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This paper presents an interdisciplinary framework, Machine Psychology, which
integrates principles from operant learning psychology with a particular Artificial
Intelligence model, the Non-Axiomatic Reasoning System (NARS), to advance
Artificial General Intelligence (AGI) research. Central to this framework is the
assumption that adaptation is fundamental to both biological and artificial
intelligence, and can be understood using operant conditioning principles.
The study evaluates this approach through three operant learning tasks
using OpenNARS for Applications (ONA): simple discrimination, changing
contingencies, and conditional discrimination tasks. In the simple discrimination
task, NARS demonstrated rapid learning, achieving 100% correct responses
during training and testing phases. The changing contingencies task illustrated
NARS’s adaptability, as it successfully adjusted its behavior when task conditions
were reversed. In the conditional discrimination task, NARS managed complex
learning scenarios, achieving high accuracy by forming and utilizing complex
hypotheses based on conditional cues. These results validate the use of operant
conditioning as a framework for developing adaptive AGI systems. NARS’s
ability to function under conditions of insufficient knowledge and resources,
combined with its sensorimotor reasoning capabilities, positions it as a robust
model for AGI. The Machine Psychology framework, by implementing aspects
of natural intelligence such as continuous learning and goal-driven behavior,
provides a scalable and flexible approach for real-world applications. Future
research should explore using enhanced NARS systems, more advanced tasks
and applying this framework to diverse, complex tasks to further advance the
development of human-level AI.

KEYWORDS

artificial general intelligence (AGI), operant conditioning, non-axiomatic reasoning
system (NARS), machine psychology, adaptive learning

1 Introduction

Artificial General Intelligence (AGI) is the task of building computer systems that are
able to understand or learn any intellectual task that a human being can. This type of AI
is often contrasted with narrow or weak AI, which is designed to perform a narrow task
(e.g., facial recognition or playing chess). There are several diverse research approaches
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to AGI including brain-based approaches (e.g., Hawkins, 2021),
projects that aims to implement different cognitive functions
separately (e.g., Laird, 2019), and principle-based approaches (e.g.,
Hutter, 2004; Wang, 2013). Recently, Large Language Models like
GPT-4 have also been introduced as a potential pathway towards
achieving more generalizable AI systems (Bubeck et al., 2023).

One major challenge in contemporary AGI research is the
lack of coherent theoretical frameworks (Wang, 2012; 2019). This
scarcity of unified models to interpret and guide the development
of AGI systems seems to have led to a fragmented landscape
where researchers often work in isolation on narrowly defined
problems. Coherent research frameworks could also provide a
roadmap and evaluation criteria for AGI development, fostering
more collaborative and interdisciplinary efforts. The fact that AGI
research has not progressed as rapidly as some had hoped could very
well be attributed to the lack of these comprehensive frameworks and
the absence of standardized benchmarks for measuring progression
towards AGI capabilities.

This work aims to address this challenge by proposing a novel
framework that outlines key milestones and metrics for evaluating
progress in the field of artificial general intelligence (AGI). A
fundamental assumption in this work is that adaptation is at the
heart of general intelligence. Adaptation is typically divided in
ontogenetic adaptation, which involves the changes that occur with
an organism over its lifespan, and 2) phylogenetic adaptation, which
refers to the evolutionary changes that occur across generations
within a species.

Learning has within the field of learning psychology,
been equated with ontogenetic adaptation, where an
individual’s experiences directly impact its capabilities and
behaviors (De Houwer et al., 2013). Operant conditioning is
one type of learning that involves adaptation in the form of
behavioral changes due to consequences of actions. Given the
enormous amount of empirical progress generated by operant
conditioning research in learning psychology, the principle of
operant conditioning and its associated research tradition could
be a guiding principle for AGI research.

One particular approach to building AGI is the Non-Axiomatic
Reasoning System (NARS) (Wang, 2013; 2022). NARS is an adaptive
reasoning system that operates on the principle of insufficient
knowledge and resources, a condition that is often true for real-
world scenarios. Hence, NARS is a principle-based approach that
aims to address the challenges of building AGI systems that can
operate effectively in dynamic and unpredictable environments
(Wang, 2019). There are several NARS implementations available.
One implementation is OpenNARS for Applications (ONA), that is
designed to provide a practical framework for integratingNARS into
various applications, with a particular focus on robotics (Hammer
and Lofthouse, 2020; Hammer et al., 2023). ONA is built with
sensorimotor reasoning at its core, enabling it to process sensory
data in real-time and respond with appropriate motor actions.
Sensorimotor reasoning, as implemented in ONA, permits the
system to make sense of the world much in the same way as
biological organisms do, by directly interacting with its environment
and learning from these interactions. The fact that NARS systems
are focused on adaptation, and that ONA has a strong emphasis on
sensorimotor capabilities, suggests that they are particularly well-
suited for implementing the principle of operant conditioning.

This work presents Machine Psychology, an interdisciplinary
framework for advancing AGI research. It integrates principles
from learning psychology, with the theory and implementation
of NARS. Machine Psychology starts with the assumption that
adaptation is fundamental to intelligence, both biological and
artificial. As it is presented here, Machine Psychology is guided
by the theoretical framework of learning psychology, and the
principle of operant conditioning in particular. A sensorimotor-
only version of ONA (Hammer, 2022) is used to demonstrate
the feasibility of using these principles to guide the development
of intelligent systems. One way to describe the integration of
operant conditioning and NARS presented in this paper is
that the ability to learn and adapt based on feedback from
the environment, is implemented using sensorimotor reasoning
that is the core of ONA. An analogy is that a neurobiological
explanation of operant conditioning could be argued to be
part of a biological basis for adaptive behaviors observed in
many species (Brembs, 2003), similarly, the implementation
within ONA using temporal and procedural inference rules
offers an alternative explanation of the core of adaptive behavior
and cognition.

We evaluate the Machine Psychology framework by carrying
out three operant learning tasks with NARS. The first is a simple
discrimination task in where NARS needs to learn, based on
feedback, to choose one stimulus over another, demonstrating a
fundamental aspect of learning based on the consequences of
actions. The second task is more complex than the first in that
the conditions of the experiment is changed midway through the
task, requiring NARS to adapt its choice strategy based on the new
conditions. The third experiment is a conditional discrimination
task, where NARS is presented with pairs of stimuli, and must
learn to select the correct stimulus based on a conditional cue
that changes throughout the task, requiring an increased level of
adaptability. Methods from learning psychology are used to design
the experiments and guide the evaluation of the results. We explain
the results by describing how the sensorimotor reasoning used by
ONA enables it to adaptively modify its behavior based on the
consequences of its actions. The Machine Psychology framework
is demonstrated to provide a coherent experimental approach
to studying the core of learning and cognition with artificial
agents, and also offers a scalable and flexible framework that
potentially could significantly advance research in Artificial General
Intelligence (AGI).

