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In the realm of precision cattle health monitoring, this paper introduces the
development and evaluation of a novel wearable continuous health monitoring
device designed for cattle. The device integrates a sustainable solar-powered
module, real-time signal acquisition and processing, and a storage module
within an animal ergonomically designed curved casing for non-invasive cattle
health monitoring. The curvature of the casing is tailored to better fit the
contours of the cattle’s neck, significantly enhancing signal accuracy, particularly
in temperature signal acquisition. The core module is equipped with precision
temperature sensors and inertial measurement units, utilizing the Arduino MKR
ZERO board for data acquisition and processing. Field tests conducted on a
cohort of ten cattle not only validated the accuracy of temperature sensing
but also demonstrated the potential of machine learning, particularly the
Support Vector Machine algorithm, for precise behavior classification and step
counting, with an average accuracy of 97.27%. This study innovatively combines
real-time temperature recognition, behavior classification, and step counting
organically within a self-powered device. The results underscore the feasibility
of this technology in enhancing cattle welfare and farmmanagement efficiency,
providing clear direction for future research to further enhance these devices for
large-scale applications.

KEYWORDS

cattle health monitoring, non-invasive temperature sensing, behavioral classification,
precision livestock farming, machine learning

1 Introduction

Smart wearable devices have revolutionized cattle health management. They
provide continuous, real-time monitoring of health indicators like body temperature
and movement patterns (Decandia et al. 2017; Lees et al. 2019; Hoffmann et al.,
2013). This technology enables early detection of illnesses, improves the
efficiency of livestock management, and enhances animal welfare. By providing
detailed health data, these devices aid in making informed decisions, thus
reducing the risk of disease outbreaks and increasing overall farm productivity.
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Body temperature is an important factor for health monitoring,
and this is because cattle are known for their remarkable ability to
maintain a constant body temperature, and the accurate assessment
of this temperature is of paramount importance in understanding
their health and wellbeing (Hodnik et al., 2021). However,
cattle commonly suffer from three prevalent underlying diseases,
each with distinct impacts on their wellbeing and temperature.
Firstly, bovine mastitis adversely affects milk production and
quality, resulting in significant economic losses (Kim et al.,
2019; Dutta et al., 2022). Infected cattle exhibit an average body
temperature increase of 2.64°C compared to healthy ones. Secondly,
the bovine respiratory disease complex (BRDc) is a costly issue,
primarily caused by bacterial infections (Cusack et al., 2003).
Elevated body temperature, exceeding 40°C, is a critical symptom,
but early diagnosis is challenging. Heat stress, the third concern,
arises due to excessive heat exposure, affecting milk production
and fertility (Bagath et al., 2019; Idris et al., 2021). Measuring
rectal temperature above 39°C and respiration rates over 60 beats
per minute are indicators of heat stress. Temperature assessment
remains crucial for disease diagnosis and animal wellbeing.

Traditionally, thermistors, semiconductor devices sensitive
to temperature, are used for core temperature measurement
(Hoffmann et al., 2013; Church et al., 2014; Kou et al., 2017).
However, they require lookup tables for accurate readings and
are non-linear. Rectal thermometers are common but necessitate
cattle restraint, inducing stress-induced hyperthermia and reducing
accuracy. Contact sensors, while less invasive, involve rectal, ear
canal, or vaginal placement, each with limitations. Swallowed
sensors face digestive system constraints and environmental
influences. Infrared (IR) technology offers a non-contact alternative,
and Infrared thermography (IRT) captures surface temperature by
detecting emitted infrared radiation, which has been used since 2005
for early detection of laminitis, leg injuries, and stress responses in
cattle (Wang et al., 2021; Stewart et al., 2017). It is also effective in
non-invasively detecting udder temperature variations in mastitis
cases. The technology’s advantage lies in its continuous monitoring
capability, providing a comprehensive temperature profile over time.

Behavior detection technology also plays a pivotal role in the
health monitoring of cattle, offering valuable insights into their
wellbeing (Rahman et al., 2018; Riaboff et al., 2019; Benaissa et al.,
2019b). These devices, often equipped with accelerometers and
gyroscopes, are designed to meticulously track cattle movements.
Accelerometers have emerged as essential tools for comprehensively
monitoring cattle behavior. These devices, prized for their small
size, affordability, and the ability to record high-resolution data
for extended periods, play a pivotal role in understanding
individual and social behaviors among cattle. By incorporating
accelerometers and gyroscopes, researchers can meticulously track
cattle movements, allowing for the precise identification and
classification of behaviors like grazing, resting, and distress signals
(Benaissa et al., 2019a). Machine learning algorithms, such as SVM
Wang et al. (2018), K-Nearest Neighbors (KNN) Tian et al. (2021),
and Multilayer Perceptrons (MLP) Balasso et al. (2021), further
refine the analysis of behavioral patterns, offering valuable insights
into cattle wellbeing and social dynamics.

