was unable to reach the goal afterwards.

3.3 Human-robot interaction experiments

In this section, we demonstrate the capabilities of the planning
framework in a real-world experimental setup with a Franka
Emika Research 3 robot. The robot is programmed to move
continuously between two predefined goal poses with a maximum
velocity of 0.65 ms-1. The goal poses are updated when the robot
is within a distance of 0.05 m of the current goal. During the
execution of this task a human enters the workspace of the robot
several times.

We use the body tracking feature of the Sterolabs ZED SDK4,
which enables the identification and tracking of 18 keypoints on
the human body. For the purposes of this experiment, we use
a subset of these keypoints, specifically those corresponding to
the upper body. These keypoints are used to create cylindrical
approximations of the human torso, head, and arms, providing
a simplified yet accurate representation of the dynamic obstacle.
These approximations are then published in point cloud format,
which is directly processed by our motion planning framework to
ensure real-time adaptability. The interaction between the tracked
human body and the robot’s movement can be observed in
the accompanying video Becker et al. (2024), which shows how

4 https://www.stereolabs.com/docs/body-tracking

the cylindrical representations move in sync with the human
collaborator.

The planner consistently demonstrates its ability to reactively
avoid various dynamic motions of the human (cf. Figures 9,
10) even when the human obstructs all possible paths to the
goal pose (cf. Figure 11).

4 Conclusion

In this paper, we introduced the ICF planning algorithm, which
integrates reactive collision avoidance with global exploration by
leveraging information about feasible avoidance directions from
a global pre-planner. The ICF planner has been rigorously tested
in a variety of simulations, demonstrating robust performance
even in complex environments with multiple dynamic obstacles.
Comparisons with other widely-used global and locally reactive
motion planners demonstrate its superiority. Additionally, we
validated the planning framework in a challenging real-world
experiment, demonstrating its capability to react promptly and
safely to fast movements of humans within its workspace.
A promising extension could be to further exploit the high
parallelizability of the planner by using multiple pre-planners
simultaneously. In particular, a combination of fast global planners
and optimizing planners with higher planning times is a promising
extension. Future research should focus on improving the global
information extraction module. Currently, it is unable to extract
sufficient information when more complex obstacle avoidance
motions are required.
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