The paper is organized as follows. Section 2 presents a
background on the principles of operant conditioning and
its significance in learning psychology. Section 3 introduces
NARS with a focus on its foundational concepts. Section 4
describes the architecture of OpenNARS for Applications with a
particular focus on its sensorimotor reasoning abilities. Section 5
discusses related work to our approach. Section 6 presents the
Machine Psychology framework and how it integrates operant
conditioning principles with NARS. Section 7 describes the
details of the methods and experimental setup used in the
evaluation of our approach. Section 8 presents the results from the
experiments. Section 9 concludes the paper and outlines how the
Machine Psychology framework could be used to further advance
the field of AGI.
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2 Operant conditioning

The work presented in this paper takes a functional approach
to learning and adaptation (De Houwer and Hughes, 2020),
and to science in general. Such approach to learning is rooted
in the principles of behaviorism, which emphasizes the role
of environmental interactions in shaping behavior, rather than
mechanistic explanations of how internal processes affect behavior.
It stems particularly from the work of B. F. Skinner, who laid
much of the groundwork for understanding how consequences of
an action affect the likelihood of that action being repeated in the
future (Skinner, 1938). Skinner was influenced by physicist and
philosopher Ernst Mach, who emphasized the use of functional
relations in science to describe relations between events, rather than
using a traditional mechanistic causal framework (Chiesa, 1994).

In the functional learning psychology tradition, learning (as
ontogenetic adaptation) is defined as a change in behavior due to
regularities in the environment (De Houwer et al., 2013). Several
types of learning can be classified under this perspective. Operant
conditioning is defined as a change in behavior due to regularities
between behavior and stimuli (De Houwer et al., 2013). Other types
of learning can be defined based on other the regularities in
operation. A few comments regarding these definitions of learning
and operant conditioning follow, as clarified by De Houwer et al.
(2013). First, in line with Skinner (1938) behavior is defined very
broadly, encompassing any observable action or response from
an organism. This includes responses that are only in principle
observable, such as internal physiological changes, neural processes
or cognitive events. In addition to this, behavior is defined to
always be a function of one or more stimuli, while a response
is just an observable reaction. Second, regularities are defined to
be any patterns of events or behavior that go beyond a single
occurrence. This can be the same events happening repeatedly,
or two or more events or behaviors happening at the same time.
Third, the definition signals a particular view of causality (“due
to”). As highlighted above, this research tradition emphasizes
functional relations between environmental regularities and changes
in behavior. This implies that learning, from this perspective,
cannot be directly observed, but must be inferred from the
systematic changes in behavior in response to modifications in the
environment (De Houwer et al., 2013). Such inferences do depend
on an observer, whose scientific goals and theoretical orientations
shape the interpretation. An example follows that aims to clarify this
definition further.

2.1 The three-term contingency

To describe behavior as an interaction between the organism
and its environment, Skinner introduced the concept of the
three-term contingency, which consists of a discriminative
stimulus (Sd), a response (R), and a resultant stimulus (Sr)
Skinner (1953); De Houwer and Hughes (2020). In some contexts,
the terms antecedent, behavior, and consequence are used to reflect
the same triadic relationship.

In many situations, an additional element is crucial: the
establishing operation (EO), which is an example of a motivating
operation. The EO modifies the efficacy of a resultant stimulus as a

reinforcer. For instance, a consequence such as food might only be
effective as a reinforcer under certain conditions, for example, after
food deprivation - which would then be the establishing operation.
Hence, the EO could be included as a fourth term in the three-term
contingency description.

Furthermore, a conditional discriminative stimulus can modify
the contingency based on additional contextual factors. This
stimulus signals whether the relation between the discriminative
stimulus, the response, and the resultant stimulus would hold
or not, adding another layer of complexity to the model
Lashley (1938); Stewart and McElwee (2009). The functions of the
other terms would be conditional that stimulus, which explains the
name conditional discriminative stimulus.

2.2 An example of operant conditioning

Imagine a rat in an experimental chamber used to study
behavior. The chamber contains a small loudspeaker, a lever that
can be pressed, and a water dispenser where the delivery of water
is controlled by the researcher. The researcher aims to shape the
rat into turning around when techno music is played and pressing
the lever when classical music is played. To do this, the researcher
uses an operant conditioning procedure. Before the experiment, the
rat has been deprived of water for a short period, serving as the
establishing operation (EO), which increases the effectiveness of
water as a reinforcer.

Initially, any tendency to turn around when techno music is
played (the discriminative stimulus, Sd) might be followed by
the delivery of water (the resultant stimulus, Sr). This makes the
behavior (R) more likely to occur in the future under similar
conditions, meaning that the water functioned as a reinforcer.
Conversely, when classical music (another Sd) is played, and the rat
presses the lever (R), the delivery ofwater (Sr) follows the behavior as
well. Over time, the rat learns to turn around or press the lever based
on the type of music that is playing. A video of a rat performing in
this experiment can be found online (WMU Rat Lab, 2009).

We could also have imagined enhancing the procedure with
adding a light that could be on or off, signaling if the relation
between music type, the rat’s behavior, and water would hold or
not. Since the function of the other terms would be conditional
on the state of the light, the light would function as conditional
discriminative stimulus.

This example can be considered an effective demonstration of
operant conditioning. The behavior in this example is a function of
both the music and the water. It illustrates the point made above
that behavior studied from this perspective is not just an isolated
motor action, but is also significantly influenced by the surrounding
environment and the consequences that follow the behavior. The
regularities in operation are reoccurring patterns of behavior and
stimuli, for example, lever pressing and the delivery of water, but
also a regularity regarding classical music and lever pressing. To
make a causal statement about learning, we would need to observe
the rat before and after interacting with these stimuli. Before the
interaction, we might, for example, observe the rat exploring the
cage or do random actions when different types of music was
playing. After the interaction however, if we observe the behaviors
described in the example, this would be a clear change in behavior
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- from, for example, cage exploring when classical music is playing
to lever pressing when the same music is playing. If we could argue
that the change in behavior is due to the procedural arrangements
(regularities), then we could potentially claim that this qualifies as
an instance of learning. The type of learning it would indicate is
operant conditioning since the regularities involved were between
responses and stimuli (rather than, for example, a repeated pairing of
stimuli as with classical conditioning). More specifically, it would be
an instance of positive reinforcement, a kind of operant conditioning
that involves an increase in target behavior due to the consequences.

2.3 Three levels of analysis

A learning situation such as the one illustrated in the example
can be analyzed on three levels using learning psychology: 1) The
descriptive level (or level of procedure), 2) The functional level
(or the level of effect), and 3) The cognitive level (or the level of
mechanism) (De Houwer and Hughes, 2020). At the descriptive
level, the procedural arrangement is from the perspective of the
researcher. The different sounds is used to signal if a relationship
between behaving in a certain way and water holds. This is a
description of procedures initiated by the researcher. It does not
mean that the rat has learned based on these arrangements. The
functional level however, is closer to describing the relations from
the rat’s perspective. If the rat turns around if and only if the techno
music is playing, then thatmusic functions as a cue for that behavior.
Similarly, it is only if the delivery of water increased the behavior,
that it functions as a reinforcer. If there is no change in lever pressing
or turning due to the water being delivered, then that consequence
has no effect. Finally, the cognitive level can be used to describe
certain mental mechanisms, like association formations, that could
explain how the operant learning processes take place (De Houwer
and Hughes, 2020).

