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Maximising the wrench capability
of mobile manipulators with
experiments on a UVMS

Wilhelm J. Marais1*, Oscar Pizarro2* and Stefan B. Williams1

1Australian Centre For Robotics (ACFR), University of Sydney, Sydney, NSW, Australia, 2Department of
Marine Technology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

This paper presents methods for finding optimal configurations and
actuator forces/torques to maximise contact wrenches in a desired
direction for underwater vehicle manipulator systems (UVMS). The
wrench maximisation problem is formulated as a bi-level optimisation
problem, with upper-level variables in a low-dimensional parameterised
redundancy space, and a linear lower-level problem. We additionally
consider the cases of one or more manipulators with multiple contact
forces, maximising the wrench capability while tracking a trajectory and
generating large wrench impulses using dynamic motions. The specific
cases of maximising force to lift a heavy load and maximising torque
during a valve-turning operation are considered. Extensive experimental
results are presented using a 6 degree of freedom (DOF) underwater
robotic platform equipped with a 4DOF manipulator and show significant
increases in the wrench capability compared to existing methods for mobile
manipulators.
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underwater manipulation, kinematic redundancy, bi-level optimisation, redundancy
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1 Introduction

High degree of freedom (DOF) vehicle manipulator systems have seen increased
use in both industrial and field robotics settings due to the advantages provided by
kinematic redundancy. Since these systems have a large number of DOFs responsible
for end effector motion, kinematic positioning generally requires iterative techniques.
Despite this, these kinematically redundant systems can make use of the continuous
space of configurations, which solve a particular inverse kinematics problem to optimise
additional secondary objectives (Klein and Huang, 1983). Secondary objectives may
include obstacle avoidance, optimisation of dynamic manipulability, and avoidance
of configurations limits (Cieslak et al., 2015; Antonelli, 2005). During interaction
tasks with objects or the environment, end effector poses and contact wrenches
are of importance (Khatib, 1987; Antonelli et al., 2001). External contact forces
and torques between the end effector and the environment are transmitted through
each DOF of the system responsible for end effector motion, in a way which
is highly dependent on the configuration. Exploiting the continuous redundancy
offered by high-DOF systems allows for configurations which simultaneously achieve
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a desired end effector pose and maximise the wrench
capabilities (Busson and Béarée, 2018).

Interaction tasks in underwater environments for scientific
exploration or industrial purposes have been traditionally
conducted by medium-to-large underwater vehicle manipulator
systems (UVMS), requiring specialised equipment and multiple
operators for launch and recovery, as well as operation (Sivčev et al.,
2018). In recent years, the emergence of smaller and lower cost
commercial off-the-shelf underwater vehicles and manipulators
has seen a transition to small vehicles for some interaction tasks
(Bezanson et al., 2017; Carlucho et al., 2021). This reduces both
operation costs and time and increases the accessibility of these
systems since they can be launched, operated, and recovered by a
small team without specialised equipment. This work improves the
capability of these small systems, allowing them to perform a larger
range of interaction tasks. Specifically, we consider maximising
contact wrenches between the end effector and the environment.
This work assumes the object to be manipulated has already been
firmly grasped by the end effector of the UVMS, and the system can
then transition to a configuration which allows for the maximum
wrench to be applied at the end effector.

We compare a number of cases whose wrench capabilities
should be maximised. The first is the static case, where the aim
is to maximise the wrench at a single configuration, which we
further extended to consider multiple contact points with the
environment. The second case considers a trajectory where a given
desired end effector path should be tracked while finding a set of
configurations along the way which are dynamically feasible and
maximise the lowest applicable wrench along the path. Finally, the
case of generating largewrench impulses for a fixed end effector pose
is considered. Extensive experimental validation of the proposed
methods is provided, which shows significant increases in the
wrench capability compared to previous methods for UVMS and
other mobile manipulators.

This paper presents the following contributions:

• A bi-level optimisation approach for finding optimal
configurations and actuator efforts for maximising wrenches
for UVMS. Experimental results show this provides
significantly larger wrenches than existing transmission ratio
optimisation methods.
• Consideration of relaxing constraints on orthogonal wrenches
for certain tasks, with experimental results showing a threefold
increase in the maximum wrench capability.
• An optimisation method for maximising wrenches for UVMS
with multiple contact points, including parameterisation of a
set of secondary grasping points and analysis of the required
constraints. Experimental results show increased wrench
capability using the proposed methods.
• A bi-level optimisation method for generating whole-body
trajectories which maximise wrenches over a pre-defined end
effector trajectory, with experimental results confirming the
validity of the proposed method.
• A proposed method for generating dynamic motions with a
fixed end effector pose for generating large wrench impulses,
with experimental results showing the validity of the approach.

The rest of this paper is structured as follows: Section 2
provides a recap of the mathematical background and current

methods for wrench analysis and finding optimal configurations for
wrench maximisation. Section 3 describes the methods proposed
in this work for maximising the static wrench capability for
UVMS, including consideration ofmultiple contact points. Section 4
extends the methods used for static analysis to consider dynamic
trajectories, given an end effector path. Section 5 describes the
proposed method for generating large wrench impulses using
dynamic motions. Finally, Section 6 presents experimental results
for each section, followed by concluding remarks and directions for
future work in Section 7.

2 Background and related work

2.1 Kinematic and dynamic modelling

A vehicle manipulator system has system configuration θ =
(η,q)T, with dim(θ) = n, where η ∈ SE(3) is the vehicle pose in the
world frame and q ∈ ℝn−6 represents the manipulator joint angles.
These are shown in Figure 1. Given some end effector pose x ∈ SE(3),
in the world frame, the forward non-linear map fk gives Equation 1

x = fk (θ) , (1)

for which analytical solutions in the reverse direction, the inverse
kinematics problem, are generally not available. Numerical solutions
make use of the linear velocity relationship Equation 2

ẋ = J (θ) θ̇, (2)

where ẋ ∈ ℝ6 is the end effector velocity vector in the inertial frame,
θ̇ ∈ ℝn is the vector of system velocities corresponding to each DOF,
and J(θ) is the configuration-dependent Jacobian.The θ dependence
for J is dropped in further notation. For kinematically redundant
systems, this has a least squares solution for a desired ẋ given by
Equation 3

θ̇ = J†ẋ, (3)

where J† is the pseudoinverse of J. Note in this work, we
consider fully actuated vehicles; therefore, the Jacobian for a single
manipulator system always has a full row rank. The null space of J,
defined as the set of system velocities which cause no end effector
velocity, can be included as

θ̇ = J†ẋ+ α(I− J†J)∇h, (4)

where α is a scaling factor and h represents some secondary objective
to be optimised in the null space (Klein and Huang, 1983). The null
space projection (I− J†J) can be assumed as a set of (possibly non-
linearly independent) basis vectors, which is tangent to the inverse
kinematics equality constraint.

