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Imitation learning (IL), a burgeoning frontier in machine learning, holds
immense promise across diverse domains. In recent years, its integration into
robotics has sparked significant interest, offering substantial advancements
in autonomous control processes. This paper presents an exhaustive insight
focusing on the implementation of imitation learning techniques in agricultural
robotics. The survey rigorously examines varied research endeavors utilizing
imitation learning to address pivotal agricultural challenges. Methodologically,
this survey comprehensively investigates multifaceted aspects of imitation
learning applications in agricultural robotics. The survey encompasses the
identification of agricultural tasks that can potentially be addressed through
imitation learning, detailed analysis of specific models and frameworks, and
a thorough assessment of performance metrics employed in the surveyed
studies. Additionally, it includes a comparative analysis between imitation
learning techniques and conventional control methodologies in the realm of
robotics. The findings derived from this survey unveil profound insights into
the applications of imitation learning in agricultural robotics. These methods
are highlighted for their potential to significantly improve task execution
in dynamic and high-dimensional action spaces prevalent in agricultural
settings, such as precision farming. Despite promising advancements, the survey
discusses considerable challenges in data quality, environmental variability, and
computational constraints that IL must overcome. The survey also addresses the
ethical and social implications of implementing such technologies, emphasizing
the need for robust policy frameworks to manage the societal impacts of
automation. These findings hold substantial implications, showcasing the
potential of imitation learning to revolutionize processes in agricultural robotics.
This research significantly contributes to envisioning innovative applications and
tools within the agricultural robotics domain, promising heightened productivity
and efficiency in robotic agricultural systems. It underscores the potential
for remarkable enhancements in various agricultural processes, signaling a
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transformative trajectory for the sector, particularly in the realm of robotics and
autonomous systems.

KEYWORDS

imitation learning, robotics, agricultural robotics, artificial intelligence, agricultural
engineering

1 Introduction

In an era marked by demographic shifts and escalating food
security concerns, the agricultural sector requires transformative
solutions to meet increasing demands. The integration of
advanced technologies, notably agricultural robotics, has received
considerable attention and investment, evident from the growing
scholarly focus on these innovations (Cheng et al., 2023). The
constraints of traditional farming, marked by labor-intensive
processes, imprecise environmental information measurement,
and ineffective crop monitoring, underscore the pressing need
for more streamlined and sophisticated agricultural practices
leveraging artificial intelligence (AI) (Wang, 2019) and robotics
(Yépez-Ponce et al., 2023). Researchers are actively working towards
creating intelligent, cost-effective, andhighly productive agricultural
systems that integrate sensor technology and Internet of Things
(IoT) (Brewster et al., 2017), data management (Wolfert et al.,
2017), decision-making algorithms (Robert et al., 2016), robotics
(Fountas et al., 2020), and advanced mechanisms to revolutionize
traditional agricultural methods (Wakchaure et al., 2023). This push
for innovation is not merely technological but deeply rooted in
the urgent global need to enhance agricultural sustainability and
food security, reflecting the critical role of agriculture in climate
change and its socioeconomic impacts (Grieve et al., 2019). As
such, the integration of robotic manipulations into agricultural
practices represents a transformative leap, poised to optimize
farming methodologies, augment productivity, and address the
evolving needs of sustainable food production in the face of growing
global demands (Grieve et al., 2019).

In recent years, from the foundational robotic research
perspective, the integration of AI in robotic manipulation has
undergone a paradigm shift, moving away from traditional
predetermined control algorithms towards adaptive, learning-based
controlmethodologies.This evolution, as noted by Yang et al. (2016)
and Hussein et al. (2017), reflects the limitations of conventional
control algorithm methods, particularly in enabling robots to
dynamically adapt to varying tasks and environments. As we
delve into the realm of agriculture, the challenges of integration
of robotic technology presented are particularly noteworthy,
primarily stemming from the inherent variability characterizing
agricultural products and unconstrained field conditions. In
contrast to industries marked by product standardization, the
agricultural domain exhibits substantial diversity in terms of
product morphology, including but not limited to variant size,
visual features, and tactile textures (Eizicovits and Berman,
2014). The diversity necessitates the development of robotic
systems capable of adapting to the intricate variations prevalent
in agricultural environments, particularly in tasks such as planting,
harvesting, and weeding (Gonzalez-de Santos et al., 2020). These

challenges have provided excellent scenarios for the application of
learning-based robotic control methodologies.

The general agricultural robotic systems, like other robotic
systems, are composed of sensing systems, actuating systems, and
control algorithms. For environmental sensing, visual recognition,
plays an important role in recognizing and localization of objects
of interest while presenting a formidable challenge, necessitating
advanced systems capable of discerning subtle differences
between the targeted objects and other environmental elements.
The considerable variability in color, shape, and size among
agricultural products demands the integration of sophisticated
visual recognition technologies (Wu et al., 2021). Current research
in this domainmainly leverages variousDeep Learning (DL)models
to enhance the accuracy of visual perception in robotic systems.
Convolutional Neural Networks (CNNs), for instance, have been
instrumental in processing and analyzing complex visual data,
enabling robots to effectively differentiate between various plant
species and detect anomalies such as disease or pest infestation
(Prakash and Prakasam, 2023; Rezk et al., 2022). Techniques such
as transfer learning have also been applied, allowing models trained
on extensive datasets to be adapted for specific agricultural tasks
by fine-tuning based on relatively small task-specific datasets,
thereby improving efficiency and reducing the need for extensive
field-specific data collection (Goel et al., 2022; Moiz et al., 2022).
In addition to visual sensing, the tactile sensing capabilities
equipped by robotic systems enable the robots to potentially handle
agricultural products ranging from texture to firmness which pose
significant hurdles in the practice, such as for the robotic harvesting
tasks (Mandil et al., 2023). Recent advancements have seen the
development of various types of tactile sensors, including capacitive,
resistive, and piezoelectric sensors, each offering unique benefits
in terms of sensitivity and adaptability to different materials and
surfaces (Bayer, 2022; Baldini et al., 2023). For example, capacitive
sensors, whichmeasure changes in capacitancewhen in contact with
an object, have been effectively used in robotic grippers to ascertain
the firmness and ripeness of fruits, enabling delicate handling and
minimizing damage (Alshawabkeh et al., 2023).

In practice, addressing the comprehensive challenges in
agriculture, such as unpredictable environmental conditions and
the need for precise and gentle handling of process like chicken
rehanging tasks in the poultry industry, requires a holistic approach
in robotic system design. Robotic pollination is also an important
consideration for similar environments, where the need for
adaptability and precision in delicate tasks, like pollinating crops in
large greenhouses, mirrors the intricacies seen in other agricultural
operations. (Broussard et al., 2023). As bee populations decline,
robots like the PollyPollinator are being developed to autonomously
pollinate crops, particularly in large greenhouses (Ohi et al., 2018).
Automated greenhouse management is also advancing through the
use of imitation learning techniques. Robots like Sweeper are used
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to autonomously harvest bell peppers, demonstrating the ability
to perform delicate tasks in controlled environments (Arad et al.,
2020). These systems ensure that optimal growing conditions are
maintained while minimizing energy consumption, showcasing
the potential of robotics to improve efficiency and sustainability
in agriculture. Mentioned tasks, characterized by their complexity
and the need for fine motor skills and judgment, are difficult to
articulate concisely and standardize across varying conditions.
Integrating of multi-sensory data, combining visual and tactile
feedback with machine learning algorithms, is a growing area of
focus. This multi-sensory integration allows for more nuanced
decision-making processes in robots and enhanced dexterity and
cognitive abilities, making them capable of performing tasks that
traditionally rely heavily on human expertise and adaptability.

Beyond arm manipulation, robotic control critically
encompasses the dynamic movement of robotic vehicles. The
agricultural landscape, with its uneven and unpredictable terrain,
poses significant navigation challenges that traditional wheeled or
tracked robots might not efficiently overcome. These challenges
necessitate the development of robots with enhanced mobility
capabilities to navigate diverse topographies, including slopes, rough
surfaces, and areas with soft soil that could impede traditional
means of locomotion (Botta et al., 2022). In response to these
challenges, legged robotic control emerges as a promising solution,
offering superior adaptability and mobility in complex agricultural
environments. Legged robots, inspired by the locomotion of
animals, can traverse obstacles, step over gaps, and adjust their
body configuration to maintain stability on uneven terrain
(Yang et al., 2023). This adaptability is crucial in agriculture,
where the robots must operate in fields with variable soil types,
undulating surfaces, and around crops planted in irregular patterns.
Recent advancements in legged robotics, fueled by sophisticated
control algorithms and sensory feedback systems, have significantly
improved their efficiency and robustness. Techniques such as
reinforcement learning and bio-inspired control strategies have
been applied to optimize legged locomotion, enabling these robots
to make real-time decisions based on environmental feedback.
This allows for precise movement control, essential for tasks
such as targeted spraying, soil analysis, and crop monitoring,
minimizing the risk of damaging the crops or soil structure (Kaur
and Bawa, 2022; Sun et al., 2023).