Accelerometer technology has demonstrated its effectiveness
across a range of applications (Shamoun-Baranes et al., 2012;
Martiskainen et al., 2009). Pioneering studies on free-ranging

wild animals, including vultures and Eurasian badgers, have
utilized tri-axial accelerometer data. Domesticated animals, such
as goats and dairy cows, have also been subjects of research
employing accelerometers to classify behaviors. However, despite
the promising potential of accelerometers, some challenges
remain. These include issues related to the accurate recognition
of specific behaviors, computational costs associated with
certain machine learning algorithms like SVM, and practical
considerations such as battery life and data retrieval methods for
bio-telemetry sensors (Fuentes et al., 2020).

The significance of device sustainability and uninterrupted
operation in cattle behavior monitoring is paramount (Cox, 2002;
Rivero and Daim, 2017). It is imperative to note that prior research
often inadequately considered this critical aspect, with earlier
models lacking a systematic approach to ensuring continuous
functionality. In contrast, contemporary devices prioritize
sustainability, frequently incorporating rechargeable batteries and,
in some innovative designs, integrating solar panels to extendbattery
life. These advancements not only reduce the ecological footprint
of monitoring technology but also mitigate logistical challenges
associated with frequent battery replacements Alonso et al., 2020).
The past oversight underscores the urgency of current efforts to
address sustainability, as these modern device innovations reshape
cattle behavior monitoring, promising continuous and effective
operation, and offering profound insights into animal wellbeing and
livestock management.

To effectively address the identified shortcomings, this paper
introduces a novel wearable continuous health monitoring device
designed for cattle health assessment. The primary contribution of
this research is the innovative integration of real-time temperature
recognition, behavior classification, and step counting within a self-
powered device. This device combines a sustainable solar-powered
module, real-time signal acquisition and processing, and a storage
module within an animal ergonomically designed curved casing for
non-invasive cattle health monitoring. Furthermore, our distinctive
design innovation lies in the fact that the animal ergonomically
designed curved casing is tailored to better fit the contours of the
cattle’s neck, significantly enhancing signal accuracy, particularly
in temperature signal acquisition by comparing with the rectal
temperature. Moreover, we have achieved precise step counting for
cattle health assessment. Field tests conducted on a cohort of ten
cattle not only validated the accuracy of temperature sensing but
also demonstrated the potential of machine learning, particularly
the Support Vector Machine (SVM) algorithm, for precise behavior
classification and step counting, with an average accuracy of 97.27%.

The structure of this paper is organized as follows: Section 1
provides a summary of the latest research on temperature detection
and behavior monitoring using wearable smart devices for cattle
health and highlights the existing research gap. Section 2 details
the device’s design and methodology, highlighting its modular
construction and integration of sensors. Section 3 presents the
experimental setup and results from the deployment on cattle,
focusing on the performance of the machine learning algorithms,
particularly SVM, for behavior analysis. Section 3 also discusses
the findings, challenges, and future enhancements of the device.
The paper concludes with Section 5, summarizing the key
contributions and potential advancements in livestock health
monitoring.
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FIGURE 1
Schematic of the intelligent health monitoring device with interchangeable components. The device consists of three main modules: the Energy
Module, Core Module, and Storage Module. Interconnections between modules are indicated, highlighting the power and data transfer paths.

FIGURE 2
Intelligent wearable health monitoring system with integrated solar-powered sensor device.

2 Device design and methods

Theoverall framework diagram for intelligent healthmonitoring
in cattle is depicted in Figure 1. It primarily consists of three
components: the energy supply module, the system control and
sensing module, and the storage module. The detailed construction
of the developed intelligent device is illustrated in Figure 2. In this
section, we elaborate on the integration of the modular electronic
device depicted in Figure 1 and its application in an agricultural
setting as illustrated in Figure 2.

2.1 Integrated sensor integration

The Core Module lies at the heart of the device’s application
in cattle health monitoring, anchored by the Arduino MKR
ZERO board which orchestrates the data processing. The

board’s MLX90614-DCC sensor is a centerpiece for non-
invasive health monitoring, offering a measurement accuracy of
± 0.5°C within the range of −70°C to +380°C. This precision
is crucial for detecting febrile conditions in livestock, which
can signify infection or illness. The sensor’s high emissivity
coefficient makes it adept at reading temperatures from various
animal coats and skin types, and its fast response time of
less than 500 milliseconds allows for near-instantaneous data
acquisition.