Now, we have the end effector wrench vector in Equation 5

he = (
0 fe
0ne
) ∈ ℝ6, (5)

consisting of end effector forces 0 fe and torques 0ne in the inertial
frame, with the force relationship

τh = JThe, (6)

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2024.1442813
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Marais et al. 10.3389/frobt.2024.1442813

FIGURE 1
UVMS used in experiments with a 6DOF BlueROV vehicle and 4DOF
Reach Robotics Alpha manipulator, showing vehicle pose η and end
effector pose x relative to the world frame {W}. Manipulator joints are
labelled q1 to q4.

where τh ∈ ℝn represents the vector of forces and torques on each
DOF due to he. The actuator model is given by Bu (Antonelli,
2005), where u ∈ [umin,umax] ∈ ℝm is the control input vector
for each actuator, and the matrix B ∈ ℝn×m is the mapping
between the actuator control input and the resultant force/torque
on each DOF of the system. Including the dynamics of the
system gives (Antonelli, 2005)

M (θ) ̈θ+C(θ, θ̇) θ̇+D(θ, θ̇) θ̇+ g (θ) + JThe = Bu, (7)

where M(θ) is the configuration-dependent mass matrix, C(θ, θ̇) is
the Coriolis term, D(θ, θ̇) is the damping term modelled using a
combination of linear and quadratic drags, and g(θ) is the vector of
gravity and buoyancy forces. We compile all dynamic terms on the
left into the vector τd, yielding

τd + JThe = Bu. (8)

2.2 Wrench ellipsoids

Analysis of wrench capability typically involves ellipsoids
and polytopes. Velocity ellipsoids and their counterparts, wrench
ellipsoids, were introduced by Yoshikawa (1985). These provide a
mapping from a unit ball of joint torques to the end effector wrench,
according to Equation 6. Care must be taken to avoid physical
inconsistency due to the use of norms and inner products onwrench
and axis force/torque spaces (Duffy, 1990). The use of appropriate
scaling metrics (Doty et al., 1993; Doty et al., 1995) gives a modified
version of Equation 6 expressed as Equation 9

W1/2
τ τh = (W

1/2
τ JTW−1/2h )W

1/2
h he, (9)

whereWτ andWh are the scaling metrics for τh and he, respectively
(Doty et al., 1993). The result is that the vector spaces W1/2

τ τh and

W1/2
h he have physically consistent inner products and norms. In this

work, we arbitrarily consider identity scaling metrics, i.e., Wτ = In
andWh = I6, where In and I6 are the n× n and 6× 6 identitymatrices,
respectively, where the elements of each matrix have the appropriate
units to provide physical consistency (see Doty et al. (1993) for an
in-depth discussion).

Dropping the scaling metrics for brevity, the wrench ellipsoid is
defined as Equation 10

{he ∣ ‖JThe‖2 ≤ 1} . (10)

Recent work proposed maximising the volume of the velocity
ellipsoid by projecting the gradient onto the null space of the system,
as shown in Equation 4, and by further solving the problem as
a quadratic program (Zhang et al., 2016). A similar null space
projection method was used by Bae et al. (2018) to maximise the
dynamic manipulability ellipsoid during a value-turning operation
for a UVMS.

2.3 Transmission ratios

The volume of the wrench ellipsoid accounts for the ability
of the system to apply forces and torques in all directions in
an isotropic manner. In this work, it is desired to maximise the
wrench along a single force/torque direction; therefore, anisotropic
capability measures are more appropriate. One such measure is the
transmission ratio—which is defined as the distance to the wrench
ellipsoid from the origin in a desired direction—which can been
optimised by null space projection (Faroni et al., 2016).

To determine the distance to the wrench ellipsoid in a given
direction, consider a unit vector ̂c, which defines the desired wrench,
according to the metric W−1/2h ̂c, as defined above. Again, in this
work, we consider identity scaling metrics, so Wh and Wτ are
dropped in further notation, yet they are required to avoid physical
inconsistency and allow the use of norms and unit vectors. Now,
considering a scalar β, which scales the wrench in the direction
of ̂c, with the condition that the result lies on the ellipse given by
Faroni et al. (2016) in Equation 11,

(β ̂c)TJJT (β ̂c) = 1 (11)

and solving for β in Equation 12,

β = ( ̂cTJJT ̂c)−1/2. (12)

This analysis does not include the effect of gravity, buoyancy, and
dynamical effects, which offsets the centre of the ellipsoid, yielding
a dynamic wrench ellipsoid defined as dynamic wrench ellipsoid
defined in Equation 13

{he ∣ ‖JThe + τd‖2 ≤ 1} . (13)

For an ellipse with its centre not at the origin, we can solve for
β, assuming the origin is contained in the ellipsoid.This condition is
met with a system which can support its own weight under gravity
and sustain the dynamic loads. Solving Equation 14

(JTβ ̂c+ τd)
T (JTβ ̂c+ τd) = 1, (14)
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for β simply involves taking the positive root. This definition
does not account for the actuator mapping B or actuator limits.
Symmetric torque limits have been proposed to be incorporated
into the transmission ratio (Xing et al., 2020), yet dynamical effects
were neglected. Some works have considered minimising the sum
of squared torques on each joint for a given wrench of a redundant
serial manipulator by null space projection (Nemec, 1997), which is
functionally equivalent to optimising the transmission ratio.

The idea of wrench ellipsoids was extended by Ajoudani et al.
(2017) by scaling the ellipsoid by a desired force/stiffness matrix
and instead optimising the trace of the resultant ellipsoid (the
sum of the square of the radii) to obtain a configuration-
dependentmeasure. Bowling andKhatib (2005) explored combining
velocity, acceleration, and wrench capabilities in the joint torque
space for serial manipulators. This involves mapping maximal balls
of velocity, acceleration, and wrench individually onto ellipsoids
in the joint torque space and then combining to form a torque
hypersurface, which has to satisfy actuator constraints. Since the
method combines worst-case scenarios for velocities, accelerations,
and wrenches, it provides a very conservative measure of the
manipulator capability.

2.4 Wrench polytopes

It has been shown that wrench ellipsoids provide only an
approximate measure of manipulator performance as it fails to
capture the true constraints of the system, as compared to wrench
polytopes, which provides a better description of the true capabilities
of a system (Chiacchio et al., 1996). By finding the set of effector
wrenches which satisfy joint constraints, the wrench polytope is
define in Equation 15

{he ∣ τmin ≤ (JThe + τd) ≤ τmax} , (15)

where τmin and τmax are the minimum and maximum loads on
each DOF, respectively. Wrench polytope analysis has been used
extensively in the design and evaluation of manipulators and
manipulator poses (Firmani et al., 2008; Boudreau et al., 2021), yet
optimisation is difficult since the quality of a polytope is difficult
to quantify. Some attempts to define capability measures using
polytopes involve computing actuator saturation for a given wrench
direction for serial manipulators (Busson and Béarée, 2018), or
solving linear programming (LP) problems for parallelmanipulators
(Buttolo and Hannaford, 1995; Lin and Chen, 2016), although these
methods are not directly applicable to mobile manipulator systems.