Traditional control strategies in robotics, such as PID
(Proportional-Integral-Derivative) controllers andmodel predictive
control (MPC), have been instrumental in enabling precise and
reliable actions in structured environments. However, as mentioned
above, the agricultural domain presents unique challenges that often
exceed the capabilities of these traditional approaches (Li et al.,
2023). The inherent variability of natural environments, coupled
with the need for delicate handling of agrifood products and
navigation through unstructured terrains, calls for more advanced
and flexible control strategies.

As these challenges are intricately interconnected, The
development of robotic solutions for agriculture epitomizes
the quintessence of interdisciplinary collaboration, requiring
a confluence of expertise from robotics, computer vision, AI,
and agricultural sciences. Such a coalition is indispensable for
engendering systems that are not merely adaptable and robust but
also keenly attuned to the multifarious demands of agriculture.

This is where Imitation Learning (IL) emerges as a particularly
valuable tool mimicking expert human behaviors, IL enables
robots to assimilate complex tasks with remarkable efficiency,
significantly curtailing the need for extensive programming (Yamin
and Bhat, 2022). The indispensability of IL in agricultural robotics is
underscored by its ability to circumvent the limitations of traditional
control mechanisms. IL facilitates the transfer of human expertise
and human-like dexterity to robotic systems, empowering them
to perform intricate tasks such as precision planting, targeted
pesticide application, selective harvesting, and, notably, complex
food processing operations. This approach is instrumental in
enhancing the adaptability of robots to dynamic agricultural and
food processing environments, where precision and delicacy are
paramount. By optimizing resource utilization and minimizing
environmental impact, IL-based robotic systems represent a
promising strategy for enhancing productivity and sustainability
in the agriculture and food processing sectors (Krithiga et al.,
2017). Furthermore, the integration of IL within agricultural
robotics exemplifies the synergistic potential of combining
machine learning with other technological advancements in AI
and computer vision which paves the way for enlarging the
application scope of the advanced robotic techniques in precision
agriculture (Daaboul et al., 2019).

This paper explores the application of IL within the domain
of agricultural robotics, showcasing how the synergistic integration
of robotics, AI, and agricultural sciences—enhanced through
IL—signifies a revolutionary shift in the field. It emphasizes the
critical need for evolving the broader landscape of IL research to
address the intricate challenges faced by the agricultural sector,
thereby enabling robotic systems to play a pivotal role in the
advancement of sustainable agriculture.

Hussein et al. (2017) present a seminal survey that systematically
categorizes various IL methods, detailing the diversity of learning
strategies deployed across multiple domains. This comprehensive
review is particularly invaluable as it traces the evolution of
IL, outlining key methodological advancements and conceptual
frameworks that have shaped the field. Their discussion extends
beyond mere categorization, providing critical insights into how
different approaches address specific computational challenges,
thereby serving as a foundational reference for understanding the
progression and refinement of IL technologies.

In a more recent survey, Zare et al. (2024) offer a forward-
looking perspective by examining the latest algorithmic
advancements and identifying persisting challenges within IL up to
the year 2024.Their survey not only synthesizes recent developments
but also emphasizes the application of IL in dynamically complex
environments. Their findings are especially relevant to agriculture,
where IL must adapt to variable and unpredictable conditions,
thus highlighting potential areas for technological interventions
to enhance precision farming practices. Torabi et al. (2019) delve
into the subfield of IL from observation, which becomes crucial in
scenarios where explicit action data is limited or absent. This aspect
of IL is highly pertinent to agriculture, where capturing detailed
action data can be challenging. The review paper explores state-
only learning approaches, discussing their practical applications
and theoretical underpinnings. The adaptability of these methods
to agricultural settings offers significant potential for developing
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autonomous systems that learn from observational data alone, thus
simplifying the integration of IL in field operations.

In more specialized application of IL, Le Mero et al. (2022)
review IL techniques for autonomous vehicles, focusing on end-
to-end learning for autonomous navigation systems. Although
their primary context is vehicular automation, the methodologies
they discuss are adaptable to autonomous agricultural machinery,
potentially enhancing efficiency in field operations. Fang et al.
(2019) delve into robotic manipulation, an area that involves
acquiring fine motor skills from human demonstrations. Their
insights are particularly applicable to robotic systems that might
be employed in precision agriculture tasks such as planting or
harvesting.

While the reviews mentioned above offer an extensive overview
of imitation learning across diverse disciplines and technical
dimensions, it’s essential to underscore the unique orientation of
our work. Moving beyond the technical intricacies, our review
delves into how these methodologies can be specifically adapted
and applied to agricultural contexts. This tailored approach isn’t
just about exploring theory; it involves a deep dive into practical
applications that are directly relevant to the challenges and needs
of the agricultural sector. By bridging theoretical insights with real-
world practices, our review aims to provide a practical toolkit for
agricultural practitioners and innovators, helping them to harness
these advanced techniques in ways that are both effective and
meaningful for their specific fieldwork.

The remainder of the paper is organized as follows: Section 2
outlines the search criteria employed to identify relevant articles
for this review, detailing both the inclusion and exclusion
parameters. Section 3 provides an overview of IL, explaining
the key concepts, algorithms, and their specific adaptations for
agricultural applications. In Section 4, case studies and practical
implementations have been presented that illustrate the successful
application of IL in various agricultural settings. Section 5
addresses the challenges and limitations of current IL approaches,
offering a critical analysis of what is needed to overcome these
barriers. Finally, Section 6 outlines the future directions for research
in IL within agriculture, proposing potential innovations and
improvements that could further enhance the efficiency and
effectiveness of robotic systems in this vital sector.

2 Methodology of literature selection

A thorough literature search was conducted across three
prominent databases: Web of Science, Science Direct, and Google
Scholar, covering studies published from 1985 to 2024. The search
focused on imitation learning and its application in agriculture.
Many research papers on imitation learning models are available,
but no critical review paper is available based on agriculture;
therefore, this review holds significant importance. It was searched
using special keywords like imitation learning, imitation learning
in agriculture, agricultural robotics, precision agriculture, applied
artificial intelligence, and smart agriculture. Boolean operators
(“AND” and “OR”) were used to refine and narrow the search results,
ensuring the retrieved literature was highly relevant. Each abstract
was meticulously reviewed to align with the study’s objectives,
which centered on two key areas within imitation learning models:

FIGURE 1
Prisma flow diagram illustrating the literature screening and
selection process.

data collection and real-time applications. The search was tailored
to include papers that employed imitation learning models in
agricultural contexts or provided methodological insights into
these models.

Our review prioritized papers utilizing imitation learning
models to achieve real-time learning applications or develop efficient
data collection. This paper employed automation tools within
the database search engines to streamline and filter the search
results, ensuring a rigorous and efficient search process. Only
studies published in English were considered, while conference
papers and literature from unrelated domains were excluded to
maintain focus. In total, 59 research articles were selected for
inclusion in this systematic review, providing a comprehensive
overview of current advances and applications of imitation learning
in agriculture. A review of the existing literature followed the
guidelines set by the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) (Page et al., 2021) and is
self-explained in Figure 1.

3 Foundations of imitation learning

This section provides a comprehensive overview of IL, situating
it within the broader context of machine learning and robotics.
It emphasizes IL’s distinctive methodology, which allows robotic
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systems to acquire complex behaviors by observing expert
practitioners. Our objective is to explore in depth the fundamental
aspects of imitation learning, examining its principal methodologies
and principles. We will also discuss the significant impact these
techniques have on the advancement of agricultural robotics. A
thorough analysis of various imitation learning strategies will reveal
how these methods enable robots to learn skills effectively, thereby
allowing them to execute intricate agricultural operations with
enhanced precision and efficiency.

3.1 Introduction to imitation learning

IL introduces a pivotal development in the fields of machine
learning and robotics, characterized by its unique method
of behavioral acquisition from expert demonstrations. Unlike
traditional supervised learning, which depends on discrete labels,
or reinforcement learning, which is founded on trial-and-error,
IL enables robots to learn complex behaviors by closely observing
human expertise (Argall and Billard, 2010). This methodological
advancement is essential for applications that require adaptability
and precision, particularly in dynamic environments where
traditional control methods are inadequate (Schaal, 1999).

The evolution of IL from its conceptual inception to its
current applications in advanced robotics showcases the shift from
simpler methods to increasingly complex strategies. Initially, IL
was primarily about simple behavior mimicry, as demonstrated
in Pomerleau’s work (1988), where robots learned actions directly
from expert demonstrations without understanding the underlying
intentions or rewards. Recent advancements include sophisticated
models like Generative Adversarial Imitation Learning (GAIL).
In GAIL, a generator (the imitating agent) learns to mimic
actions indistinguishably from an expert, under the scrutiny of
an adversarially trained discriminator (Ho and Ermon, 2016).
Building on the principles of GAIL, newer methods, such as
diffusion policy models have emerged. These models integrate
various learning techniques to enhance the adaptability and
efficiency of IL, enabling robots to perform in more dynamic
and unpredictable environments by effectively merging multiple
policies into a coherent strategy (Chi et al., 2023). This progression
underscores the growing significance and complexity of IL in the
field of advanced robotics. Figure 2 shows a simple flow from expert
input data to the agent’s learning process, indicating the interactions
between state, observation, and action, as guided by an expert’s
demonstrated policies.