The importance of distinguishing these levels cannot be
overstated. Just using an operant conditioning procedure (like the
one above), does not mean that the subject learns in the form of
operant conditioning. When doing functional learning research,
we arrange procedures and study the effect on behavior change.
Learning, from this perspective, is hence defined on the functional
level. As stated above, a term such as reinforcement is also defined as
an effect rather than amechanism.This alsomeans that explanations
on the cognitive/mechanistic level are not part of the learning
definition (De Houwer et al., 2013). It also opens up for different
kinds of explanations in terms of mechanisms - for example,
propositional networks as something different from association-
based learning theories.

2.4 Where is the organism?

In a functional analysis of behavior, it is an interaction between
organism and environment that is being analyzed. Hence, it is not
the organism itself in isolation that is of interest. Technically, it is
interactions between stimulus functions and response functions that
are being studied, for example, an interaction between seeing a lever
and pressing it, or hearing techno music and reacting to it. There are
other conceptual schemas in functional learning psychology than

the three-term contingency that takes into account the complexity
of these interactions (Hayes and Fryling, 2018), but for this
paper, what has been presented above is a sufficient conceptual
framework. Importantly though, in functional learning research,
these relations between procedural arrangements and behavior
change does depend on an organism in that they enable response
functions. This does not in an way mean that the organism causes
behavior. Rather, the organism can be considered a participant in
the arrangements (Roche and Barnes, 1997).

Recently, De Houwer and Hughes (2022) extended their
conceptual work on learning beyond that of organisms, for example,
to also incorporate the study of learning with genes, groups, and
machines. At the descriptive level of analysis, they replace the term
response with that of state transition. In the example above with
the rat, a change from exploring the cage to pressing the lever
could be described as such a state transition (moving from a state
of exploration to a state of lever pressing). Importantly, states, as
defined from this perspective, are used to describe state transitions.
A behavior is then defined as a state transition in relation to
one or more stimuli, for example, in relation to the music being
played. This is once again a functional definition - the behavior
is a function of stimuli. Learning is still defined as changes in
behavior (state transitions in relation to stimuli) that occurs due to
regularities (De Houwer and Hughes, 2022).

Based on this conceptual change a system is defined as a
construct from the perspective of an observer, as sets of states that
can be used to describe change. In common language we often refer
to a rat “being a system”, but technically it is rather that the system
is a collection of topographical descriptions of a rat’s physiological
responses. With computer systems they could typically be described
as collections of interdependent systems (Hayes and Fryling, 2018).
For example, a robot taking part of an experimental task, might,
for example, be described as hardware movements (like the robot
arm) that are dependent on sensory equipment and on software
interpreting those sensory inputs.

2.5 Human-level intelligence from an
operant perspective

All above examples involve learning that are animal-level in
the sense that they could be observed with an animal like a
rat. The fact that operant conditioning can be observed with
both humans and animals does not, however, mean that these
processes are irrelevant for achieving human-level intelligence with
artificial systems. On the contrary, we would argue that mechanisms
enabling operant conditioning at the core (as with OpenNARS for
Applications; Hammer, 2022) could very well be integral to the
development of complex cognitive behaviors with AGI systems.

However, there might be limitations to the purely operant
account as presented by Skinner. Already in the 1950s, critiques
of Skinner’s theories emerged, particularly in the context of
language acquisition, arguing that verbal behavior requires more
than just operant conditioning (Chomsky, 1959). Given this,
the development of human-level AI from the perspective of
operant conditioning could risk to be limited when it comes
to higher-order functions such as language. These critiques have
been thoroughly addressed by contemporary functional learning
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theories of language and cognition, such as Relational Frame
Theory (RFT; Hayes et al., 2001).

RFT posits that the foundation of human language and
cognition lies in the ability to relate objects and events in arbitrary
ways, an ability referred to as Arbitrarily Applicable Relational
Responding (AARR; Hayes et al., 2001; Johansson, 2019). AARR
allows individuals to respond to one stimulus in terms of another
based on arbitrary contextual cues, rather than solely on the physical
properties of the stimuli themselves. For example, learning to relate
to an object and a spoken word as equivalent, despite having no
inherent physical similarity, showcases this ability. Or, responding
to a small coin as more valuable than a larger one, is another
demonstration of AARR.

Importantly, such patterns of AARR (called “relational frames”
in RFT) are assumed to be operant behaviors in themselves,
which are learned through interaction with the environment
and are subject to reinforcement (Hayes et al., 2021). Learning
to derive relations in accordance with, for example, similarity,
opposition, comparision, etc., seems to enable the development of
complex cognitive skills such as language understanding, problem-
solving, and abstract reasoning. Hence, from the perspective of
RFT, intelligence as a whole can be viewed as a collection of
interrelated relational frames that are dynamically shaped and
modified through continuous engagement with one’s environment
(Cassidy et al., 2016; Hayes et al., 2021).

The implications of RFT for AGI research are profound.
Since AARR is assumed to be learned behavior, it suggests that
AGI systems could potentially achieve human-like intelligence
through extensive training on relational tasks. There is a large
amount of experimental RFT studies regarding training of relational
framing abilities with humans across a variety of contexts and
populations, providing a rich dataset to inform AGI development
(Dixon et al., 2014; Cassidy et al., 2016). Also, an implication of
an RFT perspective is the necessity for AGI systems to have
mechanisms to learn relational frames from interactions with the
environment in a manner similar to how humans learn throughout
their lifetime. This means that AGI systems must be designed with
architectures capable of not just operant conditioning in a traditional
sense, but also with the ability to derive and apply relational frames
dynamically.

A roadmap to AGI from the perspective of functional learning
psychology and RFT would clearly emphasize operant conditioning
abilities at the core, as suggested in this paper. Furthermore, it would
advocate for trainings of increasingly complex AARR, in order to
foster the development of advanced cognitive abilities (Johansson,
2020). Hence, such a roadmap could provide a clear specification of
the requisite stages and milestones necessary for the development of
AGI, aligning with the principles of Relational Frame Theory (RFT)
(Hayes et al., 2001; 2021).

3 Non-axiomatic reasoning systems

A Non-Axiomatic Reasoning System (NARS) is a type of
artificial intelligence system that operates under the assumption
of insufficient knowledge and resources (AIKR) (Wang, 1995;
2006; 2013). The AIKR principle dictates that the system must
function effectively despite having limited information and

computational resources, a scenario that closely mirrors real-world
conditions and human cognitive constraints.

All NARS systems implement a Non-Axiomatic
Logic (NAL) (Wang, 2013), a term logic designed to handle
uncertainty using experience-grounded truth values. Most NARS
systems also makes use of concept-centric memory structure, which
organizes the system’s memory based on terms and subterms
from the logic statements, leading to a more effective control
of the inference process. Furthermore, all NARS systems use
a formal language Narsese, that allows encoding of complex
information and communication of NAL sentences within and
between NARS systems.