Complementing the temperature sensor, the MKR ZERO
board is equipped with a state-of-the-art IMU, capable of
detecting movements in six degrees of freedom. This sensor’s
performance metrics include an angular rate of ± 245/±
500/± 2000° per second (dps) on the gyroscope axis and an
acceleration range of ± 2/± 4/± 8/± 16 g on the accelerometer
axis. Such detailed motion tracking is instrumental for gait
analysis in livestock, which can aid in the early detection of
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lameness or behavioral changes associated with distress or
environmental changes.

2.2 Sustainable power supply subsystem
design

The continuous operation of these high-precision sensors
is assured by the Energy Module, which provides a consistent
energy supply via its solar panel and battery system. The device’s
EnergyModule showcases a meticulously engineered power system,
comprising a solar panel with a 5 V 120 mA output, which
ensures optimal energy harnessing from sunlight. This energy is
judiciously stored in a robust lithium battery with an impressive
1800 mA h capacity, ready to sustain the device’s operations through
variable light conditions. The TP4056 chip within this module
safeguards the battery against the rigors of overcharging and deep
discharging, thus preserving the longevity of the 1800 mA h battery
which sustains the device’s operations.Based on multiple real-
world tests, the device can run for approximately 120 h on an
1800 mA h battery. Considering that the solar panel can provide
some additional power, the actual operating time could be even
longer. This will provide green and sustainable power to the
monitoring system.

Data accrued from these sensors is logged by the StorageModule
onto an SD memory card, designed to handle the extensive data
generated over long periods.The card’s storage capacity ensures that
no critical information is lost, enabling comprehensive analysis of
temperature fluctuations and movement patterns over time.

This sophisticated sensor integration, backed by robust
performance indicators, ensures that the device not only monitors
the real-time state of livestock health, but also builds a historical
database to inform long-term animal welfare strategies. The
precision and reliability of these sensors are vital in translating
complex biological and environmental data into actionable insights
for farm management.

2.3 Enhanced utility through curved design

As shown in Figure 1, the device’s innovative design is
encapsulatedwithin a shell of precise dimensions,measuring exactly
10 × 7 cm. This compact and curved housing is engineered with
a dual purpose: to minimize its physical footprint for ease of
attachment to livestock without causing discomfort and to serve
functional needs critical to farm operation. The curvature is more
than aesthetic; it is a deliberate choice that ensures the device
conforms to the natural lines of an animal’s body, promoting stability
and accuracy in sensor readings. This design consideration is vital
in environments like farms, where dust and debris are prevalent,
as the curved surface inherently reduces the accumulation of such
particulates.

Furthermore, the arc-shaped exterior plays a strategic role
in enhancing the device’s durability and functionality. As shown
in Figures 2, 3, the curvature of the shell allows it to fit more
snugly against the curved flanks of livestock, thus ensuring better
stability and sensor readings It acts as a shield, deflecting impacts
from farm animals or machinery, thereby maintaining the device’s

structural integrity and operational reliability. The curvature also
contributes to the thermal management of the device. It facilitates
a more uniform heat distribution and accelerated heat dissipation,
safeguarding sensitive internal components like the MLX90614-
DCC temperature sensor from the effects of ambient temperature
fluctuations.

In summary, the seamless integration of the energy, core, and
storage modules within a curved, ergonomically designed shell
demonstrates a harmonious balance between form and function.
This design synergy renders the device exceptionally suited to meet
the demands of modern agriculture. It stands as a testament to
thoughtful engineering, aimed at delivering reliable performance
and valuable data insights while enduring the rigors of the farming
environment.

3 Experiments and results

The smart wearable devices were affixed to 10 cattle, numbered
from C1 to C10, and conducted experiments for a minimum of
3 hours for data collection. All animal experiments were approved
by the local livestock regulatory authorities, and the animal
experiments were conducted in Weifang City, Shandong Province,
China.Simultaneously, we measured the rectal temperature of the
cattle to assess the accuracy of our temperature measurements.
While rectal temperature measurement can affect the behaviour
of cattle, its effect on the temperature measurements of the smart
wearable device is negligible.This is because, as depicted in Figure 6,
the device was affixed to the lateral side of the cattle’s neck using a
slightly elastic nylon cord.

The reason for selecting the lateral side of the neck of the
cattle was due to the relatively sparse hair in this region, increased
blood circulation in the neck, and ease of attachment. The entire
temperature measurement environment was situated inside the
livestock barn on the farm, aimed at minimizing the impact of
direct sunlight on the animals’ skin temperature and mitigating the
potential interference of direct sunlight on the infrared sensors of
the wearable device. In order to facilitate the measurement of rectal
temperature in cattle and to affix and retrieve experimental devices,
all the test cattle were tethered within a designated area using ropes.
Despite the limited range of movement, the acceleration data still
allowed for precise identification of the cattle’s activity behaviors.