IL encompasses a range of strategies essential for advancing
robotics, notably Behavioral Cloning (BC), Inverse Reinforcement
Learning (IRL), and Imitation from Observation (IfO). In Figure 3,
a comprehensive visual comparison of imitation learningmethods is
presented by categorizing them into two groups: primary methods
and advanced methods tailored for agricultural applications. The
figure highlights each method’s respective process, starting from
data collection to policy deployment, while also providing detailed
insights into the unique features of each method.

BC involves the direct replication of behavior by learning from
expert actions in specific states, while IRL focuses on deriving
underlying reward functions from observed expert behaviors,
aiming to understand and replicate the motivations behind these

actions. IfO allows for learning without access to expert actions,
instead relying solely on observing the state transitions made by
the expert. Additionally, advanced methods such as Generative
Adversarial Imitation Learning (GAIL) and Diffusion Policy
expand the toolkit available for tackling unique challenges in
robotics applications, particularly in agriculture. GAIL utilizes
adversarial processes to train policies that can not only mimic
but also generalize from expert behavior, whereas Diffusion
Policy integrates multiple policy models or data sources to create
a robust consensus policy, enhancing performance in complex
agricultural environments. These advanced techniques help solidify
imitation learning as a cornerstone of modern robotics innovation,
especially in domains requiring sophisticated interaction with the
environment.

3.2 Primary methods

3.2.1 Behavioral cloning
The transformative potential of IL in agriculture is its capability

to introduce automation and data-driven decision-making into
traditional farming practices. BC stands out for its direct and
efficient approach, excelling in learning and replicating expert
behaviors through a method akin to supervised learning. This
method entails constructing a predictive model that maps
environmental states to corresponding expert actions, utilizing a
dataset of state-action pairs meticulously documented from expert
performances. In practice, states can be described by various factors,
including soil moisture levels, plant growth stages, or weather
conditions, providing a comprehensive context for the robot’s
actions. These pairs serve as a model blueprint, guiding it to emulate
expert decision-making processes under the assumption that a
sufficiently diverse and comprehensive dataset can enable the model
to generalize well to new, unseen states (Pomerleau, 1988; Ross et al.,
2011). BC’s inherent simplicity, deriving from its problem space
abstraction, liberates it from the complexities of environmental
dynamics. This characteristic grants BC high adaptability and
precision, allowing for its application across a wide range of
agricultural tasks by learning from visual and tactile cues and
corresponding human expert demonstrations.

The advantage of BC in agriculture lies in its capacity to function
independently of complex environmental intricacies. This facilitates
its deployment in a variety of crucial agricultural operations. For
example, in precision irrigation, BC enables robots to learn from
expert demonstrations on when and where to irrigate, considering
factors like soil moisture content and weather predictions. By
observing the timing, amount, and methods used by experts
in different conditions, robots can make data-driven irrigation
decisions, optimizing water usage for crop health and yield without
constant human supervision. Similarly, in autonomous pest control,
BC can teach robots to identify and respond to pest infestations
based on visual cues and expert interventions. Through learning
from experts’ actions, such as the application of pesticides or the
removal of infected plants, robots can autonomously navigate fields,
detect pest activity, and apply precise interventions. This not only
increases the efficiency and effectiveness of pest control measures
but also reduces the reliance on manual labor and the potential for
human error.
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FIGURE 2
Mapping expertise: A simplified visual representation of imitation learning in action.

Both applications exemplify how BC, by distilling complex
decision-making processes into learnable patterns from expert
demonstrations, contributes significantly to the enhancement of
modern farming operations. These implementations of BC in
agriculture align with the sector’s growing need for real-time,
data-driven decision-making, underscoring the methodology’s
adaptability and potential to revolutionize traditional farming
practices (Kim et al., 2023; Zhang C. et al., 2023).

The objective central to BC is to learn a policy π that emulates
expert behavior by minimizing the discrepancy between predicted
and expert actions in identical states, formalized in Equation 1:

min
π

1
N

N

∑
i=1

ℓ(π(si),ai) (1)

Here, N represents the total number of state-action pairs from
expert demonstrations, where each pair consists of a state si and the
corresponding action ai taken by the expert. The action ai can range
from simple binary decisions (e.g., turn on or off the irrigation) to
complex continuous actions (e.g., adjusting the amount of pesticide
to distribute based on pest density). The loss function ℓ(π(si),ai)
quantifies the discrepancy between the policy’s predicted action
π(si) and the expert’s actual action ai for each state. A commonly
used loss function in BC is the mean squared error (MSE) for
continuous operations which have a series of state-action pairs.
MSE calculates the square of the difference between predicted
and actual actions. For categorical actions, a cross-entropy loss
function might be used, measuring the dissimilarity between the
predicted probability distribution over actions and the distribution
representing the expert’s action.

By effectively minimizing this loss, BC enables the model to
closely approximate expert behavior given a specific environmental
state, thereby facilitating a direct learning approach from expert
demonstrations (Pomerleau, 1988). This process underscores BC’s
practicality and efficiency in transmitting human expertise to robots,
enhancing their capability to perform complex agricultural tasks
with a level of precision and adaptability that mirrors human
performance.

Despite BC’s advantages in automating complex tasks by
mimicking human behaviors, it confronts the covariate shift
problem, a significant challenge when transitioning from training
to deployment in more general practical settings. The BC model,
trained under expert-generated states such as those from simulated
environments, controlled settings, or limited training data, struggles
to adequately perform or recognize out-of-distribution states in real
agricultural environments. These discrepancies can lead to safety
and precision issues, as the model may not have been exposed to
the full range of real-world variations during its training phase
(Zhou K. et al., 2022; Reddy et al., 2019).

Addressing the covariate shift in BC requires exploring
strategies beyond conventional BC methods. These strategies
include Interactive Imitation Learning (IIL), expert policy
support estimation, and the development of constrained
operational domains (Chang et al., 2021). Each strategy aims to
overcome BC’s inherent limitations, promoting the deployment of
robust and adaptable models suitable for the dynamic agricultural
environment.

IIL, withDataset Aggregation (DAgger) as a pioneeringmethod,
minimizes discrepancies between training and testing environments

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2024.1441312
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Mahmoudi et al. 10.3389/frobt.2024.1441312

FIGURE 3
Overview of primary and advanced imitation learning methods for agricultural applications.

by integrating expert feedback into the learning process, enabling
adaptive learning that gradually incorporates real-world feedback
(Ross et al., 2011; Ross and Bagnell, 2014). This method can be
described in Equation 2 as:

πDAgger = argmin
π

N

∑
i=1
𝔼(s,a)∼πi[ℓ(π(s),a)] (2)

The equation represents the optimization process to find the best
policy (π), which minimizes the expected loss (ℓ) over a series of
iterations (N). Here, 𝔼(s,a)∼πi[ℓ(π(s),a)] calculates the expected loss
of actions (a) taken in states (s) as predicted by the current iteration
of the policy (π), compared to the expert actions. This approach
underscores the model’s continuous adjustment and learning from
the discrepancies between its actions and those of the expert,
aiming to reduce these differences over time. However, this method
introduces challenges, notably the increased cognitive load on
human experts, whomust provide continuous feedback to refine the
model’s accuracy and effectiveness. The requirement for sustained
expert involvement can be demanding andmay necessitate strategies
to manage this aspect efficiently (Li et al., 2022; Kelly et al., 2019;
Zhang and Cho, 2017; Hoque et al., 2021).

The estimation of expert policy’s support focuses on defining
reward structures that encourage the emulation of expert behavior,
which is crucial for precision agricultural tasks (Reddy et al., 2019).
Meanwhile, constrained operational domains can be formalized in
Equation 3 to ensure that agricultural machinery operates within
parameters well-represented in the training data, minimizing the
risk of encountering unpredictable states (Dadashi et al., 2020):

min
π

L(π) subject to s ∈ Ssa fe (3)

Here, L(π) represents the loss function for the policy π, and
Ssa fe denotes the set of states considered safe or well-represented
in the training data. By constraining the robot to operate only
within these predefined safe states, we significantly reduce the
likelihood of encountering unpredictable situations that could
lead to errors or inefficiencies, thereby enhancing the overall
reliability and safety of agricultural operations (Mitka, 2018).
This comprehensive approach, supported by a robust theoretical
foundation and empirical validation, enhances BCmodels to suit the
complex and variable nature of agricultural environments, ensuring
efficiency, safety, and operational fidelity.
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In addressing the covariate shift challenge, particularly pertinent
to applications like autonomous tractors and drones in agriculture,
the augmentation of the imitation loss with additional constraints
has proven effective (Bansal et al., 2018). Incorporating synthetic
perturbations into the expert’s trajectory exposes the model to
non-expert behaviors, such as potential near-collision scenarios,
which is crucial for the model to learn avoidance behaviors, thereby
enhancing operational safety in agricultural tasks. The augmented
loss function is given by Equation 4 as below:

Ltotal = Limitation + λ(Lsafety + Lperturbation) (4)

Here, Limitation denotes the standard imitation loss, focusing on
replicating the expert’s actions. Lsafety penalizes actions leading to
unsafe outcomes, and Lperturbation introduces controlled deviations
from the expert’s trajectory to simulate unexpected scenarios.
The weighting factor λ plays a critical role in balancing these
contributions, ensuring that the model’s training is comprehensive
and geared towards operational safety in agricultural contexts.