3.1 Core principles of NARS

NARS systems are built on a few key concepts that distinguish
them from traditional AI systems (Wang, 2022).

1. Adaptation Under AIKR: Unlike systems that assume
abundant knowledge and resources, NARS thrives under
constraints. It manages finite processing power and storage,
operates in real-time, and handles tasks with varying content
and urgency. This adaptability ensures that NARS remains
relevant in dynamic and unpredictable environments.

2. Experience-BasedLearning andReasoning:Central toNARS
is its concept-centered representation of knowledge. Concepts
in NARS are data structures with unique identifiers, linked
through relations such as inheritance, similarity, implication,
and equivalence. These relationships are context-sensitive
and derived from the system’s experiences, allowing NARS
to continuously update and refine its knowledge base as it
encounters new information.

3. Non-Axiomatic Logic: Traditional AI often relies on
axiomatic systems where certain truths are taken as given.
In contrast, NARS employs non-axiomatic logic, where all
knowledge is subject to revision based on new experiences.
This approach supports a variety of inference methods,
including deduction, induction, abduction, and analogy,
enabling NARS to reason in a manner that is both flexible
and grounded in empirical evidence.

3.2 Problem-solving and learning

NARS processes three types of tasks: incorporating new
knowledge, achieving goals, and answering questions. It uses both
forward and backward reasoning to handle these tasks, dynamically
allocating its limited resources based on task priorities. This
approach, known as case-by-case problem-solving, means that
NARS does not rely on predefined algorithms for specific problems.
Instead, it adapts to the situation at hand, providing solutions that
are contextually appropriate and continuously refined.

Learning in NARS is a self-organizing process (Wang, 2022).
The system builds and adjusts its memory structure—a network of
interconnected concepts—based on its experiences. This structure
evolves over time, allowing NARS to integrate new knowledge,
resolve conflicts, and improve its problem-solving capabilities.
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Unlike many machine learning models that require large datasets
and extensive training, NARS learns incrementally in interaction
with its environment and can accept inputs at various levels of
abstraction, from raw sensorimotor data to complex linguistic
information.

3.3 A unified cognitive model

One of the most significant aspects of NARS is its unified
approach to cognitive functions. In NARS, reasoning, learning,
planning, and perception are not separate processes but different
manifestations of the same underlying mechanism. This integration
provides a coherent framework for understanding and developing
general intelligence, making NARS a versatile tool for a wide range
of AI applications (Wang, 2022).

In conclusion, NARS represents a significant departure from
conventional AI paradigms by embracing the challenges of limited
knowledge and resources. Its unique combination of non-axiomatic
reasoning, experience-based learning, and adaptive problem-
solving positions NARS as a robust model for advancing artificial
general intelligence.

4 OpenNARS for applications

OpenNARS for Applications (ONA) is a highly effective
implementation of a NARS, designed to be suitable for practical
applications such as robotics (Hammer and Lofthouse, 2020). At the
core of ONA lies sensorimotor reasoning, which integrates sensory
processing with motor actions to enable goal-directed behavior
under conditions of uncertainty and limited resources. ONA differs
from other NARS systems in several key aspects, including.

1. Event-Driven Control Process: ONA incorporates an event-
driven control mechanism that departs from the more
probabilistic and bag-based approach used in traditional
NARS implementations, such as OpenNARS (Lofthouse,
2019). This shift allows ONA to prioritize processing based
on the immediacy and relevance of incoming data and tasks.
The event-driven approach is particularly advantageous in
dynamic environments where responses to changes must be
timely and context-sensitive.

2. Separation of Sensorimotor and Semantic Inference:Unlike
other NARS models that often blend various reasoning
functions, ONA distinctly separates sensorimotor inference
from semantic inference (Hammer and Lofthouse, 2020). This
division allows for specialized handling of different types of
reasoning tasks—sensorimotor inference can manage real-
time, action-oriented processes, while semantic inference deals
with abstract, knowledge-based reasoning. This separation
helps to optimize processing efficiency and reduces the
computational complexity involved in handling diverse
reasoning tasks simultaneously.

3. Resource Management: ONA places a strong emphasis on
managing computational resources effectively, adhering to
the Assumption of Insufficient Knowledge and Resources
(AIKR). It is designed to operate within strict memory and

processing constraints, employing mechanisms like priority-
based forgetting and constant-time inference cycles. These
features ensure that ONA can function continuously in
resource-limited settings by efficiently managing its cognitive
load and memory usage.

4. Advanced Data Structures andMemoryManagement:ONA
utilizes a sophisticated system of data structures that include
events, concepts, implications, and a priority queue system for
managing these elements. This setup facilitates more refined
control over memory and processing, prioritizing elements
that are most relevant to the system’s current goals and
tasks. It also helps in maintaining the system’s performance
by managing the complexity and volume of information
it handles.

5. Practical Application Focus: The architectural and control
changes in ONA are driven by a focus on practical application
needs, which demand reliability and adaptability. ONA
is tailored to function effectively in real-world settings
that require autonomous decision-making and adaptation
to changing environments, making it more applicable and
robust than its predecessors for tasks in complex, dynamic
scenarios Hammer and Lofthouse (2020).

4.1 The architecture of ONA

ONA’s architecture is composed of several interrelated
components that work together to process sensory input, manage
knowledge, make decisions, and learn from experience. These
components are designed to handle the dynamic and uncertain
nature of real-world environments, ensuring that the system can
adapt and respond effectively (Hammer, 2022). The architecture
is illustrated in Figure 1. ONA’s architecture has a number of key
components: 1) Event Providers, 2) FIFO Sequencer, 3) Cycling
Events Queue, 4) Concept Memory, 5) Sensorimotor Inference
Block, and 6)Declarative Inference Block. Each of these components
plays a crucial role in ONA’s operation, as described in detail below.

4.1.1 Event providers
Event providers are responsible for processing sensory inputs

from various modalities, converting raw data into structured
statements that the reasoning system can interpret. Each event
provider is specialized for different types of sensory information,
such as visual, auditory, or tactile data. These providers ensure that
all relevant environmental information is captured and encoded as
events, which are then fed into the system for further processing.The
main functionality can be summarized as follows.

• Sensor Data Processing: Event providers preprocess raw
sensor data to filter noise and extract meaningful information.
• Event Encoding: The processed data is encoded into

statements or events that can be understood by the
ONA system.

4.1.2 FIFO sequencer
The FIFO (First-In-First-Out) Sequencer maintains a sliding

window of recent events. This component is essential for building
and strengthening temporal implication links, which are used to
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FIGURE 1
An overview of the architecture in OpenNARS for Applications (ONA). Reprinted with permission from Patrick Hammer, the author of ONA.

understand the sequence of events and their relationships over
time. By keeping track of the recent history, the FIFO Sequencer
allows ONA to form hypotheses about temporal patterns and causal
relationships. As a note, in recent versions of ONA, the FIFO was
removed and replaced by an explicit temporal inference block. This
design is however not yet described in any scientific publications,
and therefore the designwith the FIFOhas been described.Themain
functionality can be summarized as follows.