3.1 Body temperature monitoring

Ensuring the health of cattle is vital in modern agriculture.
Accurate body temperature measurement is key. By integrating
our advanced technology into livestock management, we empower
farmers to monitor and ensure the wellbeing and productivity of
their cattle based on our wearable device, contributing to a thriving
agricultural industry.

3.1.1 Data processing: Smoothing method
Infrared Thermography (IRT) data can be highly variable and

extremely sensitive to environmental conditions, as highlighted in
previous research. Consequently, IRT data may exhibit significant
noise, contain erroneous readings, and yield inaccurate results if a
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FIGURE 3
The experimental cattle equipped with smart wearable devices for temperature measurements. Temperature and acceleration information was
collected in real-time.

robust analysis methodology is not implemented. To accommodate
the use of the MLX90614 sensor, a 1 s rolling median filter was
employed on the raw temperature readings from consecutive frames.
This smoothing technique was chosen to minimize the influence of
outliers within the dataset. The 1 s window duration was selected
because it effectively smooths the data over a sufficient period,
reducing the impact of brief events that might disrupt accurate
temperature measurements from the eye’s ocular region.These brief
events may include animal blinks, head shaking, or other distortions
such as camera refocusing. Importantly, this approach is adaptable to
different hardware configurations, as the smoothing window adjusts
based on the camera’s frame rate.

Figure 4A illustrates the instantaneous neck skin temperature
readings of Cattle-4 within a brief 1 min interval. The graph
reveals the inherent variability of the raw IRT data (shown in
red), which fluctuates rapidly between 36.5°C and 37.5°C. After
applying a 1 s rolling median smoothing technique, the resultant
data (indicated in blue) exhibit amore stable pattern, with smoothed
values predominantly ranging between 36.7°C and 37.2°C. This
technique successfully mitigates transient environmental effects and
measurement artifacts without significantly altering the underlying
temperature trends.

In Figure 4B, we extend our analysis to a broader 3 h time
frame for Cattle-4. The raw data, without any filtering, display
pronounced peaks and troughs, highlighting the sensitivity of IRT
to short-term disturbances such as head movement or camera
refocusing. Post-processing with the rolling median filter reveals
a smoother temperature curve that closely shadows the median
quantile lines at 37.33°C (75%), 37.45°C (90%), 37.53°C (95%),

and 37.59°C (97%). The smoothed temperatures settle marginally
below the rectal temperature baseline which is 38.3°C, which is
a common comparative standard in livestock health monitoring.
Taking into consideration that the epidermal temperature of
homeothermic animals typically runs slightly lower than their rectal
body temperature, the obtained detection results are reasonable.
With the application of suitable correction algorithms, we can
achieve long-term accurate monitoring of cattle health.

3.1.2 Evaluation of skin vs rectal temperature
variability in cattle

Transitioning to a population-level perspective, Figure 5A
presents a boxplot of neck skin temperature distributions for a
cohort of 10 cattle. Across this sample, median temperatures lie
within a narrow band from 36.5°C to 37.2°C, aligning closely with
the expected normal range. Notable are the individual variations,
with CattleC1 showing a lowermedian of approximately 36.3°C, and
Cattle C10 displaying a higher median near 37.3°C.The interquartile
ranges and the spread of outliers provide insight into the individual
differences within the herd, potentially attributable to a myriad of
factors including age, coat thickness, and activity levels.

Figure 5B addresses the critical question of how neck
skin temperature correlates with the rectal body temperature,
traditionallymeasured rectally.The boxplots denote the discrepancy
between the two measurement sites for each of the 10 cattle. The
median errors range from−0.2°C to 1.8°C, suggesting that while IRT
provides a reliable non-invasive temperature assessment, certain
individual and environmental factors can introduce a degree of
error. Notably, Cattle-1 C1 and Cattle-10 C10 exhibit the largest
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FIGURE 4
(A) Instantaneous neck skin temperature readings of Cattle-4 within a brief 1 min interval. (B) 3 h continuous neck skin temperature monitoring of the
Cattle-4, comparing with the rectal temperature baseline.

FIGURE 5
(A) Boxplot depicting the distribution of neck skin temperatures for a sample of 10 cattle over a 3 h observation period. Each box represents the
interquartile range (IQR) of temperatures for an individual animal. (B) Boxplot comparison of the temperature measurement error between neck skin
and rectal temperatures for the same cohort of 10 cattle. The boxes illustrate the distribution of the temperature differences for each animal, with the
median error depicted by the central line in each box.

deviations, which could be indicative of measurement anomalies or
genuine physiological differences.