2.5 Redundancy parameterisation

The idea of redundancy parameterisation has been proposed
in several works to greatly reduce the number of dimensions over
which a given performance objective needs to be optimised, as well
as to remove the non-linear inverse kinematics constraint. These
methods avoid the use of the Jacobian null space projection in
Equation 4 and instead explicitly consider a minimal set of DOF,
which describe the available self-motions while keeping a fixed
end effector pose. Redundancy parameterisation has been used

for choosing optimal stiffness configurations in serial manipulators
with one degree of redundancy (Busson et al., 2017), as well
as for exploring the force capabilities of a manipulator to apply
forces normal to a surface (Nützi et al., 2013). This work was
extended in Busson and Béarée (2018) to an exhaustive search
over two redundant DOFs for a 7DOF manipulator, where the
saturating wrench was used to find the weightlifting capability for
each pose, while Boudreau and Nokleby (2012) examined a planar
parallel manipulator with a 3DOF redundant space to minimise
the sum of squared joint torques for a given wrench. Given an
appropriate parameterisation of the redundant DOF written as θr ∈
ℝn−6, Equation 4 can be rewritten as

θ̇ = J†ẋ+Zr
̇θr, (16)

where ̇θr ∈ ℝn−6 is the vector of velocities of the redundant
DOF and Zr ∈ ℝn×(n−6) is the null space projection matrix, which
maps redundant velocities to system velocities, according to the
parameterisation.

A redundancy parameterisation method for UVMS was
introduced by Marais et al. (2021), which is illustrated in Figure 2.
Given a desired end effector pose, eachDOF in reverse order starting
from the end effector is a redundant DOF until the pose of the base
is fully defined, with invalid poses due to self-collision discarded.
The redundant configuration θr, together with the end effector pose
x, can be used to determine the full system configuration θ.

2.6 Wrench capability over a trajectory

The previous analysis has considered wrench capabilities for a
single end effector pose. In some cases, the wrench capability over an
entire trajectory has to be considered. Local redundancy resolution
methods have been used for continuouswrenchmaximisation over a
trajectory (Bae et al., 2018), yet local methodsmay lead to numerical
instability and sub-optimal trajectories (Kazerounian and Wang,
1988). Global redundancy resolutionmethodswhich consider entire
paths have been proposed for trajectory planning in kinematically
redundant systems (Suh and Hollerbach, 1987). Early works in
global redundancy resolution (Papadopoulos and Gonthier, 1995a;
Papadopoulos and Gonthier, 1995b) focused on planning paths,
which avoid actuator saturation while experiencing a large fixed
load. Further work used the intersection of the wrench polytope
with an expected cone of disturbances for generating trajectories
for kinematic manipulators which are robust to disturbances
(Ferrolho et al., 2021; Lin and Chen, 2016) and used an evolutionary
algorithm combined with multiple lower-level linear programming
solutions to find the maximum wrench capability over a trajectory
for a re-configurable parallel robot. An iterative linear programming
method was proposed for trajectory optimisation to maximise the
allowable load for mobile manipulators between two end effector
set points (Korayem et al., 2004), yet the computational complexity
restricted its application to a 2DOF manipulator.

Hamiltonian control approaches, which make use of
Pontryagin’s minimum principle over an entire trajectory
(Korayem et al., 2009; Korayem et al., 2012), have been used
for finding the maximum load carrying capacity for mobile
manipulators yet often result in control laws which require
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FIGURE 2
Sequence of images showing the proposed redundancy parameterisation method for UVMS, with redundancy parameters θr = [q1,q2]T.

instantaneous switching of actuator forces or torques, which are
not physically realisable for the systems considered in this work.
Additionally, these methods require solving two-point boundary
value problems and, therefore, are generally restricted to systems
with low degrees of redundancy. Recent work has considered
receding horizon style planning using model predictive control
(MPC) to track desired wrenches (Wahrburg and Listmann, 2016),
or for trajectory planning for a mobile manipulator actuating a
large load (Sleiman et al., 2021). Other works Li and Nguyen (2023)
have considered kinodynamic pose optimisation for whole body
control of a humanoid robot manipulating an object, with real-
time trajectory tracking formulated as a constrained MPC problem,
yet few of these works have considered explicitly maximising the
wrench capability using these methods.

To the best of the authors' knowledge, no effective methods exist
for explicitly maximising the wrench capability of high DOF vehicle
manipulator systems, which appropriately consider and exploit the
full capabilities and constraints which are unique to these systems.

3 Maximising the static wrench
capability

This section details how to find optimal configurations
and actuator efforts to maximise the wrench capability in a
desired direction, for a single end effector pose and system
configuration. Dynamic effects due to velocity and acceleration
are, therefore, ignored yet are considered in Section 4. Cases in
which the maximising static wrench capabilities are relevant include
lifting a heavy load or maximising instantaneous torque when
turning a valve.

3.1 Problem formulation

The static wrench maximisation problem can be expressed as
Equation 17

max
θ,u,he

̂cTW1/2
h he, (17)

with constraints

xd = fk (θ) , (18)

θmin ≤ θ ≤ θmax, (19)

dmin (θ) > 0, (20)

umin ≤ u ≤ umax, (21)

τd + JThe = Bu, (22)

( ̂c ̂c† − I6)W
1/2
h he = 0, (23)

where as before, θ, u, he, τd, and J are the system configuration,
actuator effort, end effector wrench, vector of dynamic terms, and
system Jacobian, respectively, described in Section 2. Both τd and
J have a dependence on θ. The desired end effector pose is given
by xd ∈ SE(3); the terms umin and umax ∈ Rm are minimum and
maximum actuator efforts, respectively; Wh is the wrench scaling
metric as before, and ̂c ∈ R6 is the unit vector, as shown in Section 2,
which describes the direction of force/torque, in which the wrench
should be maximised. The first constraint in Equation 18 is the
inverse kinematics constraint using the forward non-linear map
fk, Equation 19 considers configuration limits, and the constraint
in Equation 20 is to prevent self-collisions and collisions with the
environment using the stand-in function dmin(θ), which is simply
the minimum distance from self-collision or between each link of
the UVMS system and obstacles in the environment. Equations 21,
22 are the actuator limits and static balance constraints, respectively.
Finally, Equation 23, where I6 is a 6× 6 identity matrix, enforces
W1/2

h he to have no force or torque components orthogonal to ̂c. As
in Section 2, care has to be taken when considering orthogonality of
wrench vectors (Duffy, 1990), hence the use of the scaling metric.