• Event Sequencing: It organizes events in a chronological order,
maintaining a window of the most recent events.
• Temporal Implications: Builds and strengthens links between

events based on their temporal proximity and sequence.

4.1.3 Cycling Events Queue
The Cycling Events Queue is a priority queue that serves as

the central attention buffer of the system. All input and derived
statements enter this queue, but only a subset can be selected for
processing within a given timeframe due to the fixed capacity of
the queue. This mechanism ensures that the most relevant and
urgent information is processed first, while less critical information
is discarded or delayed. The main functionality can be summarized
as follows.

• Priority Management: Events are prioritized based on their
importance and relevance to current goals.
• Attention Focus: Ensures that the system’s limited processing

resources are focused on the most critical tasks.

4.1.4 Concept Memory
Concept Memory acts as the long-term memory of the

ONA system. It stores temporal hypotheses and supports their
strengthening or weakening based on prediction success. This
memory component allows ONA to retain knowledge over long
periods, enabling cumulative learning and the ability to recall
past experiences to inform current decision-making. The main
functionality can be summarized as follows.

• Hypothesis Management: Stores and manages temporal and
procedural hypotheses about the environment.
• Evidence Accumulation: Strengthens or weakens stored

hypotheses based on new evidence and prediction
outcomes.

4.1.5 Sensorimotor Inference Block
The Sensorimotor Inference Block is responsible for handling

decision-making and subgoaling processes for goal events
selected from the Cycling Events Queue. This component
invokes algorithms for goal achievement, generating actions
or subgoals that guide the system’s behavior towards fulfilling
its objectives. The main functionality can be summarized
as follows.

• Decision Making: Selects the best actions to achieve current
goals based on stored knowledge and recent events.
• Subgoaling: Decomposes complex goals into manageable

subgoals, facilitating step-by-step achievement of objectives.
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4.1.6 Declarative Inference Block
The Declarative Inference Block is responsible for higher-level

reasoning tasks such as feature association, prototype formation,
and relational reasoning. It utilizes human-provided knowledge
to enhance the system’s understanding of the environment and
improve its reasoning capabilities. Though not utilized in the
specific experiments described in the paper, this block is crucial for
applications requiring complex knowledge integration and abstract
reasoning. The main functionality can be summarized as follows.

• FeatureAssociation:Links related features and concepts based
on observed patterns and external knowledge.
• Relational Reasoning: Understands and reasons about

relationships between different concepts and entities.

4.2 The operations of ONA

The main operations of ONA will be described below.

4.2.1 Truth value calculation
Truth values inONAare based on positive and negative evidence

supporting or refuting a statement, respectively. The system uses
two measures: frequency (the ratio of positive evidence to total
evidence) and confidence (the ratio of total evidence to total
evidence plus one). This approach allows ONA to represent degrees
of belief, accommodating the inherent uncertainty in real-world
information.

The calculation of frequency and confidence is conducted as
follows. Frequency: f = w+

w
, and Confidence: c = w

w+1
, where w is the

total amount of evidence, and w+ is the positive evidence.
These values are used to evaluate the truth of implications and

guide decision-making processes, ensuring that actions are based on
the most reliable and relevant information available.

4.2.2 Implications and learning
ONA forms temporal and procedural implications through

induction and revises them based on new evidence. Temporal
implications represent sequences of events, while procedural
implications represent action-outcome relationships. Learning
involves accumulating positive and negative evidence for these
implications and adjusting their truth values accordingly. Also if
an implication exists (for example, <(<A1 –> [left]> &/

ˆleft) =/> G>, and A1 was observed followed by ˆleft, an
assumption of failure will be applied to the implication for implicit
anticipation. This means, if the anticipation fails, the truth of the
implication will be reduced by the addition of negative evidence,
via an implicit negative G event, while the truth will increase due to
positive evidence in case G happened.

The learning process at the core consists of.

• Event Sequences: Implications are formedwhen related events
occur within the sliding window maintained by the FIFO
Sequencer.
• Evidence Update: Positive and negative evidence is

accumulated and used to revise the truth values of
implications, ensuring they reflect the system’s experiential
knowledge.

4.2.3 Decision making and subgoaling
ONA’s decision-making process is goal-driven, leveraging its

knowledge of temporal and procedural implications to select actions
or generate subgoals. The system evaluates the desire value of goals
and subgoals, prioritizing them based on their likelihood of success
and relevance to current objectives. The decision process can be
described as follows.

• Goal Deduction and Evaluation: Determines the most
desirable actions or subgoals based on stored implications and
recent events.
• Subgoal Generation: Breaks down complex goals into smaller,

manageable subgoals, facilitating efficient achievement
through step-by-step actions.

4.2.4 Motor babbling
To trigger executions when no procedural knowledge yet exists,

ONA periodically invokes random operations, a process called
Motor Babbling. This enables ONA to execute operations despite
any procedural knowledge that applies. Without this ability, ONA
would not be able to do its initial steps of learning procedural
knowledge (Hammer and Lofthouse, 2020).

4.3 Conclusion

The architecture of ONA integrates various components
that collectively enable it to reason, learn, and make decisions
under conditions of uncertainty and resource constraints. By
demonstrating aspects of natural intelligence, such as continuous
learning and goal-driven behavior, ONA offers a robust framework
for developing intelligent systems capable of adapting to the
complexities of real-world environments.

5 Related work

While we are not aware of any other attempt to integrate
functional learning psychology with the Non-Axiomatic Reasoning
System (NARS), there are several approaches that aim to implement
the “biological basis” of operant conditioning using computational
modeling or similar approaches. Importantly, it seems like most of
these attempts take amechanistic approach to operant conditioning,
rather than a functional approach (as in this paper). Reinforcement
learning, particularly model-free methods like Q-Learning and
Deep Q-Networks (DQN), has gained significant attention for
its ability to learn optimal policies through interactions with the
environment (Mnih et al., 2015). These methods rely on the Markov
property, where the next state depends only on the current state and
action, simplifying the learning process but also limiting the system’s
ability to handle non-Markovian environments.

ONA diverges fromRL by adopting a reasoning-based approach
grounded in Non-Axiomatic Logic (NAL). Unlike RL, which
optimizes a predefined reward function, ONA emphasizes real-time
reasoning under uncertainty, adapting to insufficient knowledge
and resources (Wang, 2013). This allows ONA to handle complex,
non-Markovian environments more effectively. While RL methods
struggle with sparse rewards and require extensive data to learn,
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ONA leverages its reasoning capabilities to infer causal relationships
and plan actions based on partial knowledge, making it more data-
efficient (Hammer, 2022).

In summary, while reinforcement learning remains a powerful
tool for specific, well-defined tasks, ONA offers a robust alternative
for more complex, real-time applications. Its integration of
reasoning under uncertainty, goal-driven learning, and adaptability
positions it as a significant advancement in the quest for
generalizable and resilient AI systems (Hammer, 2022).