The robustness of the rolling median as a smoothing method
for IRT data is reinforced by the data presented. By consistently
reducing the noise and minimizing the influence of outliers, the
method ensures that the temperature readings are representative
of the animal’s true thermal state. It is crucial to acknowledge
the inherent limitations of IRT, especially its sensitivity to
environmental conditions. However, our methodological approach,
by averaging over a 1 s window, demonstrates an effective balance
between data fidelity and practicality for real-world monitoring.

The processed IRT data, as demonstrated in Figures Figures 4, 5,
offer valuable insights into the thermal patterns of cattle, essential

for health and welfare monitoring. The choice of a 1 s rolling
median smoothing method has proven to be particularly suited to
this application, allowing for the capture of physiologically relevant
temperature changes while discounting transient environmental or
sensor-related noise.

3.2 Cattle behaviour monitoring and
classification

3.2.1 Data collection
Data collection took place at a commercial cattle farm in China,

where the cattle were housed in a cubicle shed. The cattle were fed
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FIGURE 6
Various Motion States of Cattle based on the IMU data: Illustrating Standing Rest, Grazing, Feeding, Transition from Standing to Lying Down, and Lying
Down Resting.

with dry hay. A total of 10 cattle that showed no signs of severe
lameness or other potential diseases affecting their behavior were
selected for this research. Cattle were chosen and equipped with
collars in the afternoon. Video recordings were employed at the
same time to document the cattle’s activities, facilitating later data
labeling for behavioral classification. Expanding on the analysis of
outliers, it is important to consider potential factors contributing to
temperature anomalies in cattle. Low temperatures, as observed in
Cattle-1 with a median of approximately 36.3°C, may be indicative
of issues such as head shaking or movement, which can cause the
sensor tomomentarily lose proper contact with the skin. Conversely,
short-term elevated temperatures, as seen inCattle-10with amedian
near 37.3°C, could result from direct exposure to sunlight or other
environmental factors.

Cow behavioral activities were annotated by observers
(ZY) based on video recordings, with each cow wearing a
sensor collar. IMU (Inertial Measurement Unit) data for each
behavioral activity were manually labeled according to the
following criteria.

1. Feeding: Cattle eating grass in a designated area;
2. Grazing: Cattle lowering its head to eat the hay;
3. Walking: Cattle moving from one location to another;
4. Lying resting: Cattle lying down in a restful state;
5. Standing resting: Cattle standing still and resting;
6. From Stand up to lying down(transition): Cattle transitioning

from standing to lying down.
7. From lying down to stand up (transition) Cattle moving from a

lying position to standing up.

It is important to note that certain less frequent or short-
duration activities, such as drinking and scratching behaviors
in livestock, are not explicitly identified in this categorization.
However, it is crucial to emphasize that these rare activities and
events may still hold significant biological relevance in assessing
health and welfare conditions. Hence, while not attempting to
classify these in the present context, future research should consider
developing methodologies to detect such infrequent behaviors,
acknowledging their potential importance in comprehensive animal
welfare studies.

In this paper, we selectively focus on activities of interest to
validate the activity classification algorithm. Data pertaining to
the movements of ten cattle, labeled 1 to 10, were collected for
a duration of 3 hours per animal. Notably, cattle numbered 1, 2,
and three were subject to continuous temperature data collection
over a 24 h period. This concurrent temperature monitoring serves
a dual purpose: it provides an opportunity to verify the state of
temperature surveillance while also facilitating the validation of the
motion classification algorithm.

Upon completion of data collection, we proceeded to calibrate
the IMU data based on video recordings that commenced
simultaneously. A 20 s window was employed for data calibration.
This process resulted in the calibration of 9 hours of motion data for
cattle numbered 8, 9, and 10, which was subsequently utilized for
training the machine learning algorithm.

Figure 6 presents a time series example of the raw triaxial
accelerometer output during various behaviors of a single
cattle, including lying and standing resting, grazing, and
feeding, as well as during transitions from lying to standing
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postures. The accelerometer outputs for lying and standing rest
positions are qualitatively similar, reflecting minimal overall
movement in both behaviors. Notably, during feeding, there
is a distinct pattern of changes in the three-axis acceleration,
corresponding to the cattle’s head movements up and down
and back and forth. While Figure 6 is a representative example,
similar qualitative patterns of accelerometer outputs were also
observed in other cattle within the study. These qualitative
observations provide a useful intuitive starting point for
identifying the most appropriate features to be included in the
classification algorithm.