Learned error detection systems enhance the safety of
autonomous agricultural robots by ensuring operations stay
within previously demonstrated safe limits. These systems
identify potential failure states, restricting actions to prevent
errors in essential tasks like crop monitoring and pest control
(Wong et al., 2022; Spykman et al., 2021). For crop monitoring,
safety constraints might prevent contact with plants to avoid
damage. In pest control, constraints ensure precise pesticide
application to protect non-target plants and beneficial insects. Such
systems proactively mitigate risks by limiting robot actions based
on learned safe behaviors, thus safeguarding both crops and the
environment.

To enhance the adaptability of BC models in agricultural
robotics, it is crucial to address the challenges of learning in
the field. Agriculture involves diverse tasks and environmental
conditions, necessitating rapid learning from minimal examples.
However, comprehensive human demonstrations for training are
often constrained by the availability and variability of data, which
will be discussed in detail in Section 4. Techniques like Model-
Agnostic Meta-Learning (MAML), offline imitation learning, and
implicit BC models are vital for enabling robots to adapt quickly,
learn from varied datasets, and perform effectively in complex
agricultural environments.

MAML emerges as a solution, significantly enhancing a robot’s
adaptability with its efficient approach to learning from a few
instances. MAML’s optimization formula (Equation 5) is key to
its success:

θ′ = θ− α∇θLT( fθ) (5)

In this formula, θ′ are the model parameters post-update, θ are
the initial parameters, α is the learning rate, and LT represents
the task-specific loss function. MAML begins by training a general
model across a variety of tasks to learn an initial set of parameters.
These parameters are then fine-tuned for specific tasks through
one or a few gradient descent steps, allowing the model to adapt
quickly to new tasks from minimal data. MAML’s capacity for quick
adaptation from minimal data proves invaluable in agricultural
settings, where operational conditions and task requirements can
rapidly change due to environmental factors (Finn et al., 2017).

Despite its computational demands, MAML’s potential to facilitate
swift adaptation with few examples aligns perfectly with the
needs of the agricultural sector. This approach equips robotic
systems with the flexibility required for precise monitoring and
management in diverse agricultural scenarios, reinforcing the
essential role of advanced learning techniques in evolving farming
practices (Grant et al., 2018).

Offline imitation learning stands out as another strategic
approach to bolstering the robustness of models, especially in
contexts where engaging directly with experts is challenging.
This method is instrumental in addressing the scarcity of data
by leveraging a combination of precise expert policy state-
action pairs alongside expansive datasets featuring less-than-ideal
or suboptimal behaviors. Such a blend enriches the training
material, presenting both ideal scenarios and common errors or
variations (Zhang W. et al., 2023). The core of offline imitation
learning lies in refining a dynamics model, which is taught
to recognize and correct deviations from desired actions by
imposing increased penalties on inaccurately represented segments
of the state-action space (Chang et al., 2021). For agricultural
applications, where diverse conditions and unpredictable variables
make collecting comprehensive and optimal practice data difficult,
offline imitation learning proves particularly useful for handling
diverse and suboptimal datasets. For example, Liu et al. (2021)
propose a curriculum offline imitation learning strategy that
mitigates the drawbacks of mixed-quality datasets by using an
adaptive experience-picking strategy to improve policy learning.
Similarly, DeMoss et al. (2023) introduce DITTO, an algorithm that
uses world models to address covariate shifts without additional
online interactions, which is crucial for applications in unpredictable
environments like agriculture. Moreover, Zhang W. et al. (2023)
present a discriminator-guided model-based offline imitation
learning framework that enhances performance by distinguishing
between expert and suboptimal data, improving model robustness.
Additionally, Park & Yang (2022) discuss the benefits of leveraging
suboptimal datasets alongside optimal data, demonstrating that
this approach can significantly improve learning outcomes even
when expert data is scarce. By incorporating these insights, offline
imitation learning proves to be a highly effective strategy for training
agricultural robots, making them more adaptable and reliable in
real-world scenarios.

Finally, the development of implicit BC models can also
address the need for decisiveness in agricultural robots, which
is essential for tasks requiring transitions between different types
of crops or soil conditions. By framing BC as an energy-based
modeling problem, where the model outputs a value indicative of
action appropriateness, these models are capable of representing
discontinuities effectively (Florence et al., 2022):

EBC(x,a) = − log P(a|x) (6)

Here, in Equation 6, EBC signifies the energy associated with
taking action a given observation x, with log P(a|x) representing
the probability of the action being expert-like. Studies have
shown that implicit behavioral cloning policies, particularly energy-
based models, often outperform explicit models in various robotic
policy learning tasks, including those with high-dimensional action
spaces and visual image inputs (Balesni et al., 2023). These models
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TABLE 1 Comparative analysis of strategies to overcome covariate shift and improving BC model adaptability in agricultural application.

Strategy Key
characteristics

Advantages Limitations Agricultural
applications

References

Interactive Imitation
Learning (IIL)

Dynamically collects
training data based on
the model’s performance.
Integrates expert
feedback iteratively

Continuous model
improvement. Reduces
training-testing gap

High expert dependency.
Cognitive load on
experts

Precision irrigation.
Autonomous pest
control

Ross et al., 2011;
Finn et al., 2017

Expert Policy Support
Estimation

Estimates the expert
policy’s support to guide
learning. Uses reward
shaping based on expert
behavior

Enhances model fidelity.
Tailorable to specific
tasks

Requires deep expert
behavior insight.
Difficult to generalize

Crop monitoring. Yield
optimization

Reddy et al., 2019

Constrained Operational
Domains

Defines safe operational
boundaries. Uses
task-specific constraints

Increases safety and
predictability. Reduces
novel state risks

May restrict operational
flexibility. Requires
extensive domain
knowledge

Ground vehicle
navigation. Drone
surveillance

Dadashi et al., 2020;
Kim et al., 2023

Synthetic Data
Augmentation

Uses artificial data to
simulate
out-of-distribution
states. Prepares model
for a wider range of
scenarios

Enhances model
robustness without
real-world data.
Tailorable to specific
challenges

Risk of unrealistic data.
Requires careful design

Adverse weather
simulation. Rare pest
outbreak training

Bansal et al., 2018;
Wong et al., 2022

Implicit BC Models Frames BC as an
energy-based problem.
Outputs a value
indicating action
appropriateness

Effective in representing
discontinuities. Decisive
in varied conditions

Complex model
interpretation. Requires
careful tuning

Crop type transitions.
Soil condition
adaptations

Florence et al. (2022)

Offline Imitation
Learning

Utilizes both expert and
suboptimal behavior
data. Trains a dynamics
model to apply penalties
in poorly represented
areas

Enhances model
robustness in limited
data scenarios. Mitigates
overfitting to export data

Balancing expert and
suboptimal data is
challenging. Risk of
learning from
suboptimal actions

Data-scarce agricultural
practices. Complex task
learning

Chang et al. (2021)

Causal Misidentification Identifies true causal
relationships behind
expert actions. Employs
targeted interventions to
refine accuracy

Improves model
adaptability to dynamic
conditions. Ensures
training on the causal
structure of tasks

Requires identification
of accurate causal
relationships. Potentially
high complexity in
modeling

Understanding crop
growth factors. Pest
control decision-making

De Stefano (2019)

Model-Agnostic
Meta-Learning (MAML)

Optimizes model for
quick adaptability to new
tasks with minimal data

Rapid adaptation to
varied conditions.
Model-agnostic, broad
applicability

Computationally
intensive. Requires
diverse training tasks

Rapid crop type
adaptation.
Environmental
condition adjustments

Finn et al., 2017;
Grant et al., 2018

have demonstrated the ability to handle complex, discontinuous
functions and improve policy learning in scenarioswhere traditional
methods struggle (Singh et al., 2023).

In summary, incorporating a diverse array of strategies
to mitigate covariate shifts and enhance model adaptability is
crucial for advancing the field of agricultural robotics. Our
comparative analysis, detailed in Table 1, showcases a spectrum of
aforementioned methodologies, each offering unique benefits and
challenges. This comparative insight is to guide future research and
application development, ensuring the selection of strategies that
not only address the inherent challenges of agricultural tasks but
also leverage the full potential of behavioral cloning technologies.

3.2.2 Inverse reinforcement learning
Inverse Reinforcement Learning (IRL) marks a significant

advancement in computational learning sciences, emphasizing the
extraction of underlying objectives or “rewards” that guide expert
decisions, beyond just mimicking observed actions as BC. This
focus is particularly crucial in agriculture, where decision-making
incorporates complex variables that standard models may overlook.
IRL excels by deducing the reward functions that experts implicitly
follow, providing deeper insights into their decision drivers. At
its core, IRL aims to uncover the ‘why’ behind the ‘what’ by
analyzing expert actions to discover the hidden rewards that
dictate such behaviors. Contrasting with Behavioral Cloning, which
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directly maps observations to actions, IRL delves into replicating
the decision-making process itself. This distinction is critical in
situations where direct observation alone does not clearly suggest
the best action to take (Ng and Russell 2000).

The primary focus of IRL is on the reward function,R(s), which
assesses the desirability of a state s. In practical terms, especially
within agricultural applications, the explicit reward function is
hard to customize. As outlined in 7, the objective of IRL is to
reverse-engineer this function from observed behaviors, effectively
tackling the inverse of the usual reinforcement learning problem,
where the goal is to learn the reward function that explains the
observed behaviors (Arora and Doshi, 2021). Equation 7, highlited
the mentioned approach.