6 Machine Psychology

Machine Psychology is an interdisciplinary framework for
advancing AGI research. It aims to integrate principles from operant
learning psychology (as described in Section 2), with the theory
and implementation of NARS (as described in Sections 3 and 4).
At the core of the integration is the assumption that adaptation is
fundamental to intelligence, both biological and artificial.

Generally, Machine Psychology can be said to be a functional
approach (as defined in Section 2 to the problem of building an
AGI system. With this, we mean that the Machine Psychology
framework enables the possibility to not only study functional
relations between changes in the environment and changes in
behavior (as in operant psychology), but also to study functional
relations betweenmechanisms and changes in behavior.Hence, both
experience of the system, and its mechanisms could in principle be
manipulated.

In the case with studying operant conditioning with NARS, it
means that it is indeed possible to both manipulate the system’s
experience, but also, in principle, tomanipulate themechanisms that
are available (or not) during an experimental task.

This interdisciplinary approach might be likened to
Psychobiology, that integrates psychology and biology (Dewsbury,
1991). Psychobiology is an interdisciplinary field that integrates
biological and psychological perspectives to study the dynamic
processes governing behavior and mental functions in whole,
integrated organisms. It emphasizes the interaction between
biological systems, such as the nervous and endocrine systems,
and psychological phenomena, such as cognition, emotion, and
behavior. This approach allows for the dual manipulation of
factors related to both experience (as in psychology) and biological
processes (as in biology) within a unified framework. By doing so,
psychobiology provides a comprehensive understanding of how
environmental and experiential factors can influence biological
states and how biological conditions can shape psychological
experiences, thus bridging the gap between the two domains
to offer holistic insights into human and animal behavior
(Dewsbury, 1991; Ritz and von Leupoldt, 2023).

Hence, one way to describe Machine Psychology, is that it
is to computer science (and particularly NARS theory), as what
Psychobiology is to biology.

6.1 An interaction with NARS

Within a Machine Psychology approach to NARS, it is possible
to interact with NARS as one would do with an organism

in psychological research in general. This will be illustrated in
this section.

An example interaction can be described as follows, where each
line endswith:|:, indicating temporal statements. First, a nonsense
symbol A1 is presented to the left. Then, A2 is presented to the
right. After that, the event G is established as something desirable
by the system (the ! indicates that the system desires the event).
This triggers the system to execute an operation (for example, the
operation ˆleft). The researcher could then provide the event G
as a consequence, leading to a derived contingency statement by the
system. The entire interaction can be described as follows (where//
represents comments):

<A1 --> [left]>. :|: // A1 is presented

to the left

<A2 --> [right]>. :|: // A2 is presented

to the right

G! :|: // G is established as a desired

event
^left. :|: // ^left executed by the system

G. :|: // G is provided as a consequence

<(<A1 --> [left]> &/ ^left) =/> G> //

Derived by the system

This example aims to provide an example of how the researcher
might interact with NARS, as if it was a biological organism.
The researchers presents events, and the system responds, and the
researcher once again presents an event as a consequence.

As part of this study, all interactions with ONA was done
via its Python interface. Specifically, experimental designs was
conducted in the Python-based open source experimental
software OpenSesame, that was configured to interact with ONA
(Mathôt et al., 2012; Mathôt and March 2022).

6.2 Learning psychology with NARS

Given the above example, it should be clear that interactions
between NARS and its environment can be analyzed using the
terms provided by functional learning psychology, as provided
in Section 2. The operant learning examples are described at the
descriptive level (the level of procedure), and learning effects
can be described at the functional level. The analog to the
cognitive/mechanistic level is the operations of theNARS system, as,
for example, described in Sedtion 4.2. The three-term contingency
(as described in Section 2.1) can be used to describe relations of
events, operations and consequences. In the example above, the
event <A1 –> [left]> functions as a discriminative stimulus,
ˆleft is a response, and G functions as a reinforcer. Importantly
though, the G! (that establishes G as desired event) functions as an
establishing operation.

7 Methods

7.1 OpenNARS for applications

The study used a version of OpenNARS for Applications (ONA)
compiled with the parameter SEMANTIC_INFERENCE_NAL_

LEVEL set to 0, which means that only sensorimotor reasoning
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were to be used. Hence, no declarative inference rules were available
during the experiments.

For all three experiments, ONA was configured at starting time
in the following way:
∗babblingops=2
∗motorbabbling=0.9
∗setopname 1 ^left

∗setopname 2 ^right

∗volume=100
This indicates that ONA was set to have two operators ˆleft

and ˆright, and an initial chance of 90% for motor babbling.

7.2 Encoding of experimental setup

All experimental tasks were presented as temporal Narsese
statements, as indicated by the:|:markers below. An arbitrary goal
event G! :|: was presented at the end to trigger the execution of
one of the two procedural operationsˆleft andˆright (through
motor babbling or a decision). During training, feedback was given
in the formofG. :|: (meaning to reinforce a correct choice) orG.
:|: {0.0 0.9} (to indicate that the systemhad conducted an incorrect
choice). Between each trial, 100 time steps was entered, by feeding
100 to ONA.

<A1 --> [sample]>. :|:

<B1 --> [left]>. :|:

<B2 --> [right]>. :|:

G! :|:

The first three lines are so-called inheritance statements, with
properties on the right-hand side, indicating that the events A1, B1
and B2 are either on the left, right or at the position of a sample.

7.3 Experimental designs

In this section, the experimental designs will be detailed of the
three tasks: 1) The simple discrimination task, 2) The changing
contingencies task, and 3) The conditional discriminations task. The
tasks are further illustrated with a few examples in Figure 2.

The first experiment investigated if NARS could learn in
the form of operant conditioning, specifically in the form of
simple discriminations. In the experiment, three phases were used:
Baseline assessment, Training (with feedback), and Testing (without
feedback). In all phases, training and testing were done in blocks of
trials. One trial could, for example, be that A1 was to the left, and
A2 was to the right. A block contained twelve trials, with the two
possible trials possible (depending on the location of A1 and A2),
each presented six times in random order.

1. Baseline: During the baseline assessment, which was three
blocks, no feedback was given. This phase was included to
establish a baseline probability of responding correct. It was
expected that the system would respond correctly by chance
in 50% of the trials.

2. Training: Then, the system was trained on a set of three
blocks. Feedback was given when the system was correct (for
example, executing ˆleftwhenA1 was to the left), and when
not correct.

3. Testing: The system was then tested (without feedback) on
three blocks, with the contingencies that previously had
been trained.

The second experiment investigated if ONA could adapt to
changing conditions midway through the task. Five phases were
used: Baseline, Training 1 (with feedback), Testing 1 (without
feedback), Training 2 (with feedback), and Testing 2 (without
feedback). All blocks contained twelve trials.

1. Baseline: Two blocks, where no feedback was given.
2. Training 1: Four blocks of, where feedback was given. This

phase aimed to train the system in executing ˆleft when A1
was to the left, and ˆright when A1 was to the right.