This formulation has a linear objective with combined linear
and non-linear constraints and is intractable to solve in a
reasonable timescale using available non-linear solvers for the
system considered in this work. In particular, satisfying the inverse
kinematics equality constraint in Equation 18 is difficult due to
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the absence of analytical solutions for kinematically redundant
systems.This work proposes twomethods tomake solving the above
problem tractable: redundancy parameterisation and separation into
a bi-level optimisation problem. Bi-level optimisation has been
used in several works on kinematically redundant manipulators
to make optimisation problems tractable (Nusbaum et al., 2020;
Menasri et al., 2013; Menasri et al., 2015). Typically, the problem
is partitioned between two sets of decision variables and solved
in a nested framework (Dempe, 2002). This work uses the
proposed redundancy parameterisation method in Marais et al.
(2021), allowing the inverse kinematics constraint in Equation 18
to be explicitly satisfied and, therefore, removed from the list
of constraints and replacing θ with θr, the terms in redundancy
parameterisation. Next, we recognise the following: the dynamic
balance constraint in Equation 22 is linear in u and he for a given
θ. Therefore, Equations 21–23 are all linear in u and he. Coupled
with the objective which is similarly linear, the problem naturally
separates into a linear lower-level problem with decision variables
u and he, and a non-linear upper-level problem with the decision
variable θr. Rewriting the newly formulated bi-level optimisation
problem as an upper-level problem Equation 24

max
θr

β∗2 , (24)

with constraints in Equations 25, 26

θrmin
≤ θr ≤ θrmax

, (25)

dmin (θr) > 0, (26)

where β
∗
2 is the solution to the lower-level problem

β∗2 =max
u,he
̂cTW1/2

h he, (27)

with constraints given in Equations 21–23.
It must be noted that for certain sets of upper-level variables,

the lower-level problemmay not have a feasible solution. Physically,
this corresponds to configurations where the system is unable to
hold a static configuration due to external forces such as gravity and
buoyancy acting on the system. Although not an issue for the system
considered in this work, programmatically, these configurations are
penalised with a large negative cost. This is further discussed for the
case of dynamic trajectories in Section 4.

3.2 Analysis using ellipsoids and polytopes

First, the previous definitions of wrench ellipsoids and polytopes
have to be extended to include the overactuated mapping given
in Equation 7. We can invert the mapping in Equation 8 to obtain
Equation 28

u = B† (τd + JThe) , (28)

giving a new definition for the wrench ellipsoid Equation 29

{he ∣ ‖TuB
† (JThe + τd)‖2 ≤ 1} , (29)

where the actuator weighting matrix (Xing et al., 2020) is given
by Tu = diag(1/min{|umin|, |umax|} . The transmission ratio is also

FIGURE 3
Wrench ellipsoid and polytopes measured in Newton (N) for a 2D
UVMS with dimensions in metres (m), showing the force capability in
the given configuration and the desired direction c, in which the
wrench capability should be maximised.

redefined as the positive root of Equation 30

(TuB
† (JTβ ̂c+ τd))

T (TuB
† (JTβ ̂c+ τd)) = 1, (30)

for a given desired wrench along the direction ̂c. Using the inverted
actuatormapping to redefine the wrench polytope gives Equation 31

{he ∣ umin ≤ B† (JThe + τd) ≤ umax} , (31)

although B†, the pseudoinverse of B, does not give a true measure
of the capabilities of the system. Thus, this is referred to as the L2
polytope, while the L∞ polytope is given by Equation 32

{he ∣ Bu = JThe + τd, umin ≤ u ≤ umax} , (32)

which gives a true measure of the actuator capabilities. A simple 2-
dimensional (2D) test case is considered to compare each capability
measures shown in Figure 3.This shows an underwater vehicle with
diagonally mounted thrusters on each corner which can apply 1 N
thrust. The arm has two joints, of which each can apply a torque of
1 Nm.The wrench ellipsoid L2 and L∞ polytopes along the 2D force
dimensions with 0 end effector torque are shown. The L∞ polytope
extends as far or further than the L2 polytope in all directions and,
therefore, gives a better measure of the true wrench capabilities of
the system.

3.3 Optimising for the maximum wrench
capability

Now, consider finding the configuration and combination of
thruster forces and joint torques which maximises the wrench
capability of the system shown in Figure 3 in the direction ̂c while
keeping the same end effector pose.

For the system considered in Figure 3, there are three vehicle
DOFs, two manipulator DOFs, four vehicle thrusters, two joint
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FIGURE 4
Optimal configurations for a wrench in the c direction for a 2D UVMS,
resulting in different optimal configurations according to the measure
of wrench capability which is optimised.

torques, and three wrench DOFs for a total of 14 variables to
solve while simultaneously needing to satisfy the inverse kinematics
constraint. Now, consider solving the optimisation problem using
the bi-level approach proposed above, separating the problem into
a linear programming problem with nine variables (four vehicle
thrusters, two joint torques, and three wrench DOFs), and an
upper-level problem with two variables (two manipulator DOFs).
In this case, redundancy parameterisation has resulted in a bi-level
optimisation problem with three fewer total variables to solve. Due
to the low dimensionality of the upper-level problem, a simple grid
search is used to search the configuration space for the globally
optimal configuration. The lower linear programming problem
is solved using the dual-simplex method in MATLAB’s linprog
function.The optimal solution is shown in Figure 4 labelled β2, with
the corresponding L∞ polytope. The linear program in Equation 27
can be assumed as finding the value of the L∞ polytope in
the direction of ̂c. Therefore, the proposed bi-level programming
approach can be considered an optimisation over the redundant
DOF to optimally configure the system tomaximise the L∞ polytope
in the direction of ̂c.

3.4 Removing the orthogonal wrench
constraint

The orthogonal wrench equality constraint in Equation 23 can
be removed in some scenarios. One example is during a valve-
turning operation, where reaction forces orthogonal to ̂c, the desired
wrench maximisation direction, can be applied on the valve. This
enables larger wrenches to be applied in the direction of ̂c and results
in the same bi-level optimisation problem as before, except with the
constraint in Equation 23 removed.The solution to this optimisation
problem is shown in Figure 4 labelled β3, with the corresponding L∞
polytope. In this case, the bi-level programming approach can be

considered an optimisation over the redundant DOF to optimally
configure the system such that the L∞ polytope has a maximum
extent in the direction of ̂c.

3.5 Comparison with the transmission ratio

Typical methods for maximising the wrench capability seek to
maximise the transmission ratio (Faroni et al., 2016; Nemec, 1997).
Considering that the proposed bi-level programming approach
determines how to optimally configure the L∞ wrench polytope,
consider instead finding the configuration which maximises the
transmission ratio. The same bi-level programming approach can
be used as before, with a modified lower-level problem which
instead uses the transmission ratio. This is given by the following
optimisation problem in Equation 33:

max
θr

β∗1 , (33)

with constraints in Equations 34, 35

θrmin
≤ θr ≤ θrmax

, (34)

dmin (θr) > 0, (35)

where β
∗
1 is the solution to the lower-level problem in Equation 36

β∗1 = {max β1 ∣ ‖TuB
† (JTβ1 ̂c+ τd)‖2 ≤ 1} . (36)

In this case, β
∗
1 is the maximum wrench in the direction of ̂c using

the transmission ratio and is found by solving for the positive root
of the above quadratic equation.