3.2.2 Feature characteristics extraction
Raw data collected from 10 cattle were used for the data

pre-processing, which included acceleration, angular velocity,
and magnetometer data acquired by the IMU on the device. An
important aspect of classifying multidimensional time series is the
extraction of a low-dimensional representation of the original input
space. Therefore, we selected Mean (F1), Variance (F2), Root Mean
Square (F3), Skewness (F4), Kurtosis (F5), Energy (F6), and Integral
of absolute value (F8) as features. We use the manually labeled data
set to train the machine learning classifier. The 10 s windows of
cattle data are represented as a 9 × 8 matrix, indicating the seven
features for each time series. Features are repeatedly extracted from
the time series obtained from the 10 cattle in the experiment,
forming a complete feature space for supervised behavior
classification.

3.2.3 Cattle behavior classification and
identification

In this research, we conducted an experiment to classify cattle
activities, employing several classification algorithms including K-
Nearest Neighbors (KNN), Naive Bayes, Multilayer Perceptrons
(MLP), multi-class Support Vector Machine (SVM), random
forest (RF) Shi et al. (2024) and Binary Classification Trees
(BCT). The experiment utilized data from specifically tagged
cattle, identified by the numbers C8, C9, and C10. This data,
already labeled, provided a solid foundation for testing and
evaluating the efficacy of the various classification methods in
accurately identifying different activities of the cattle. The diverse
range of algorithms was chosen to explore and compare their
respective strengths and weaknesses in the context of animal
behavior analysis.

To assess the efficacy of classification algorithms, we evaluated
two key metrics: the sensitivity and precision of the classification
outcomes. In the realm of standard statistical process control,
sensitivity (denoted as CSen) and precision (referred to as CPre) are
delineated as follows:

CSen =
TP

TP+ FN
, CPre =

TP
TP+ FP

. (1)

in which, TP (True Positive) refers to the count of instances where
the behavior of interest was accurately classified by the algorithm,
as confirmed by visual observation. FN (False Negative) denotes
the occurrences where the behavior of interest, although observed
in reality, was incorrectly categorized as a different behavior by
the algorithm. FP (False Positive) represents the instances where
the algorithm inaccurately classified a behavior as being of interest,
despite it not being observed in reality.

We comprehensively discuss the effectiveness of data collected
by monitoring devices in accurately identifying cattle behavior,
thereby verifying the reliability of these devices across various
behavioral categories including feeding, resting, walking, grazing,
and standing resting. As shown in Table 1, an in-depth performance
assessment of five machine learning algorithms reveals the crucial
importance of data quality in ensuring algorithmic accuracy.
Notably, the SVM algorithm excelled in both sensitivity and
precision assessments, achieving an average sensitivity of 93.83%
and precision of 89.88%, underscoring the key role of high-quality
data input in generating reliable classification results. Furthermore,
the diversity and comprehensiveness of the data provide a robust
training foundation for machine learning algorithms, ensuring the
effectiveness and robustness of monitoring devices in different
scenarios.

The comprehensive analysis indicates that the monitoring
devices are not only capable of accurately recording everyday cattle
behaviors, but the data they provide is vital for training machine
learning algorithms, as evidenced by the high performance of
these algorithms. Hence, it can be concluded that monitoring
devices are highly reliable in collecting cattle behavior data,
significantly enhancing the precision of livestock management.
These findings are crucial for guiding the development of
future agricultural monitoring technologies and lay a solid
foundation for developing more efficient behavioral monitoring
solutions. Although each algorithm has its unique strengths,
for example, the RF algorithm also obtained the second-best
performance, SVM provides the best balance in most scenarios,
emphasizing the importance of considering data characteristics
and application contexts when selecting appropriate machine
learning algorithms.

3.3 Cattle step accounting

3.3.1 SVM-based step counting in cattle
In cattle health management, it is vital to monitor locomotor

patterns, as a decrease in step frequency, especially reduced
step count, often signals health issues. Conditions like lameness,
commonly caused by hoof or joint complications, are indicated by
decreased mobility. Metabolic disorders such as ketosis or acidosis,
along with reproductive challenges or estrus, are also linked to
changes in activity levels. Reduced movement in cattle, similar to
human responses to illness, generally reflects health deterioration.
Therefore, careful monitoring of cattle’s movements is essential for
the early detection andmanagement of various health conditions. By
analyzing variations in step counts over time, farmers can identify
early signs of ailments like lameness or metabolic diseases, whose
symptoms vary with disease progression, and increased activity that
might signal estrus. This ongoing observation helps differentiate
normal behavioral changes from health-related issues, enabling
timely intervention and treatment.

Therefore, based on the manually annotated data for cattle and
utilizing the same temporal signal feature extraction methodology
as employed in subsection.3.2.2 features, we employed a binary
SVM approach for the step counting test in cattle. During this
process, we meticulously optimized key parameters of the SVM
model, including the selection of the kernel type, adjustment of
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TABLE 1 Performance comparison of Six Machine-Learning Algorithms on Identical Cattle Data.