Given:observedbehaviors→ Find:R(s) thatexplains thesebehaviors (7)

In IRL, the observed behaviors are utilized to infer the
underlying reward structure. For instance, Malik et al. (2018)
introduced cooperative inverse reinforcement learning (CIRL),
which formalizes the value alignment problem as a game
between a human and a robot. In CIRL, the robot learns the
human’s reward function through interaction, leading to better
alignment with human intentions. Also, Korsunsky et al. (2019)
demonstrated the application of IRL in contextual Markov
Decision Processes (CMDPs), where the reward function is
inferred based on varying contexts. Their work highlighted
the ability to generalize across different contexts by learning a
mapping from contexts to rewards, which is particularly useful
in dynamic agricultural settings where environmental conditions
and tasks can vary significantly. Additionally, Lindner et al. (2022)
proposed an active exploration strategy for IRL, which enhances
the efficiency of learning the reward function by selectively
querying the most informative regions of the state space. This
method significantly improves the sample efficiency and the
accuracy of the inferred reward functions, making it highly
applicable to agricultural robotics where data collection can be
expensive and time-consuming. By focusing on the underlying
reward structures, IRL provides a more nuanced and flexible
approach to understanding and replicating expert behaviors, thus
enhancing its applicability in dynamic and complex environments
(Shao and Er, 2012).

The scope of IRL’s application extends to multi-agent settings,
demonstrating its scalability and the ability to infer reward
functions that accurately generalize across varied settings and
interactions. This broadens the potential of IRL in complex,
interactive environments. Tailored IRL algorithms for continuous
state spaces that provide formal guarantees on sample and time
complexity are crucial for the development of reliable, automated
control systems in precision agriculture (Fu et al., 2021;Dexter et al.,
2021). Moreover, the challenge of model misspecification in IRL,
especially significant in complex human-involved environments,
is being addressed through rigorous mathematical analysis. This
enhances the robustness of IRL models, ensuring the reliability
of inferences drawn from observed behaviors. The introduction
of innovative approaches that transcend the limitations of
generative models, encoding versatile behaviors through iteratively
trained discriminators, showcases the exceptional generalization

capabilities of IRL. Such advancements underscore the diversity
of expert behaviors and strategies that can be captured and
implemented in autonomous agricultural systems (Skalse and
Abate, 2023; Freymuth et al., 2021).

3.2.3 Imitation from observation
IL typically requires both observing the states and the actions

demonstrated by an expert. This dual requirement often necessitates
comprehensive data collection, which can be restrictive and labor-
intensive, especially in complex environments like robotics and
gaming (Edwards et al., 2019). Experts might need to operate
robots directly or use specialized software for recording actions in
gaming, which not only demands significant effort but also limits
the data to artificial conditions (Hu et al., 2022). Imitation from
Observation (IfO) simplifies this by learning policies from state
transitions alone, eliminating the need for action data (Liu et al.,
2018). This approach mirrors natural learning processes seen in
humans and animals, who can learn complex behaviors just by
watching. IfO, therefore, broadens the scope of IL,making it possible
to utilize diverse and previously inaccessible resources such as online
instructional videos (Aytar et al., 2018).

IfO discards the necessity for direct action observation and
instead utilizes state-only demonstrations. It leverages advanced
machine learning algorithms, including deep learning and computer
vision, to parse and interpret raw visual data (Choe et al., 2021).
The foundational model for IfO can be formalized in Equation 8
by considering a set of state transitions observed from an expert’s
demonstration:

st+1 = f(st,at;θ) (8)

Where st and st+1 are consecutive states, at is the expert’s action
which is typically unobserved in IfO, and θ represents the parameters
of a model learned from data.

The key to IfO is the derivation of an optimal policy π that
maximizes the expected reward over a trajectory, formalized under
the reward functionR derived from the state transitions as presented
in Equation 9:

π∗ = argmax
π
𝔼[

T

∑
t=1

R(st,π(st))] (9)

In the IfO framework, consecutive states st and st+1 are modeled
by the transition function f with parameters θ, where the action
at at time t, typically unobserved, influences the policy π that aims
to maximize the cumulative reward over a trajectory from t = 1
to T, calculated as the expected sum of rewards R(st,π(st)), which
assess the suitability of the actions recommended by π at each
state. Liu et al. introduced an approach that utilizes context-aware
translation models to adapt the expert’s demonstrations from an
extrinsic viewpoint to the learner’s intrinsic perspective (Liu et al.,
2018). This method essentially involves a function f that translates
the context of input observations s from the demonstration:s′ =
f(s;θ). Here, s′ is the state as perceived in the learner’s context,
enabling the learner to interpret and mimic the expert’s behavior
effectively.

In agriculture, IfO has the potential to revolutionize various
practices by automating complex tasks such as planting, weeding,
and harvesting. Robots equipped with IfO capabilities can learn
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from videos showing human farmers performing these tasks,
thereby adapting human dexterity and judgment to robotic systems.
For instance, in automated crop harvesting, IfO can facilitate
the development of robotic systems that observe and learn the
optimal techniques for harvesting specific crops. This application
involves not only recognizing crop maturity via visual cues—akin
to the capabilities developed through TCN (Time-Contrastive
Networks)methods (Sermanet et al., 2018)—but alsomimicking the
motion patterns used by human harvesters to minimize damage to
both the produce and the plant.

Despite its potential, IfO faces significant challenges, particularly
in terms of data quality and environmental variability.The successful
implementation of IfO depends heavily on the availability of high-
quality, representative training data, which in many agricultural
settings, must be captured across varying conditions to ensure
robustness (Raychaudhuri et al., 2021). Additionally, the alignment
of demonstrations across different contexts and the generalization
of learned behaviors to new, unseen environments continue to pose
considerable hurdles (Jaegle et al., 2021).

3.3 Advanced methods

3.3.1 Adversarial imitation learning
Adversarial Imitation Learning (AIL) offers an efficient

and advanced approach in the domain of artificial intelligence,
particularly in the context of replicating expert behavior in complex
environments. Traditional inverse Reinforcement Learning (IRL)
often struggles with the computational complexities that arise
when applied to large, complicated environments. These traditional
methods are computation-heavy because they typically require
solving a reinforcement learning (RL) problem as a subtask,
which is both resource-intensive and slow. AIL simplifies this by
eliminating the need to solve the RL problem in detail at every
iteration, thereby reducing the computational demands significantly
(Ho et al., 2016; Finn et al., 2016).

At the heart of AIL is an adversarial framework that orchestrates
a dynamic game between two entities: an agent and a discriminator.
The discriminator’s role is to differentiate between trajectories
generated by the agent and those demonstrated by the expert,
while the agent strives to produce trajectories indistinguishable
from the expert’s, thereby incrementally refining its behavior
towards an optimal policy that mirrors expert behavior. This
adversarial process, inspired by the principles underlyingGenerative
Adversarial Networks (GANs), has been instrumental in the
methodological innovations and advancements in AIL (Deka et al.,
2023). One of the landmark methodologies in AIL, Generative
Adversarial Imitation Learning (GAIL), leverages a discriminator
network to differentiate between the behaviors of the agent and
the expert, using the confusion of the discriminator as a reward
signal to guide the agent toward expert-like behavior.This approach,
along with subsequent enhancements, has significantly improved
sample efficiency, scalability, and robustness in AIL applications
(Fu et al., 2017). Equation 10, highlighted the mentioned approach.

Minimize:L =∑(actionbyagent− actionbyexpert)2 (10)

Where L is the loss indicating the difference in actions between the
agent and the expert, minimized throughout training.

Recent advancements in AIL have focused on addressing
practical challenges such as training instability and reward bias. The
introduction of Support-weighted Adversarial Imitation Learning
(SAIL) extends traditional AIL algorithms with expert policy
support estimation, which enhances the quality of reinforcement
signals and improves both performance and training stability across
a variety of control tasks (Wang et al., 2020). This improvement
potentially applies to agriculture by enhancing robotic precision in
tasks such as planting, weeding, and harvesting, thereby increasing
efficiency and reducing resource usage. Similarly, the development
of Sample-efficient Adversarial Imitation Learning utilizes self-
supervised representation learning to generate robust state and
action representations, significantly improving the performance
of imitation learning with reduced sample complexity (Jung et al.,
2023). In agriculture, this could mean rapidly training models
to recognize and act upon diverse crop and soil conditions,
even with limited training data, thus enhancing adaptability
and responsiveness to environmental changes. Orsini et al. (2021)
emphasize the importance of various factors that contribute to the
effectiveness of AIL, such as the balance between the generator and
discriminator, and the stability of training processes. Their findings
suggest that addressing these factors can significantly improve the
performance and reliability of AIL methods. Furthermore, the
integration of AIL with other learning paradigms, such as hybrid
models that leverage the strengths of both AIL and traditional
learning approaches, offers promising avenues for addressing
broader social challenges and contributing to the global good.
This multidisciplinary approach highlights the adaptability and
versatility of AIL in various domains, from autonomous driving,
where safety and ethical accountability are paramount, to healthcare,
where AIL can enhance patient care simulation and treatment
planning (Torabi et al., 2018; Yu et al., 2020).