3. Testing 1:Then, the systemwas tested over two blocks (without
feedback) on what was trained the previous phase.

4. Training 2:This phase of four blocks aimed to train in reversed
contingencies compared to the first training. That is, the phase
aimed to train ONA into executing ˆleft when A2 was to
the left (and henceA1 to the right), and ˆrightwhenA2 was
to the right.

5. Testing 2: Over two blocks, the system was tested, without
feedback, on the contingencies trained in the previous phase.

Finally, in the third experiment, that investigated if the system
could learn conditional discriminations, three phases were used:
Baseline, Training, and Testing.

1. Baseline: Three blocks of 12 trials, where no
feedback was given.

2. Training: Six blocks, where feedback was given. For example,
when A1 was the sample, and B1 to the left, the system was
reinforced for executing ˆleft.

3. Testing: The system was then tested, without feedback, on
three blocks of 12 trials, with the contingencies that previously
had been trained.

8 Results

8.1 Simple discrimination task

During baseline, the amount of correct trials ranged between
0% and 50% during the three blocks, indicating that no learning
happened. In the training phase, NARS was 100% correct on
all trials already in the second out of three blocks, indicating
a rapid learning. Finally, in the testing, where no feedback
was provided, NARS performed consistently 100% correct
across all three blocks of trials. The results are illustrated in
Figure 3.

The average confidence values for the two target hypotheseswent
from 0.56 to 0.82. These two hypotheses were

<(<A1 --> [left]> &/ ^left) =/> G>

and
<(<A1 --> [right]> &/ ^right) =/> G>

The increase in average confidence value is also
illustrated in Figure 3.

In summary, the results indicate that ONA indeed can learn in
the form of operant conditioning.
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FIGURE 2
Examples from the three experimental tasks investigated.

FIGURE 3
Operant conditioning. Dots illustrate the percent of correct in blocks of 12 trials. The solid line shows the mean NARS confidence value for hypotheses.
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FIGURE 4
Operant conditioning with changing contingencies. Dots illustrate the percent of correct in blocks of 12 trials. The solid lines show the mean NARS
frequency values for the respective hypotheses.

8.1.1 NARS examples from the training phase
A few example trials from the training session follows. Let’s say

that the system was exposed to the following NARS statements:
<A2 --> [left]>. :|:

<A1 --> [right]>. :|:

G! :|:

If it is early in the training, NARS might use Motor Babbling
to execute the ˆright operation. Since this is considered correct
in the experiment, the feedback G. :|: would be given to NARS,
followed by 100 time steps. Only from this single interaction, NARS
would form a hypothesis using Temporal Induction:

<(<A1 --> [right]> &/ ^right) =/> G>

When the same situation happens again later during the
training phase, ONA will not rely on motor babbling, but
instead use its decision making algorithm and Goal Deduction, as
detailed by (Hammer, 2022).

8.2 Changing contingencies task

As expected, no learning happened during the baseline phase,
where NARS was less than 25% correct in both phases. In the first
training phase, NARS was 100% correct after two completed blocks
of 12 trials. During testing, the system was 100% correct without
any feedback being present. In the second training phase, where the
contingencies were reversed, the system could adapt to the change
as indicated by the increase in number of correct responses over
time, with 75% correct in the final block of the phase. Finally, in the
second testing phase, the system’s performance was 91.7% correct,
indicating that a successful retraining had been conducted. The
results are further illustrated in Figure 4.

To further illustrate how the NARS system was able to adapt to
changing contingencies, the change in average frequency value of
the two target hypotheses can be described over time. This is also
illustrated in Figure 4. As seen in Figure 4, the average frequency
value for the first hypothesis was close to 1.0 during the first training
and testing, meaning that the system had not received any negative
evidence. However, when the contingencies were reversed in the
second training phase, the frequency value of the first hypothesis
immediately decreased, taking the negative evidence into account.
The frequency value of the second hypothesis however, did not
rise above zero until the start of the second training, where the
hypothesis got positive evidence for the first time.

These results do all together indicate that a NARS system can
adapt in realtime in the form that is necessary when contingencies
are reversed midway through a task.

8.2.1 Examples from changed contingencies
Theexperiment starts out similar as to the example in Section 8.1.1

during the first training phase. However, after the contingencies
change, and reinforcement is not provided for executing ˆleft

and ˆright when A1 is to the left and right, respectively, the
system is forced to readapt. For example, if the following situation is
shown to the system:

<A1 --> [left]>. :|:

<A2 --> [right]>. :|:

G! :|:

The system will execute ˆleft based on its previous learning.
However, instead of G. :|: as a consequence, G. :|: {0.0 0.9}
will be provided. An explanation of how Revision is used will
be provided.
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Before the negative feedback, the following hypothesis will have
a frequency close to 1.0:

<(<A1 --> [left]> &/ ^left) =/> G>.

{0.98, 0.41}
In the above, 0.98, 0.41 means frequency = 0.98, and

confidence = 0.41.
However, with the negative feedback shown above, the following

hypothesis will be derived:
<(<A1 --> [left]> &/ ^left) =/> G>.

{0.00, 0.19}
Together, these two hypothesis with different truth values will be

revised as follows:
<(<A1 --> [left]> &/ ^left) =/> G>.

{0.74, 0.48}
When NARS combines the positive and negative evidence, the

frequency value goes down from 0.98 to 0.74, and the confidence
value goes up from 0.41 to 0.48, as the system has gained even more
evidence and is more confident in its conclusions.

With repeated examples smilar to the above, the system will
eventually go back tomotor babbling, andˆrightwill be executed,
leading to a reinforcing consequence. That will lead to the following
hypothesis being formed:

<(<A2 --> [right]> &/ ^right) =/> G>.

In summary, the mechanism of Revision, in combination to
what have been covered previously, enables the system to adapt to
changing contingencies.

8.3 Conditional discriminations task

As with the previous experiments, no learning happened during
the three-block baseline. During training, NARSwasmore than 75%
correct after two completed blocks of 12 trials. In the testing, NARS
performed 100% correct, without feedback, across three blocks of
trials. These results are illustrated in Figure 5.

The four target hypotheses were the following:
<((<A1 --> [sample]> &/ <B1 --> [left]>)

&/ ^left) =/> G>

<((<A1 --> [sample]> &/ <B1 --> [right]>)

&/ ^right) =/> G>

<((<A2 --> [sample]> &/ <B2 --> [left]>)

&/ ^left) =/> G>

<((<A2 --> [sample]> &/ <B2 --> [right]>)

&/ ^right) =/> G>

The average confidence value for these hypotheses
increased from 0.13 to 0.70 during the training phase, as also
illustrated in Figure 5.

8.3.1 NARS examples from conditional
discrimination training

A few example trials from the training session follows. Let’s say
that the system was exposed to the following NARS statements:

<A1 --> [sample]>. :|:

<B2 --> [left]>. :|:

<B1 --> [right]>. :|:

G! :|:

If it is early in the training, NARS might use motor babbling to
execute the ˆright operation. Since this is considered correct in

the experiment, the feedback G. :|: would be given to NARS,
followed by 100 time steps. From this single interaction, NARS
would form a hypothesis:

<((<A1 --> [sample]> &/ <B1 --> [right]>)

&/ ^right) =/> G>.