Behaviour class Performance KNN Naive bayes MLP SVM BCT RF

Feeding
Sensitivity 88.08% 83.06% 75.06% 92.53% 80.06% 89.47%

Precision 81.53% 88.26% 79.34% 90.12% 85.45% 87.59%

Lying resting
Sensitivity 79.05% 85.16% 68.29% 93.85% 82.47% 90.28%

Precision 84.75% 80.26% 76.98% 88.54% 79.69% 85.82%

Walking
Sensitivity 86.13% 81.95% 70.86% 95.73% 78.33% 92.06%

Precision 82.67% 79.02% 77.19% 91.27% 82.11% 88.74%

Grazing
Sensitivity 87.91% 80.36% 73.47% 94.38% 83.55% 91.15%

Precision 85.42% 87.98% 75.31% 89.17% 81.23% 86.92%

Standing resting
Sensitivity 78.64% 84.23% 69.87% 92.64% 81.29% 88.94%

Precision 83.52% 78.67% 74.58% 90.43% 80.11% 86.68%

Average
Sensitivity 84.00% 82.95% 71.51% 93.83% 81.14% 90.38%

Precision 83.58% 81.04% 76.68% 89.88% 82.12% 87.15%

the regularization parameter C, and other parameters applicable
to specific kernels (such as Gamma for the RBF kernel). Through
this approach, we ensured a good fit of the model to the
training data while preventing overfitting, thereby guaranteeing the
generalizability of the model.

Figure 7 presents the statistics of the step-counting results for
these three cattle numbered C8, C9, and C10 using the optimized
SVM model, thereby demonstrating our reliance on the SVM
model for accurately counting gait steps. From the graph, it
can be observed that, for the 15 min time windows of Cattle
numbered C8, C9, and C10, the identified step counts for each
cattle are 39, 6, and 20, respectively. Within this time window,
the actual manually counted steps were 45, 6, and 24 for the
respective cattle. Comparative analysis reveals that the algorithm
demonstrates relatively accurate gait recognition and counting for
cattle within short time windows, achieving an average accuracy
of approximately 86.67%. Additionally, the algorithm is capable
of recognizing and counting consecutive gaits, as evidenced by
the red and blue box plots in the figure. Notably, when cattle
exhibit lower activity levels, the algorithm achieves higher accuracy
due to the prominence of temporal features associated with
walking compared to other static temporal features. However, the
algorithm’s accuracy diminishes when cattle are engaged in complex
activity states.

3.3.2 Validation of automated step count against
manual counting

Figure 8A illustrates the activity pattern of a specific cow,
designated as C8, over a 3 h period, as identified by a Support Vector
Machine (SVM) algorithm. The SVM classifier has been trained
to recognize continuous walking behavior, which is indicated by

the accumulation of markers in the graph. Each marker color
represents a different axis of acceleration—X, Y, and Z—captured
by a tri-axial accelerometer. The SVM algorithm identified a total of
315 steps during this period. The graph exhibits the characteristic
high-frequency noise associated with raw accelerometer data, but
the SVM’s algorithmic filtering has successfully distilled this into
a clear step count. This pattern of activity, captured in discrete
time intervals, provides valuable insights into the locomotion and
wellbeing of the animal.

In Figure 8B, offers a side-by-side comparison of SVMalgorithm
and manual step counts for 10 cattle, labeled C1 through C10.
Median SVM step counts, denoted by the horizontal line in each
boxplot, generally align with manual counts but display variances
for C4 and C10, with discrepancies of −13 and +16 steps respectively.
The interquartile range (IQR) indicates variability in the SVM’s
performance, with C4’s IQR spanning from 270 to 310 steps,
suggesting a tendency of the SVM to undercount. Outliers, such
as those observed for C2 and C9, hint at occasional bursts of
activity not consistently captured by the SVM. For example, C2’s
manual count exceeds the SVM’s upper quartile by about 40
steps, indicating possible underdetection of rapid movements by
the algorithm. The analysis reveals a mean absolute deviation
of around nine steps across the dataset, highlighting the need
for refinement in the SVM’s calibration to ensure it captures
the full range of cattle movement with accuracy comparable to
manual counting.

3.3.3 Comparative performance of classification
algorithms

As depicted in Figure 9A, the SVM algorithm’s accuracy for
counting cattle steps is evaluated across a sample of 10 cattle.
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FIGURE 7
Cattle numbered C8, C9, and C10 were manually marked and their step counts were recorded in three sample windows, each with a duration of 15 min.
The identified step counts for each cattle are 39, 6, and 20, respectively. Each box plot in the figure represents a single step taken by the cattle at that
moment. The blue box plots are particularly useful for illustrating instances when the cattle engaged in consecutive walking behavior.