Figure 4 shows the results of bi-level optimisation using each
of these objectives β1 (maximising the transmission ratio), β2
(maximising the L∞ wrench polytope purely in the direction of
̂c), and β3 (maximising the L∞ wrench polytope with orthogonal
wrench constraints removed) for the same system as in Figure 3
via a grid search over the two redundant DOFs, as well as the
corresponding ellipsoid or polytopes. Surprisingly, the optimal
configuration changes depending on the lower-level objective used
in the bi-level optimisation formulation, despite only two degrees
of redundancy. There is also a significant difference in the wrench
capability. Maximising β1 gives a maximum force of 1.91N, while
β2 gives 3.47N and β3 gives 3.88N. These differences become more
pronounced with higher DOF systems, such as the UVMS used for
experiments in Section 6. For higher dimensional redundant spaces
such as the UVMS considered in this work, simulated annealing
followed by a local interior-point method is used to search for an
approximately globally optimal solution to the upper-level problem
of bi-level optimisation. This is because the upper-level objective
is non-smooth and highly non-linear with multiple local maxima,
preventing the effective use of gradient-based methods yet with a
relatively small number of decision variables (4 for the system in
this work). This problem is solvable in several seconds on standard
laptop hardware, making it amenable to real-time implementation
(assuming the desired end effector pose and wrench maximization
direction are defined).
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FIGURE 5
Parametrised regrasp points for second manipulator adding an
additional kinematic variable θn+1.

3.6 Multiple contact points

The case of multiple contact points is common when using two
or more manipulators. The reaction forces of the end effector of a
second manipulator on some nearby grasp point can help increase
the wrench applied by the first manipulator. This creates a closed
kinematic chain between the UVMS system and the environment,
requiring more careful analysis.

For multiple contact points’ case, we define he2 ∈ ℝ
6, which is

the end effector wrench of the secondary arm, and C2 ∈ ℝ6×l, which
is a set of l ≤ 6 unit vectors, which define the direction in which
the second manipulator can apply a wrench he2 . This is explained
in more detail below. The force/torque balance equation is given by
Equation 37

τd + JT(he,he2)
T = Bu, (37)

where the terms τd, J,B and u reflect the additional actuators and
DOF of the second manipulator. In order for (he,he2)

T to be well-
defined, J ∈ ℝ12×n must have a full row rank. This condition is due
to the requirement that the system must be able to apply a virtual
displacement for a given wrench to be achievable and is violated at
kinematically singular configurations. During searches for optimal
configurations, the manipulability measure (Yoshikawa, 1985) is
used to discard singular or very near singular configurations.

The redundancy parameterisation for the dual manipulator case
is similar to the single-arm case, with the primary arm again
defining all degrees of redundancy until the pose of the base is
fully defined. The inverse kinematics solution to reach the grasp
point for the second arm can then be analytically solved. In the
case of multiple inverse kinematics solutions for the second arm, the
solution which maximises the lower-level objective is taken. In case
of no solution, the configuration is considered invalid.The resultant
bi-level optimisation problem is written as Equation 38

max
θr

β∗2 (38)

with constraints in Equations 39–42

θrmin
≤ θr ≤ θrmax

, (39)

dmin (θr) > 0, (40)

μ(θr) > μmin, (41)

f−1k (xd,θr) ≠ ∅, (42)

where β
∗
2 is the solution to the lower-level problem in Equation 43

β∗2 = max
u,he,he2

̂cTW1/2
h he, (43)

subject to constraints in Equations 44, 45

umin ≤ u ≤ umax, τd + JT(he,he2)
T = Bu, (44)

( ̂c ̂c† − I)W1/2
h he = 0, (C2C

†
2 − I)W

1/2
h he2 = 0. (45)

Again, the decision variables for the upper-level problem are the
redundancy parameters θr. The term μ(θr) is the configuration-
dependent manipulability measure (Yoshikawa, 1985), which must
be greater than some empirically chosen minimum μmin to ensure a
kinematically deterministic wrench balance configuration.The final
upper-level constraint requires the existence of a solution to the
inverse kinematics problem f−1k (xd,θr) for desired end effector poses
xd ∈ ℝ12. As before, there is an equality constraint which ensures
he has no component orthogonal to c. The final equality constraint
ensuresW1/2

h he2 only has components in allowed directions defined
in C2. For example, when firmly grasping a contact point with the
secondary manipulator, it might be feasible to set C2 = I6, meaning
any secondary wrench is allowed. If the secondary manipulator
is pushing against a flat surface, then C2 may only contain the
vector normal to the surface, and the optimisation would include
an additional inequality constraint to allow only pushing in one
direction, given by

C2he2 ≥ 0. (46)

The above bi-level optimisation problem again separates
the wrench maximisation problem into a linear lower-level
optimisation and a low-dimensional higher-level problem. Again,
the lower-level problem is solved using the dual-simplex method
in MATLAB’s linprog function, and the upper-level problem uses
simulated annealing, followed by the interior-point method to
effectively search the highly non-linear space for an approximate
global optimum.

3.7 Regrasping

The above case considered grasping a fixed point with a second
arm. Generally, multiple grasping points will be available. We
consider cases where these regrasp points can be parameterised
to provide extra dimensions over which to optimise. Figure 5
shows a simple 2D example, where a one-dimensional set of
parameterised re-grasping points result in an additional kinematic

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2024.1442813
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Marais et al. 10.3389/frobt.2024.1442813

FIGURE 6
Optimal static configuration for torque in the z-direction (blue axis), comparing the default upright case, to the solutions which optimise β1, β2, and β3.

DOF, which can be optimised over. This leads to an additional
DOF in the parameterised redundancy space θr in the above
optimisation problem. Section 6 further describes the possible
parametrisation of re-grasping points.

4 Wrench maximisation over a
trajectory

In this section, a predefined end effector trajectory is considered,
with corresponding desired wrench directions which should be
maximised along the path. Only a UVMS with a single manipulator
is considered, yet the analysis can be easily extended to multiple
manipulators. Use cases for this method may be during a valve-
turning operation, which requires maximising torque along the
same direction throughout, or a waterjet blasting operation around a
pipe, which requires resisting large forces normal to the pipe surface
along the path. Dynamical effects due to velocities and accelerations
cannot be ignored in this case. It is assumed that there is a given
fully defined end effector pose trajectory parameterised in time and
that the velocities at the start and end are zero. To maximise the
capability of the system along this path, the objective is to maximise
the minimum wrench capability along this trajectory.