3.3.2 Diffusion policy
As mentioned before, IL in agricultural robotics aims to teach

machines to emulate human actions or procedures demonstrated
under various operational scenarios. The Diffusion Policy, a novel
approach based on conditional denoising diffusion processes,
innovatively extends visuomotor policy learning to complex,
high-dimensional action spaces typical in agriculture, such as
autonomous harvesting or precision farming (Chi et al., 2023). This
technique notably surpasses traditional methods by its robust ability
to handle multimodal action distributions and to maintain stability
during training (Ho et al., 2020).

The Diffusion Policy is grounded in a generative model
framework that iteratively refines predictions through a sequence of
stochastic corrections, fundamentally based on Stochastic Langevin
Dynamics. This process termed the conditional denoising diffusion
process, involves an intricate computation of the gradient of
the action-distribution score function. Such a calculation not
only facilitates the handling of multimodal and high-dimensional
action distributions but also enhances the learning efficiency
and adaptability required for complex agricultural tasks (Song
and Ermon, 2019; Chen, 2023). The denoising process can be
mathematically represented in Equation 11 as follows:

xk−1 = xk + η∇x logpk(xk ∣ x0) + ϵk, (11)
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Where ϵk ∼N (0,σ2I) is the Gaussian noise, η is the step size, and
∇x logpk(xk ∣ x0) is the gradient of the log-probability of the action
given the initial state, computed at step k.

Traditional imitation learning approaches are often limited
by the lack of flexibility in handling the diversity of agricultural
environments and tasks. The Diffusion Policy addresses these
limitations effectively:

• Expressing Multimodal Action Distributions: By leveraging
the calculated gradient of the action score function and
employing Stochastic Langevin Dynamics for sampling, the
Diffusion Policy can proficiently represent and navigate
through complex, multimodal action distributions. This
feature is crucial for performing varied tasks where
the environmental variability demands a high degree of
adaptability in action planning (Chen, 2023; Neal, 2011).
• Adaptation to High-dimensional Action Spaces: The inherent

capability of diffusion models to scale to high-dimensional
spaces allows the policy to infer comprehensive sequences of
actions. This scalability is essential for extended operations
across large agricultural fields, where tasks may involve
complex maneuvering and extended sequences of actions
(Dosovitskiy et al., 2020; He et al., 2016).
• Stable Training Regime: Unlike traditional models that often

face training instabilities due to the complexities of energy-
based sampling methods, the Diffusion Policy stabilizes
the training process by directly optimizing the gradient
of the energy function. This methodological improvement
is vital for maintaining consistent performance in the
highly variable conditions typical of agricultural settings
(Du et al., 2020; Gupta et al., 2019).

Implementing the Diffusion Policy within agricultural robotics
involves several technical considerations to optimize its effectiveness
in real-world settings:

• Precision Task Execution: The model’s high-dimensional
action inference capability, combined with its robust training
stability, allows for precise and efficient task execution. This
precision is particularly beneficial for agriculture tasks that
require exact movements, such as selective harvesting and
precision pesticide application.
• Autonomous Navigation: Given its proficiency in handling

complex distributions and high-dimensional data, the
Diffusion Policy is ideally suited for autonomous navigation
tasks in agriculture. This includes adapting to varying terrain
types, crop densities, and other environmental factors that
typically challenge traditional navigation systems.
• Integration with Robotic Systems: The practical application

of the Diffusion Policy also involves its integration with
existing robotic systems, which may require modifications to
the robots’ sensory and processing units to fully leverage the
capabilities of the policy (Urain et al., 2023; Karras et al., 2022).

The deployment of the Diffusion Policy in agricultural fields
brings forth challenges that stem from the need for robust data
collection, handling of environmental variability, and integration
with diverse robotic technologies. Moreover, the adaptation
of this policy to meet the specific demands of agricultural
environments requires further empirical studies and technological

innovations (Zeng et al., 2021; Zhang et al., 2020). The Diffusion
Policy significantly advances imitation learning for agricultural
applications, offering solutions that enhance the robustness,
versatility, and precision of robotic tasks. This technology holds
the potential to revolutionize agricultural practices by improving
operational efficiency and reducing labor needs, paving the
way for future innovations in robotic farming (Chi et al., 2023;
Pearce et al., 2023).

Tables 2, 3 provide a summary of the critical analysis,
emphasizing the technical capabilities and limitations of primary
and advanced imitation learning models, respectively. These tables
highlight how each model performs in the context of dynamic
agricultural environments, as discussed in this section.

4 Current applications of IL in
agricultural and biological engineering

In the preceding section,we discussed various imitation learning
methods and techniques, detailing their potential to significantly
enhance agricultural practices. Despite the advantages that imitation
learning offers to the field, its application within agriculture remains
relatively nascent, with few research endeavors exploring its full
potential. This section delves into the most recent research in this
area, explores how these innovations can be expanded and suggests
new subjects for future investigation.

Recent studies reveal a rising interest in bringing advanced
technologies like robotics and AI into agriculture, especially
when it comes to using IL to boost efficiency and precision in
farming. In the comprehensive review by Starostin et al. (2023),
the authors highlight the increasing global focus on developing
robotic platforms for agricultural purposes, particularly in countries
like the United States, China, and Germany, where research and
development in this field have accelerated in recent years. The
updated findings from this research are illustrated in Figure 4.

The Figure 5 provided illustrates the global distribution of
research publications in agricultural robotics, highlighting the
significant interest and investment in this field by various countries.
Notably, the Republic of China leads with 43.3% of the total
publications, indicating a strong commitment to advancing robotic
farming technologies. The United States follows with 21.6%, while
Japan, Germany, and Italy also show considerable contributions.
These countries are not only at the forefront of research but
have also established or are developing policies to support the
implementation of these innovations. To ensure the strategic
development of agricultural robotics, future policies in key countries
are expected to focus on enhancing research in intelligent robotics,
fostering innovation in sensor and automation technologies, and
supporting the integration of robotics into large-scale agricultural
production systems (Zhao et al., 2020).

As we look to the future, with policies aiming to speed up
the adoption of advanced technologies in agricultural robotics, it
becomes more important than ever to explore new and innovative
ways to train these systems effectively. The early application of
imitation learning in agriculture, as demonstrated by Dyrstad
et al., where robots were instructed to grasp real fish, illustrates the
substantial potential of utilizing virtual reality as a sophisticated
training tool (Dyrstad et al., 2018). This innovative approach
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TABLE 2 Critical comparison of primary imitation learning models in agricultural applications, highlighting key aspects of scalability, adaptability, and
performance.

Aspect Behavioral cloning (BC) Inverse reinforcement
learning (IRL)

Imitation from observation
(IfO)

Scalability Efficient with structured, large datasets
but necessitates diverse data to prevent
overfitting (Ross et al., 2011)

Scales effectively in data-rich
environments, demanding high
computational resources (Arora and
Doshi, 2021)

Demonstrates scalability with extensive
visual or sensor data (Liu et al., 2018)

Adaptability Quickly adapts to environments similar
to its training data but struggles with
novel scenarios (Kim et al., 2023)

Adapts to new tasks by learning
underlying objectives, though
re-derivation can be cumbersome
(Arora and Doshi, 2021)

Shows adaptability in familiar settings
but faces limitations with highly
divergent new states (Hu et al., 2022)

Performance Excels in environments resembling the
training dataset but limited in dynamic
conditions (Pomerleau, 1988)

Offers robust performance across varied
scenarios, heavily dependent on precise
reward estimation (Shao and Er, 2012)

Achieves high accuracy with
well-modeled state transitions but is
vulnerable if transitions are not
accurately captured (Liu et al., 2018)

Generalization Generalizes effectively within the scope
of its training data but is constrained by
limited diversity (Ross et al., 2011)

Excellent potential for generalization,
reliant on the universality of inferred
rewards (Skalse and Abate, 2023)

Generalizes well from observed to
similar unobserved states, limited by
the diversity of states during training
(Edwards et al., 2019)

Dynamic Handling Effective in dynamic settings if
continuously updated with new data,
but requires frequent retraining (Park
and Yang, 2022)

Handles dynamic environments by
learning applicable rewards but requires
complex recalculations
(Freymuth et al., 2021)

Capable in dynamic settings if regularly
updated with new data, though
demands continuous retraining
(Liu et al., 2018)

TABLE 3 Critical comparison of advanced imitation learning models in agricultural applications, focusing on adaptability, performance, and
dynamic handling.