FIGURE 8
(A) The walking behavior of cattle C8, as automatically labeled by SVM for 3 h time window. Continuous walking states are denoted with different
colored markers, with the total count is 315 steps. (B) A comparison between manually counted steps and 10 automated SVM step counts for all the 10
cattles, all with a statistical time window of 3 h.

The bar chart shows that the accuracy remains consistently
high for most cattle, exceeding 95%. Notably, cattle numbers
1 through 7 and nine show accuracies ranging from 95.5%
to 98%, with cattle number 5 reaching the highest at 98%.
However, there is a marked decrease for cattle number 8,
where the accuracy drops to approximately 87%. This outlier
suggests potential discrepancies in step pattern recognition
or individual differences in cattle behavior that could affect
the SVM’s performance.

Figure 9B presents a comparative analysis of five different
classification algorithms used to process data from wearable
devices on cattle. The boxplot illustrates the average accuracy
percentage achieved by each algorithm, with SVM showing superior
performance with an average accuracy of 97.27%. K-Nearest

Neighbors (KNN) and Boosted Classification Trees (BCT) also
perform well, with average accuracies of 95.20% and 95.70%,
respectively. Naive Bayes and Multi-Layer Perceptron (MLP)
algorithms exhibit lower average accuracies of 93.80% and 89.50%,
respectively, with MLP displaying the widest interquartile range,
indicating higher variability in its performance.

The outliers in the SVM and Naive Bayes methods are worth
noting, as they may indicate instances where the algorithms
significantly deviated from their average performance. The high
average accuracy and relatively tight interquartile range of the
SVM algorithm underscore its robustness and reliability for this
application.

This analysis provides a quantitative assessment of the
SVM algorithm’s accuracy for step counting in cattle and
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FIGURE 9
(A) Results of step counting experiments conducted using the SVM algorithm for 10 cattle. (B) Comparison of the classification performance of five
different supervised learning classification algorithms on data collected from wearable devices designed in this paper.

compares it with other classification methods. It is evident
from the data that while the SVM algorithm performs with
high accuracy for most cattle, individual variations do exist,
and the algorithm outperforms other classification methods
on average.

4 Conclusion and discussion

In this investigation, we have successfully demonstrated the
functionality of a novel wearable health monitoring device tailored
for cattle, marking a substantial contribution to precision livestock
farming. Our integration of energy, core, and storage modules
within an ergonomically designed, curved shell has proven effective
for non-invasive monitoring of cattle body temperature, a critical
indicator for early detection of potential health issues. Our
experiments on a cohort of 10 cattle have not only validated
the effectiveness of the integrated sensors in recording accurate
temperature data but have also provided a rich dataset for the
analysis of cattle behavior through motion data. The robust 1 s
rolling median filtering method applied to the IRT data successfully
minimizes environmental noise, ensuring reliable temperature
readings. The machine learning algorithms, especially the SVM,
have demonstrated high accuracy in classifying various cattle
behaviors and counting steps, which are vital indicators of animal
wellbeing.

The SVM algorithm’s superior performance in step counting,
with an average accuracy of 97.27%, reflects its robustness and
adaptability. Although varianceswere noted in individual cases, such
as cattle number 8, these are attributed to behavioral idiosyncrasies
and highlight the need for further algorithmic refinement.
Comparatively, the SVMoutperformedother classificationmethods,
including KNN, Naive Bayes, MLP, and BCT, in both accuracy

and consistency. The results underscore the critical role of quality
data in training machine learning models and the potential
of these technologies in transforming livestock management
practices.

Despite these achievements, the study revealed the
device’s susceptibility to sunlight, indicating a need for design
improvements. Futuremodificationsmay include resizing the sensor
and adapting its shape to better suit the cattle’s neck contours,
enhancing data accuracy and device wearability. To further augment
the device’s capabilities, subsequent research should focus on
refining the artificial intelligence algorithms for more precise
temperature data interpretation. Anticipating temperature-related
health abnormalities early can offer farmers a proactive approach
to animal healthcare, potentially averting economic losses due
to disease.

The research paves the way for future innovations, including
the implementation of an embedded behavior classifier within
the device’s system, utilizing the most effective machine learning
models identified in this study. Expansion to include a variety of
sensor types is also anticipated, aiming to develop a versatile and
economical solution adaptable to diverse dairy farming practices. In
sum, while the current device stands as a significant advancement,
it is the springboard for future research that will aim to perfect its
design and functionality.The continued evolution of this technology
is expected to solidify its place as an essential tool for modern
agriculture, ensuring the health and wellbeing of livestock on
a large scale.
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