4.1 Problem formulation

In order to make the problem tractable, the trajectory of the
end effector is discretised into a set of k successive poses x1,…xk,

written as the stacked vector x, with corresponding redundant
configurations θr,1,…θr,k written as θr , giving corresponding system
configurations θ1,…θk, written as θ. Each point along the trajectory
of total time T is equally separated by Δt = T/k. At each end effector
pose is a corresponding end effector velocity ẋ1,…ẋk written as
ẋ, which is computed using the timestep and differences between
successive poses in SE(3). Dynamic quantities are computed using
the finite difference operator

Di =
1
Δt
((

(

−1 1
−1 1
⋱ ⋱
−1 1

0

))

)

⊗ Ii×i, (47)

where ⊗ represents the Kronecker product and Ii×i is the i× i identity
matrix. For this work, Equation 16 is slightly modified to give
Equation 48

θ̇ = JEẋ+Zr
̇θr, (48)

with Equation 49

JE = (
J−1x

0(n−6)×6
), (49)

where J−1x is the inverse of Jx ∈ ℝ6×6, which is the Jacobian for
all DOFs which do not correspond to those is the parameterised
redundancy space. As before, Zr ∈ ℝn×(n−6) is the null space
projection matrix, which maps redundant velocities to system
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FIGURE 7
(Top) Torque along the z direction during static wrench maximisation,
comparing the default, β1, β2, and β3. (Bottom) Forces f in xyz and
torques n in xy during static torque maximisation in the z direction,
comparing β2 and β3.

velocities, according to parameterisation. This formulation allows
velocities for tracking end effector trajectories to be completely
separated from redundant space velocities and vice versa. Now, we
can rewrite Equation 48 as Equations 50, 51

θ̇ = JEẋ +Zr
̇θr = JEẋ +ZrDn−mθr , (50)

θ̈ = Dnθ̇, (51)

where JE and Zr are the stacked matrices formed from JE and
Zr, respectively, at each configuration. Here, Dn−m and Dn are the
finite difference operators acting on vectors of size (n−m) and n
respectively, as defined in Equation 47.

At each timestep, the wrench is given by he,1,…he,k, written
as he, and actuator efforts u1,…uk, written as u. Each timestep
also has a unit vector ̂c1,… ̂ck along which the wrench should be
maximised, written as ̂c. The aim is to solve for a set of redundant
configurations along the trajectory which maximises the minimum
wrench capability, a max–min optimisation. Again, the problem

can be greatly simplified by separation into a bi-level optimisation
problem and through the use of redundancy parametrisation.

The trajectory optimisation problem can be written as the
following bi-level optimisation problem

θropt = argmin
θr
− f (θr) , (52)

where θropt is the optimal set of redundant configurations along the
trajectory and f(θr) is the max–min wrench capability. There are
constraints on the configurations in Equation 53

θrmin ≤ θr ≤ θrmax, (53)

where θrmin and θrmax are theminimum andmaximum limits on the
configurations along the trajectory, respectively, and constraints on
the velocities in Equation 54

̇θrmin ≤ ̇θr ≤ ̇θrmax, (54)

where ̇θrmin and ̇θrmax are theminimum andmaximum limits on the
velocities, respectively. The collision constraint in Equation 20 also
applies at each timestep. Given a set of redundant configurations θr ,
the max–min wrench capability can be solved as a linear program
(LP) over the entire trajectory, giving the lower level of the above
bi-level optimisation in Equation 55

f (θr) =max
p,u,he

p (55)

subject to Equation 56

p < ̂cTWhhe, (56)

where p represents the minimum wrench capability over the
trajectory and Wh is the wrench scaling metric, as before, for each
timestep.The equality constraints are given by the dynamics balance
equations at each timestep i, given by

τd,i + JTi he,i = Bui, (57)

where τd,i and Ji are the vector of dynamics terms τd and the
Jacobian J, respectively, at timestep i. Since the terms in τd are fully
determined by θ, θ̇ and ̈θ, the dynamics terms can be predetermined
over the entire trajectory independently of he and u. There are
inequality constraints

umin ≤ u ≤ umax, (58)

where umin and umax are the stacked vectors of minimum and
maximum actuator efforts, respectively. The orthogonal wrench
constraint is again given by

( ̂c ̂c† − I6k)Whhe = 0. (59)

As before, this constraint can be relaxed under certain conditions.
Finally, there is a constraint on large changes to actuator efforts
throughout the trajectory given by

−ΔumaxΔt ≤ Dmku ≤ ΔumaxΔt, (60)

where Δumax is the maximum allowed actuator change per second
and Dmk is the finite difference operator acting on the vector of size
(mk). This accounts for the relatively slow dynamics of underwater
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FIGURE 8
Experiments comparing the default, β1 and β2 force maximisation cases, showing the maximum lifted test mass. Each test mass is attached to a safety
weight through a slack purple line to keep the system constrained after the test mass is lifted.

FIGURE 9
(Left) Experimental setup for multiple contacts points. A fixed bar is used as the primary manipulator, with the end effector pose x1, and a 4DOF
manipulator is used as the secondary manipulator with end effector pose x2. The secondary manipulator is contacting the side of the tank where a
normal force into the wall can be applied, labelled as he2

. The range of possible regrasping points for the second manipulator, which provide additional
DOFs over which to optimise are labelled as axes θn+1 and θn+2. (Right) Default and optimised configurations and end effector poses for a secondary
contact point during torque maximisation.

thrusters. Again, the LP is solved using the dual-simplex method in
MATLAB’s linprog function.

This is again a bi-level optimisation problem, with the linear
program in Equation 55 as the lower-level optimisation. Changes
to θr effect only the dynamics terms τd, θ̇, ̈θ and the Jacobian
Ji in Equation 57. Therefore, only the equality constraints are
changed with changes in θr . Using the Karush–Kuhn–Tucker

(KKT) conditions, the gradient of f(θr) with respect to θr can
be found as Equation 61

d f (θr)
dθr
= λTeq

dceq
dθr
|
(u∗,h∗e )
, (61)

where λeq is the vector of Lagrange multipliers associated with
the equality constraints, and the final term on the right is the
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FIGURE 10
Torque along the z direction during static wrench maximisation
comparing single manipulator, dual manipulators in the default end
effector pose, and dual manipulators in the optimised end
effector pose.

FIGURE 11
Setup for testing dynamics wrenches over a trajectory, using a servo
motor and attached shaft to simulate a turning valve.

gradient of the equality constraints ceq, evaluatedwith the arguments
of the solution to the lower-level LP problem (u

∗
,h
∗
e ). This is

a non-convex objective with multiple local minima. An interior-
point solver using the MATLAB function fmincon is used and
initiated at several different starting points in an attempt to
find a good global minimum. For the system considered in the
experiments in this work, this problem is solvable in several seconds
on standard laptop hardware, making it amenable to real-time
implementation (assuming the desired end effector trajectory and
wrench maximization direction are defined).

Given a dynamically infeasible trajectory due to large
dynamics terms, the lower-level LP cannot find a feasible solution,
which satisfies the constraints in Equation 57. In this case, the
lower-level problem is set to return a max–min wrench of f(θr) =

1
2
τTdτd, and gradient τd to the upper-level problem, pushing the

optimiser toward dynamically feasible trajectories.