Aspect Adversarial imitation learning (AIL) Diffusion policy

Scalability Initial resource intensity decreases as more diverse
data becomes available, enhancing scalability
(Ho et al., 2016)

Handles high-dimensional action spaces effectively,
though computational demands may constrain
scalability (Chi et al., 2023)

Adaptability Highly adaptable via its adversarial process, yet
maintaining balance and training quality is crucial
(Finn et al., 2016)

Adapts proficiently to complex action distributions but
requires significant retraining for new task types
(Chi et al., 2023)

Performance Can outperform other models by learning nuanced
behavior patterns but may experience instability
during early training phases (Ho et al., 2016)

Excels in handling multimodal actions; however, its
performance consistency heavily relies on the quality
of stochastic modeling (Ho et al., 2020)

Generalization Provides strong generalization across diverse scenarios
when adequately trained, though there is a risk of
overfitting (Fu et al., 2017)

Proficient at generalizing across high-dimensional and
multimodal environments, necessitating thorough
training (Song and Ermon, 2019)

Dynamic Handling Adapts dynamically through continuous adversarial
training, necessitating consistent data input and
adjustments (Finn et al., 2016)

Manages dynamic changes efficiently through
stochastic corrections but requires ongoing calibration
(Song and Ermon, 2019)

could be effectively expanded to encompass a range of complex
agricultural tasks, particularly with the daily improvement of
Machine Learning methods in agricultural product prediction
(Khan et al., 2020). These improvements, combined with predictive
models for agricultural production, offer valuable tools for
policymakers and farmers to enhance fruit production, optimize
resource management, and address the growing demand for
agricultural efficiency (Rehman et al., 2018). For instance, it
could be adapted for the harvesting of irregularly shaped or

delicate fruits and vegetables, thereby opening new avenues for
research in adaptive robotic handling techniques. Additionally,
the implementation of imitation learning holds considerable
promise for challenging environments such as poultry plants or
crab meat harvesting operations. These fields, characterized by
their harsh working conditions, could greatly benefit from the
precision and adaptability that imitation learning-equipped robots
can offer, potentially transforming labor-intensive processes into
more efficient, automated operations.
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FIGURE 4
Annual number of publications in agricultural robotics indexed by web of science (2000-2024).

FIGURE 5
Global distribution of agricultural robotics publications.
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Kim, Ohmura, and Kuniyoshi (2022a) made significant strides
in the robotic handling of delicate tasks with the development of
a sophisticated robotic system for peeling bananas. This system
employs goal-conditioned dual-action deep imitation learning and
features a dual-arm robot setup, where one arm stabilizes the banana
while the other expertly peels it.This complex coordination between
the arms is crucial for handling tasks that require precision and
gentle handling, demonstrating the potential for similar robotic
systems to be adapted for processing other agricultural products
that necessitate delicate operations, such as peeling or slicing, thus
minimizing waste and maximizing efficiency.

Complementing this, Kim J. et al. (2022) introduced the Deep-
ToMaToS, a deep learning network tailored for the 6D pose
estimation of tomatoes, enabling precise robotic harvesting based
on maturity classification. This approach highlights the capability
of deep learning models to significantly enhance the accuracy and
efficiency of robotic systems in agriculture, especially in recognizing
and classifying crops according to their maturity. Together, these
studies showcase the potential of advancedmachine learningmodels
to revolutionize the automation of intricate agricultural tasks, from
the precise handling and processing of individual fruits to the
efficient harvesting of crops, opening avenues for these technologies
to be applied across a broader spectrum of agricultural needs.

The research conducted by Tsai et al. (2018) in both 2018
and 2019 significantly advanced the precision and adaptability
of agricultural robots through the development of visual
picking controls using end-to-end imitation learning. In their
2018 study, Tsai et al. (2019) focused on enabling a 6-DoF (Degree
of Freedom) manipulator to adapt its picking strategies based on
real-time visual cues. This approach allowed the robot to effectively
identify and pick objects in a dynamic environment, which is
crucial for applications such as fruit or vegetable harvesting where
conditions can vary widely. Extending these capabilities, another
research introduced an omnidirectional mobile manipulator
equipped with enhanced multi-task learning capabilities. This
system was not only capable of navigating across different terrains
but could also perform various agricultural tasks simultaneously,
thereby increasing efficiency and reducing the need for human
intervention.

These enhancements in robotic technology suggest that the
methods developed by Tsai et al. could be applied to a broader
range of agricultural robots, particularly those used for seeding
and weeding. By adapting the visual picking controls and multi-
task learning approaches, these robots could potentially operate
autonomously within fully automated farm environments. Such
advancements could lead to the creation of multi-robot systems
where various agricultural tasks, from planting to pest control,
are allocated efficiently among different robots. Each robot could
learn from human experts through imitation, thereby continually
improving its operational efficiency and adaptability.

Moreover, the foundational work by Tsai et al. opens up
opportunities for future research into the collaborative operation
of these robots in a coordinated system. This could involve the
development of algorithms that enable robots to learn not only
from human demonstrations but also from each other, optimizing
task allocation and execution in real-time based on environmental
conditions and ongoing learning. Such systems would represent
a significant step toward the realization of smart agriculture

ecosystems, where multiple robotic agents work in concert to
manage and optimize various farming operations, leading to higher
productivity and sustainability.

Misimi et al. (2018) and Porichis et al. (2023) both explore the
capabilities of robotic systems in handling specific agricultural
products, emphasizing the importance of delicate handling to
maintain product integrity and quality. Misimi et al. (2018)
developed robust learning-from-demonstration techniques, initially
focused on the handling of fish and other malleable materials. This
approach utilizes visual and tactile feedback to adapt to the varied
textures and consistencies encountered in these materials, which is
crucial for tasks such as filleting or packaging in food production
environments. The techniques demonstrated by Misimi et al.
(2018) have significant potential for extension to the handling
and processing of plants, particularly in applications where the
preservation of structural integrity is critical, such as in the handling
of soft fruits and vegetables. On the other hand, Porichis et al.,
2023 addressed the specific challenges associated with mushroom
harvesting by developing a visual imitation learning system
that not only recognizes mushrooms but also picks them with
precision. Their system is designed to minimize damage to the
mushrooms, thereby improving yield and product quality. The
advanced visual recognition capabilities and delicate handling
methods are particularly important for crops likemushrooms,which
are susceptible to bruising and damage during the picking process.
Both studies underscore the broader applicability of these robotic
technologies to other types of crops that require gentle handling. By
adapting the visual and tactile-based imitation learning techniques
developed in these studies, it is conceivable to design robotic
systems that could handle a wider array of delicate agricultural
products, from berries to leafy greens, reducing labor requirements
and enhancing product quality. These advancements hold the
promise of transforming agricultural practices by introducing more
efficient, precise, and gentle robotic systems into the harvesting
and processing stages, ultimately leading to more sustainable and
productive agricultural operations.

Zhou et al., 2022a reviewed the latest advancements and
persistent challenges in the development of robotic systems for
fruit harvesting. This paper underscores the critical need for robots
that are not only intelligent but also highly adaptive, capable of
handling the diverse and often unpredictable conditions typical of
agricultural environments.The authors emphasize the complexity of
accurately identifying and harvesting different types of crops, which
vary widely in size, shape, and the degree of delicacy required during
handling. The study encourages further research into integrating
multi-sensor fusion techniques and artificial intelligence to improve
the autonomy and efficiency of harvesting robots. By doing so, these
machines could potentially learn fromeach harvest, optimizing their
paths and techniques based on accumulated experiences and data,
thereby reducing waste and increasing yield. This emphasis on the
need for greater intelligence and adaptability in robotic harvesting
systems calls for a multidisciplinary approach, combining robotics,
machine learning, and agricultural sciences to develop solutions that
can sustainably meet the demands of global food production.

Given the nascent state of imitation learning in agriculture,
as evidenced by the literature, there are ample opportunities for
future investigations. These studies could focus on developing
more sophisticated models of learning that not only imitate
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simple actions but also complex decision-making processes, thereby
enhancing the cognitive capabilities of agricultural robots. As
agricultural demands evolve alongside technological advancements,
imitation learning is poised to become a pivotal technology in
transforming agricultural practices, addressing some of the most
pressing challenges in the field.

5 Challenges and ethical
considerations

As agricultural robotics and IL evolve, they present a multitude
of challenges and ethical considerations that necessitate thoughtful
deliberation and proactive management. This chapter aims to
highlight the primary obstacles in the deployment of IL technologies
in agriculture, address the ethical implications, and propose
directions for future research and development.

5.1 Data acquisition and quality

A major hurdle in implementing IL in agricultural robotics
is securing high-quality data (Yang et al., 2021). The process of
gathering substantial volumes of annotated data in agricultural
settings is notably laborious and time-consuming, demanding
considerable human expertise. Moreover, the quality of data
can be compromised by human errors due to distractions or
limited visibility and comprehension of complex environments
(Wu et al., 2019; Sasaki and Yamashina, 2020).

Crowd-sourced datasets, often employed to boost the robustness
and efficacy of IL policies, introduce additional challenges due
to their inherent variability. These datasets display a wide range
of demonstration qualities, mirroring the varying expertise of
contributors (Ramrakhya et al., 2022).While discarding lower-quality
demonstrations might appear to be a straightforward fix, it is rarely
feasible due to the massive manual effort required for data curation,
which is typically impractical (Sasaki and Yamashina, 2020).

Furthermore, the diverse and often unstructured
nature of agricultural environments—from open fields to
greenhouses—poses unique challenges for data collection. The
need for adaptable data collection strategies is accentuated by
environmental variations such as lighting, weather, and seasonal
changes, which can significantly affect the physical characteristics
of crops and disrupt data consistency across different periods
(Ramrakhya et al., 2022; Bechar and Vigneault, 2016). Adverse
weather conditions like rain and fog can also impair the quality and
reliability of sensor data. Moreover, the performance of commonly
used sensors in agricultural robotics, including cameras, LiDAR,
and GPS, may be hindered by limitations in resolution, range,
and accuracy under challenging conditions such as dust, rain,
and fluctuating light levels (Ozdogan et al., 2010; Bargoti and
Underwood, 2017).These issues are critical as they directly influence
the quality of data essential for training dependable IL models.