// frequency: 1.00, confidence: 0.15

Importantly, after this single trial, NARS would also form
simpler hypothesis such as:

<(<B1 --> [right]> &/ ^right) =/> G>.

// frequency: 1.00, confidence: 0.21

<(<A1 --> [sample]> &/ ^right) =/> G>.

// frequency: 1.00, confidence: 0.16

This means, that if the same trial was to be presented again
(all four possible trials will be presented three times in a block of
twelve trials), NARSwould respondˆright again, but the decision
being based on the simpler hypothesis, since that hypothesis has the
highest confidence value.

Let’s say, that within the same block of 12 trials, the next trial to
be presented to NARS was the following:

<A1 --> [sample]>. :|:

<B1 --> [left]>. :|:

<B2 --> [right]>. :|:

G! :|:

NARS would initially respond ˆright, with the decision being
made from the simple hypothesis <(<A1 –> [sample]> &/

ˆright) =/> G> .
This would be considered wrong in the experiment, and the

feedbackG. :|: {0.0 0.9} would be given toNARS.Thiswould
lead to negative evidence for the simple hypothesis. If the same
trial was presented again, NARS would then likely resort to motor
babbling that could execute the ˆleft operation. Over repeated
trials with feedback, the simpler hypotheses would getmore negative
evidence, and the confidence values of the more complex target
hypotheses would increase.

In summary, NARS can learn increasingly complex hypotheses,
with repeated examples.

8.4 NARS mechanisms

Given the examples above, we will now provide further
clarifications of the results in terms of mechanisms and inference
rules that are implemented in ONA.

In all three tasks, the confidence increase followed from
repeated examples which provide evidence to the respective target
hypotheses. For this to happen and to derive the truth values, the
following mechanisms in NARS were necessary.

1. Temporal induction: Given events that A1 is to the left, the
ˆleft operation, and G, then derive positive evidence for a
relation like<(<A1 –> [left]> &/ ˆleft) =/> G>

2. Goal deducation:Given for example, <(<A1 –> [left]>

&/ ˆleft) =/> G> and a precondition that A1 is to the
left, and the eventG!, then by deduction derive that theˆleft
operation is to be executed.

3. Motor babbling:The ability to execute operations functions as
themeans for exploration in the sense that it enables the system
to try out new things.
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FIGURE 5
Conditional discriminations. Dots illustrate the percent of correct in blocks of 12 trials. The solid line shows the mean NARS confidence value for
hypotheses.

4. Anticipation: To derive negative evidence to a hypothesis,
based on that the antedecent happened but the consequent did
not. For example, <(<A1 –> [sample]> &/ ˆright)

=/> G> can receive negative evidence based on anticipation.
5. Revision:To summarize the positive evidence and the negative

evidence for a statement.

9 Discussion and conclusion

The results of this study demonstrate the feasibility and
effectiveness of integrating principles from operant conditioning
with the Non-Axiomatic Reasoning System (NARS) to advance the
field of Artificial General Intelligence (AGI). This interdisciplinary
framework, referred to as Machine Psychology, offers a novel
approach to understanding and developing intelligent systems by
emphasizing adaptation, a core aspect of both biological and
artificial intelligence.

9.1 Summary of findings

The experiments conducted in this study aimed to evaluate
the ability of NARS, specifically the OpenNARS for Applications
(ONA) implementation, to perform operant conditioning
tasks. The three tasks—simple discrimination, changing
contingencies, and conditional discriminations—provided a
comprehensive assessment of the system’s learning and adaptation
capabilities.

In the simple discrimination task, NARS demonstrated rapid
learning, achieving 100% correct responses during the training
phase and maintaining this performance in the testing phase

without feedback. This indicates that NARS can effectively learn
and adapt based on positive reinforcement, a key aspect of operant
conditioning.

The changing contingencies task further highlighted the system’s
adaptability.When the contingencieswere reversedmidway through
the task, NARS was able to adjust its behavior accordingly, showing
a significant decrease in errors and an increase in correct responses
during the retraining phase.This flexibility is crucial forAGI systems
operating in dynamic environments where conditions can change
unpredictably.

The conditional discriminations task showcased NARS’s
ability to handle more complex learning scenarios. Despite
the increased difficulty, the system achieved high accuracy,
indicating that it can form and utilize more intricate
hypotheses based on conditional cues. This capability is
essential for developing AGI systems that require sophisticated
cognitive skills.

9.2 Implications for AGI research

The success of NARS in these operant conditioning tasks has
several important implications for AGI research. First, it validates
the use of learning psychology principles, particularly operant
conditioning, as a guiding framework for developing intelligent
systems. The results suggest that mechanisms enabling operant
conditioning are integral to the development of adaptive behaviors
and cognition in AGI systems.

Second, the experiments carried out as part of this study, can
be said to constitute key milestones of AGI research, as has been
suggested by us elsewhere (Johansson, 2020). Operant psychology
research provides examples of increasingly complex tasks, that can
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be used to test the abilities of an AGI system. The use of functional
learning psychology principles to guide AGI research also enable
metrics to be used to evaluate AGI systems, as demonstrated in
this paper.

Third, the study highlights the potential of NARS as a robust
model for AGI. Unlike traditional AI systems that rely on predefined
algorithms and large datasets, NARS operates effectively under
conditions of insufficient knowledge and resources.This adaptability
makes it well-suited for real-world applications where information
is often incomplete and environments are constantly changing.

Fourth, the integration of sensorimotor reasoning with operant
conditioning principles in ONA provides a scalable and flexible
framework forAGI development. By demonstrating aspects of natural
intelligence, such as continuous learning and goal-driven behavior,
ONA offers a practical approach to building intelligent systems that
can interact with and learn from their environments in real-time.

9.3 Future directions

The findings of this study open several avenues for future
research. One potential direction is to explore the integration
of additional cognitive and behavioral principles from functional
learning psychology into NARS. Future research can be guided by
operant theories of cognition, such as Relational Frame Theory, as
suggested by Johansson (2019).

Another important direction is to apply the Machine Psychology
framework to more complex and diverse tasks beyond the idealized
examplesprovided in thispaper.By testingNARSinvariousreal-world
scenarios, such as autonomous robotics, natural language processing,
andhuman-computerinteraction,researcherscanevaluatethesystem’s
generalizability and robustness across different domains.

Additionally, further refinement of the sensorimotor inference
and declarative inference components in ONA could lead to
improvements in the system’s performance. Enhancing the efficiency
of resource management, memory structures, and event-driven
control processes will be critical for scaling up the system to handle
more sophisticated tasks and larger datasets.

9.4 Conclusion

In conclusion, this study demonstrates that integrating operant
conditioning principles with NARS offers a promising pathway
for advancing AGI research. The Machine Psychology framework
provides a coherent and experimentally grounded approach to
studying and developing intelligent systems. By emphasizing
adaptation and learning from environmental interactions, this
interdisciplinary approach has the potential to significantly advance

the field of AGI and bring us closer to achieving human-level
artificial intelligence.
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