4.2 Tracking dynamic trajectories

The above method finds a trajectory with smoothly varying
actuator efforts, which maximises the minimum wrench in a given
desired direction along the entire trajectory. The actual reaction
forces and torques between the end effector and the environment
during this trajectorywill not be the same as those in the LP solution.
Since the actuator constraints form a convex set, any value for
cThe less than the maximum found by the optimisation will still
fall within the feasible set. Additionally, assuming smooth changes
in the interaction wrenches with the environment, and given the
linear mapping between wrenches and each DOF, the smoothness
properties are also conserved. The problem is finding the actuator
efforts at a given timestep to track the desired trajectory, given that
the actual efforts u may not match the LP solution. At a given
timestep i, the control effort τc to track the trajectory is computed
using an appropriate controller (Marais et al., 2021). Given the
overactuated system, the objective is to find the actuator efforts uc
which are close to the optimal LP solution u

∗
i , posed as a quadratic

cost in Equation 62

min
uc
(uc − u∗i )

TQ(uc − u∗i ) , (62)

where Q is simply a diagonal weighting matrix, with the equality
constraint Equation 63

Buc = τc, (63)

which is simply the actuator model. Using the method of Lagrange
multipliers, this has solution in Equation 64

u∗c = ui +B
†
Q (τc −Bui) , (64)

where B†Q is the weighted pseudoinverse given by Equation 65

B†Q = Q
−1BT(BQ−1BT)−1. (65)

This result does not incorporate the inequality constraints on the
actuators. These are in Equation 66

umin ≤ ui ≤ umax, (66)

which account for actuator effort limits and Equation 67

−ΔumaxΔt ≤ Dmui ≤ ΔumaxΔt, (67)

which account for actuator effort rate change limits. This is a
quadratic programming problem, which can be solved efficiently in
real time for control.

5 Maximum wrench impulse

This section looks at generating amaximummomentary wrench
for a fixed end effector pose, using dynamic vehicle manipulator
motions while keeping the end effector fixed. A use case for this
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FIGURE 12
Plots during the rotating end effector trajectory showing (top) the end effector angle, (middle) vehicle thrust forces, and (bottom) redundant
joint angles.

method may be for shifting a very heavy weight or a stuck valve.
Humans naturally perform these motions for similar tasks, where
the momentum of the person is used to momentarily generate
large forces.

5.1 Problem formulation

For a given fixed end effector pose and set of redundant
configurations which define a dynamic trajectory, the maximum

wrench problem is given by Equation 68

f =max
u,he

max(cTWhhe) , (68)

which is a linear max−max problem. These problems can be
reformulated as a mixed-integer linear program (MILP) using the
big-M method, although this is no longer a convex optimisation
problem. Since this is used as the lower-level problem in a bi-level
optimisation framework, efficient solutions are required. To resolve
this, the maximum wrench impulse can be chosen to occur at an
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FIGURE 13
(Top) Sequence of images during the 5-s 180° rotating trajectory, showing the changing manipulator joint angles during the rotation. The images are at
0°, 90°, and 180°. (Bottom) Torque along the z direction during a dynamic rotating end effector trajectory, a comparison of the static and dynamic
redundant configuration cases.

arbitrarily chosen specific timestep th, giving Equation 69

f =max
u,he
(cTthWhhe,th) . (69)

All constraints from the dynamic wrench maximisation in
Equations 57–60 also apply. This is a linear program which again is
the lower-level problem for the bi-level trajectory optimisation with
upper level given by Equation 52, with the solution and gradients
found in the same way as before.

6 Results

We present the wrench maximisation results for the 4DOF
manipulator and 6DOF vehicle shown in Figure 1. This system has
a degree of redundancy of 4. Two wrench objectives are compared,
torque along the z direction simulating turning a valve, and force
in the z direction, which tests lifting a heavy load. The torque
limit on each joint is [±9,±9,±9,±2]Nm, and each thruster has
an asymmetrical thrust limit of −40 N–50 N. The force of each
thruster can vary by 50 N/s, while the rate of change of joint
torque is effectively instantaneous. Six load cells were attached in
series, as shown in Figure 1, allowing all six components of the
appliedwrench to bemeasured simultaneously.The sensor setupwas

calibrated using knownmasses and levers. Due to the consistency of
the results, only the results of a single run for each experiment are
shown, although a minimum of two runs were completed for each
case to confirm consistency.

6.1 Static wrench capability

For the case of static torquemaximisation in the z direction, four
configurations are compared, shown in Figure 6. First is the default
configuration, which is simply the manipulator in a neutral position
with the vehicle upright. The three other cases are the optimised
configurations forβ1,β2 andβ3 solved using the bi-level optimisation
approach, as described in Section 3, with the optimal thruster forces
and manipulator torques computed accordingly.

Figure 7 (top) shows the torque along the z direction, as
measured by the sensor setup during the experiments for each of
the four configurations. Each experiment consists of a 5-s ramp-up
and ramp-down and a 5-s maximum wrench.

The default case is limited to a torque of 9 Nm since the z-
axis is aligned with the base joint of the manipulator in this case.
The standard approach of optimising for the transmission ratio β1
(Faroni et al., 2016; Nemec, 1997) results in a maximum torque of
approximately 19.5 Nm, while the proposed bi-level optimisation
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FIGURE 14
Plots during the maximum wrench impulse trajectory showing (top)
the vehicle thrust forces and (bottom) redundant joint angles.

approach for β2 yields a maximum of 25 Nm. Finally, removing
the constraint orthogonal wrench components for β3 leads to a
maximum torque of 76 Nm.The inconsistent torque readings during
the fixed maximum thrust period are due to the effects of swirling
water after several seconds in the relatively small test tank.

The default, β1 and β2, cases all have constraints on wrenches
orthogonal to torque along the z direction. The β3 case relaxes
this constraint and has significant orthogonal components. Figure 7
(bottom) shows each of the three orthogonal forces and two
orthogonal torques during the experiment. All the orthogonal
components during the β2 experiment are relatively small, with
a peak of approximately 10 Nm along the y direction due to
flexible strain in the sensor and UVMS setups. In contrast, the
β3 experiment has significant forces of approximately 80 N and
torque of approximately 50 Nm. These may be acceptable in a
case such as turning a valve, where the valve can resist these
orthogonal wrenches.

For the case of static force maximisation in the z direction, three
configurations are compared, shown in Figure 8. Again, the first is
the default configuration, followed by optimal configurations for β1
and β2. In this case, optimising using β3 is not valid as the weight
should be lifted vertically up and not accelerated in orthogonal
directions. This test was performed using known weights, and the
successfully liftedmasses are shown in Figure 8.The default case can
lift a maximum of 4 kg, the transmission ratio method β1 can lift
7 kg, and the proposed method β2 can lift 10 kg.

The results for both the torque maximisation and force
maximisation experiments show significant increases of
approximately 30% and 40%, respectively, in wrench capability
when comparing optimisation using the transmission ratio β1, as
compared to the proposed method of optimising the directional

wrench polytope using a bi-level optimisation with a LP lower-level
problem β2. Additionally, in the case when the orthogonal wrench
constraints can be removed, the experimental torque capability
increased threefold.