5.2 Generalization and adaptability

Ensuring IL models generalize effectively across diverse
agricultural settings presents a significant challenge. Models trained

in specific environmentsmay not perform effectively when deployed
in new or different settings due to variations in crop types, growth
stages, and farming practices. This issue, often referred to as the
“domain shift” problem, necessitates the development of models
that can adapt in real time to dynamic and unpredictable agricultural
environments.

Addressing domain discrepancies is a focal point of recent
IL research, with studies exploring dynamics, viewpoint, and
embodiment mismatches Kim et al. (2020); Stadie et al. (2017).
These efforts typically involve developing mappings between state-
action spaces to foster domain-invariant features, which are crucial
for successful policy learning across varying conditions.Theneed for
feature-level domain adaptation is discussed by Kouw et al. (2016),
who propose an approach that models the dependence between two
domains through a feature-level transfer model, aiming to reduce
the feature distribution discrepancies that are common in diverse
agricultural settings. Moreover, Nguyen et al. (2021) introduced
TIDOT, a model that employs the principles of imitation learning
and optimal transport for unsupervised domain adaptation. This
model demonstrates how a “teacher” agent in the source domain can
guide a “student” agent in the target domain, thereby enabling real-
time adaptation to new agricultural environments. These advanced
methodologies, including Cross-embodiment IRL (XIRL) and other
approaches by Fickinger et al. (2021), focus on extracting task-
specific policies that are resilient to variations in environment
dynamics and embodiment (Beliaev et al., 2022; Kim et al., 2020).

5.3 Computational constraints

Addressing the computational constraints in deploying IL
models on agricultural robots is crucial due to the limited
computational resources and energy availability inherent to field
robots. Balancing the performance of high-complexity models with
the constrained computational power and battery life of agricultural
robots is essential for practical applications.

To tackle these challenges, researchers have focused on model
compression and optimization techniques that maintain model
performance while reducing computational demands and energy
consumption. Techniques such as quantization, pruning, and
knowledge distillation are particularly effective in adapting IL
models to the constraints of agricultural robots (Tokekar et al.,
2016). These methods aim to decrease the model size and
computational requirements, thus making IL models more suitable
for deployment on resource-constrained robots in the field.

Liu et al. (2021) discussed the application of pruning and
quantization to reduce the computational load of models without
significantly sacrificing performance, making them feasible for
implementation on robots with limited processing capabilities
and battery life. Similarly, Tokekar et al. (2016) explored the
balance between model complexity and computational feasibility,
emphasizing the importance of efficient energy management in
prolonging the operational time of field robots. Further research
by Buchli et al. (2017) and McCool et al. (2016) has highlighted
the critical role of energy-efficient model design in ensuring that
robots can perform extended tasks without frequent recharging.
These studies suggest that advanced model optimization strategies,
beyond traditional compression techniques, are necessary to achieve
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the dual goals of high performance and low energy consumption in
agricultural settings.

Recent developments in this area have also included more
sophisticated approaches such as differentiable constrained IL for
robotmotion planning and control, which integrate hard constraints
into the learning process to ensure safe and efficient robot operation
under limited computational resources (Diehl et al., 2022).

5.4 Ethical and social considerations

The deployment of agricultural robots brings forth profound
ethical and social considerations, including issues of labor
displacement, data privacy, and the broader implications on societal
structures. The integration of these technologies can significantly
affect employment, amplify existing social inequalities through
algorithmic biases, and challenge the governance frameworks
needed to ensure safe and equitable use.

The discussion around the moral status of robots, as
introduced by Bostrom and Yudkowsky (2018), emphasizes
the potential for robots to alter societal norms and structures
dramatically. They suggest that without careful consideration,
the deployment of autonomous systems could exacerbate social
inequalities and undermine human dignity by making biased
decisions or behaving unpredictably in human environments.
This necessitates robust ethical frameworks to ensure that robotics
technologies are aligned with human values and safety standards.

As the agricultural sector transitions from labor-intensive
methods to automation, the role of robots has expanded. This shift,
discussed by Marinoudi et al. (2019), raises significant questions
about the effects on employment and the social fabric of rural
communities. As repetitive tasks such as fruit picking and weeding
are increasingly automated, many workers may find their roles
replaced by machines. Reskilling programs are urgently needed
to help these workers transition to new roles, such as robot
maintenance and operation. De Stefano (2019) suggests that without
these interventions, rural communities may experience increased
income disparities and social disruption. The introduction of
automation can also widen the gap between large, technology-
driven farms and smaller farms that lack the resources to
adopt these innovations, potentially leading to socioeconomic
inequality (Dauth et al., 2021).

In many cases also, agricultural roles may be augmented
rather than entirely replaced, with robots starting to work
alongside humans. This collaborative approach could mitigate
some negative impacts on employment but requires careful
management and supportive policies to ensure equitable outcomes.
New job opportunties will also be created in technology-driven
roles such as robot maintenance, programming, and system
management. Dauth et al. (2021) observed that while robots have
displaced certain jobs in manufacturing, they have also generated
new, often higher-quality positions in the service sector. This
suggests that educational and training programs are crucial
in preparing displaced workers for new opportunities in an
increasingly automated agricultural landscape.

The digitization of agriculture also brings to the forefront
issues surrounding the privacy and security of farm data. As
farming practices and crop management become more data-driven,

the risk of sensitive information falling into unauthorized hands
increases. Strong data security, anonymization protocols, and clear
data governance structures are essential to protect farmers’ privacy
and ensure that the collected information is used responsibly. Data
ownership is a critical issue, especially as farmers increasingly
rely on third-party platforms to analyze their data. When farmers
outsource data processing to these platforms, they risk losing
control over their data, potentially exposing them to exploitation or
misuse. Rose et al. (2021) emphasize the importance of embedding
ethical considerations early in the design and development phase
of autonomous agricultural robots to safeguard data integrity and
ensure farmer privacy. Strong data security measures, such as
encryption and anonymization, are essential to protect farmers’
information. However, data ownership is a growing issue, especially
as farmers rely on third-party platforms to analyze and process
their data. When this information is uploaded to external systems,
farmers risk losing control over it. Kshetri (2014) points out that
data ownership policies need to be clearly defined, with specific
regulations governingwho has access and rights to the data collected
by agricultural robots. Clear legal frameworks should ensure that
farmers retain control over their data and that it cannot be misused
by corporations or third-party platforms (Wolfert et al., 2017).

The societal impact of robotics in agriculture also extends
beyond employment. Klerkx and Rose (2020) argue that automation
may lead to land consolidation, as smaller farms struggle to compete
and are forced to sell their land to larger agribusinesses. This shift
could reduce the autonomy of smallholder farmers and weaken the
social fabric of rural communities. It is essential that policymakers
ensure equitable access to robotics and AI technologies to prevent
this divide.

Addressing the ethical and social implications of agricultural
robots requires effective policymaking that aims to distribute
the benefits of automation broadly across society, supporting
both displaced workers and the communities impacted by these
technological changes. Sparrow and Howard (2020) emphasize the
need for key policy choices that maximize the social, environmental,
and economic benefits of agricultural robotics while mitigating
potential harms. The integration of robotics in agriculture thus
presents a complex landscape of ethical and social challenges,
including potential labor displacement, the creation of new
technological roles, concerns over data privacy, and the need for
robust governance frameworks. A comprehensive and balanced
approach is required to ensure that the advancement of robotics
in agriculture aligns with human values and promotes equitable,
socially just outcomes. This approach will be critical in navigating
the evolving moral landscape as robotics become more embedded
in daily farming operations.

6 Conclusion and future directions

This survey on imitation learning in agricultural robotics
encapsulates the transformative potential and innovative impact
of this technology in revolutionizing agricultural practices. IL
adeptly mimics expert human strategies in complex and variable
environments, enhancing efficiency, adaptability, and productivity
in agricultural operations. Techniques such as AIL and Diffusion
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Policy in IL are significant advancements, in improving the practical
deployment of robotic systems in farming.

Despite these advancements, the application of IL in agriculture
faces substantial challenges including data collection in diverse
environments, the need for model generalization across different
agricultural contexts, and computational constraints limiting field
deployment. Moreover, the ethical implications surrounding labor
displacement and data privacy necessitate a balanced approach to
technology integration.

Future research should address these challenges by
enhancing model adaptability, improving data collection quality
through advanced sensing technologies, and optimizing IL
models for computational efficiency using techniques such as
model compression and quantization. Additionally, developing
comprehensive ethical frameworks and policy guidelines is crucial
to address socio-economic impacts and ensure equitable benefits
from agricultural robotics.

Exploring collaborative human-robot interactions and
expanding IL applications to include a broader range of agricultural
tasks, such as pest management and environmental monitoring, will
also be pivotal. These efforts will not only mitigate job displacement
concerns but will also enhance the acceptance and effectiveness of
robotic technologies in agriculture.

By focusing on these areas, the future of IL in agricultural
robotics can achieve its potential, leading to revolutionary
advancements in agricultural practices. This will contribute to more
sustainable, productive, and less labor-intensive farming methods
globally, aligning technological progress with human values and
environmental needs.
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