6.2 Multiple contact points

The experimental setup for multiple contact point is shown in
Figure 9 (left). A fixed bar is used as the primary manipulator with
end effector x1 and is attached to the 6-axis force–torque sensor
setup. A 4DOF manipulator is used as the secondary manipulator
with the end effector pose x2, which is shown in contact with the side
of the tank where a normal force can be applied. The first constraint
in Equation 45 is also applied, limiting the wrench applied at x1 to a
pure torque in the z direction. It is assumed all forces and torques at
x2 are 0 except for a positive normal force into the wall.Therefore,C2
only has one component and the second constraint in 45 applies, as
well as in inequality constraints in Equation 46, to ensure the contact
force is into the wall.

Figure 9 shows the set of possible regrasping points which
provide two additional DOFs over which to optimise. Figure 10
shows the results for torque maximisation along the z direction,
comparing the single and dual manipulator cases. For the dual
manipulator case, both the default end effector pose and the
optimised end effector pose are tested, shown in Figure 9 (right).
The single manipulator torque reaches a maximum of 23 Nm, the
default dual case reaches 26 Nm, and the optimised dual case reaches
30 Nm, an increase of 13% and 30%, respectively. The data for
this experiment contain more noise since the vehicle is very close
to the edge of the tank by necessity, causing large effects from
swirling water in the tank.These effects may be significant near solid
structures in the underwater environment, requiring additional
modelling which is left as future work.

6.3 Wrench maximisation over a trajectory

The experimental setup for testing wrenches over a rotating end
effector trajectory along the global z-axis is shown in Figure 11.
This simulates turning a valve along this direction of rotation. A
high-torque servo motor above the water line is used to generate
the controlled rotation and is attached to a shaft, which reaches
into the tank. By controlling the rotation of the simulated valve,
the maximum wrench capability throughout the trajectory can be
accurately determined. The end effector of the UVMS attaches to a
jaw coupling on the end of the shaft, and the whole setup is mounted
to the end of the 6-axis force–torque sensor.

The objective which is tested is maximising the torque along
the z-axis with no orthogonal wrench components, while the end
effector tracks a 180° rotating trajectory. The trajectory is shown
in the top plot of Figure 12 and is generated as a cubic spline
with a velocity of 0 at each end point, with a total time of 5 s.
Ten points along the trajectory are considered; therefore, k = 10
for the trajectory optimisation problem described in Section 4. The
values for each joint angle and thruster force were interpolated
linearly between each timestep when sending commands to the
UVMS during the experiment. The middle plot in Figure 12 shows

Frontiers in Robotics and AI 15 frontiersin.org

https://doi.org/10.3389/frobt.2024.1442813
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Marais et al. 10.3389/frobt.2024.1442813

FIGURE 15
(Top) Sequence of images during the 2.5-s maximum impulse trajectory. Resultant trajectory is highly dynamic, allowing a large wrench impulse to be
generated. (Bottom) Torque along the z direction during a heaving motion, compared to the static β2 case.

the thruster forces throughout the trajectory, showing the effect
of the constraint in Equation 60, which limits large changes in
actuator effort. Finally, the bottom plot in Figure 12 shows the joint
angles which correspond to the redundant DOF, showing a relatively
smooth change in redundant configuration throughout the rotation.

Figure 13 (top) shows a sequence of images of the UVMS during
the experiment at 0°, 90°, and 180°, showing the changing joint
angles throughout.

Figure 13 (bottom) shows the results of the torque along the
z-axis, comparing the dynamic case which tracks the optimised
trajectory, and the static case which maintains a fixed redundant
configuration throughout.The static redundant configurationwhich
is chosen is the configuration which maximises the static torque
capability using β2. The static case achieves a minimum torque
of 16 Nm throughout the 5-s rotation period, while the dynamic
trajectory achieves aminimum torque of 19 Nm, a 19% increase.The
results show that consideration of the dynamical effects during the
rotating end effector trajectory leads to a significant increase in the
max–min torque.

Since this rotation is about the vertical axis, the effects of
changing gravity and buoyancy vectors in the UVMS frame due to
the end effector rotation are not present. Therefore, the improved
performance of the dynamic case, as compared to the static case, is
purely due to consideration of dynamical effects from velocity and
acceleration. The difference in performance between the dynamic

trajectory optimised case and the static case is likely to bemuchmore
significant with end effector trajectories which include rotations
about a non-vertical axis.

6.4 Maximum wrench impulse

The experimental setup for maximum wrench impulse
trajectories is the same as the static wrench maximisation setup
shown in Figure 1. Again, the objective is to maximise the torque
along the z direction with no orthogonal wrench components,
in this case by using dynamic motions to generate a large torque
impulse momentarily, while keeping the end effector fixed. A
trajectory of 2.5 s with four intermediate configurations was chosen;
therefore, k = 4 for the trajectory optimisation problem is described
in Section 5. The third timestep is chosen as the point of maximum
torque; therefore, th = 3. As before, values for each joint angle
and thruster force are interpolated linearly between each timestep
when sending commands to the UVMS during the experiment.
Figure 14 shows the results of the trajectory optimisation, with the
top plot showing the thruster forces throughout the trajectory and
the bottom plot showing the joint angles. The resulting trajectory
leads to both joint velocities and thruster rates of change at the
limits set in the optimisation problem, leading to a highly dynamic
trajectory. Figure 15 (top) shows a sequence of images during the
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trajectory, and Figure 15 (bottom) shows a plot of the measured
torque results. The plot compares the static case, which is identical
to the β2 optimised results from Figure 7, compared to the dynamic
impulse case.Thedynamic trajectory generated amomentary torque
impulse of 35 Nm, which is a 40% torque improvement over the best
static results with orthogonal wrench constraints.

7 Conclusion

This work focuses on maximising the maximum wrench
capability of UVMS. A bi-level optimisation method is proposed
for maximising static wrenches, and experimental results show a
significant improvement over optimising the transmission ratio.
Further results show that relaxing constraints on orthogonal
wrenches lead to significant increases in the wrench capability in
relevant use cases. The case of multiple contact points, as well as re-
grasping of secondary points, is also considered, with experimental
results again showing an increased wrench capability. A similar
bi-level optimisation approach is introduced for max–min wrench
optimisation over a trajectory, with experimental results confirming
the validity of the method. Finally, a method is proposed for
finding dynamic trajectories which generate large wrench impulses,
with supporting experimental results. Further work is required for
dealing with the effects of self-generated currents by the vehicle
thrusters when operating near underwater structures. Additional
work would look at automatic recognition of viable secondary
contact points. Further experimental results are required to test the
trajectory optimisation method for end effector trajectories which
contain rotation about a non-vertical axis. Finally, further work
is required to implement the proposed methods in a truly real-
time implementation (rather than just pre-solving the optimisation
several seconds before). This would allow for online configuration
adjustments during application of an end effector wrench, for
example, to reduce end effector tracking errors.
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