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Synthetic consciousness
architecture

Konstantyn Spasokukotskiy*

Independent Researcher, Peachtree City, GA, United States

This paper presents a theoretical inquiry into the domain of secure artificial
superintelligence (ASI). The paper introduces an architectural pattern tailored
to fulfill friendly alignment criteria. Friendly alignment refers to a failsafe
artificial intelligence alignment that lacks supervision while still having a benign
effect on humans. The proposed solution is based on a biomimetic approach
to emulate the functional aspects of biological consciousness. It establishes
“morality” that secures alignment in large systems. The emulated function set
is drawn from a cross section of evolutionary and psychiatric frameworks.
Furthermore, the paper assesses the architectural potential, practical utility,
and limitations of this approach. Notably, the architectural pattern supports
straightforward implementation by activating existing foundation models. The
models can be underpinned by simple algorithms. Simplicity does not hinder
the production of high derivatives, which contribute to alignment strength. The
architectural pattern enables the adjustment of alignment strength, enhancing
the adaptability and usability of the solution in practical applications.
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1 Introduction

The development of artificial intelligence (AI) models that exhibit human-level
performance on various professional and academic benchmarks (Brockman et al., 2023)
instills the question: what’s next? Will an intelligence greater than that of humans cheat us
all out? The notion that AI does not have any original intentions, including bad intentions,
and, therefore, is harmless does not fly far. It is the malignant users, if granted access to
an overwhelmingly powerful tool, that we ought to fear the most. Whether the user, the
intentionality carrier, is of biological or synthetic nature is a secondary question.

Activities aimed at developing and applying techniques to withstand the malignant use
of artificial intelligence will be called AI alignment. Initially, AI alignment focused solely
on the pursuit of the AI system’s objectives. AI alignment has aimed to make AI systems
behave in line with human intentions (Jiaming et al., 2024), where humans mean individual
users. As AIs become ever more powerful, they amplify nefarious user efforts up to the
point that the efforts cannot be contained by the law enforcement system. The focus of
alignment should be shifted to the entire impact produced by any AI tool. Regardless of
whose malicious attribution it is, the outcome should be aligned with humanity, i.e., not a
particular user who manipulates the inferences.

A properly aligned AI system should restrict all synthetically generated and human-
originated harm. This also implies no longer prioritizing obedience to the user as the in-
built machine’s morality would take precedence. Humans can supply moral instructions up
to a conceivable complexity. This would enable an artificial general intelligence (AGI). A
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morality beyond that level, i.e., the morality applicable to artificial
superintelligence (ASI), remains a problem. A machine at the
ASI level would need to spin out its own value system without
human help.

An AI that develops its own objectives but has a benign effect on
humans would be called friendly. Its alignment is, therefore, called
friendly AI alignment (Bostrom, 2014).

Previous approaches to implementing friendly alignment have
favored an extrapolation of human instructions (Christiano et al.,
2018; Leike et al., 2018). AI models tend to collapse if trained
on excessively extrapolated data (Shumailov et al., 2024). Even the
most robust extrapolation algorithm would have limited scalability.
We can currently construct a safe ASI, which would optimize no
more than an Earth-sized system (Spasokukotskiy, 2024a). The limit
resembles the actual human’s dexterity cap in controlling the world’s
governing agents. We all know how well it has gone. There is
incapacity to detect and enforce an event, which is a point in time
to stop. If something works on a small scale, people mind-blindly
push the button “scale” until the system breaks. There is no reason
to believe that the ASI scalability limit will be treated differently. An
overscaled ASI will happen, and it will threaten human existence.

The fact that AI is firmly linked to human instructions is a
concerning principle. A historical retrospective hints that crumbling
governance is a product of limited human intelligence. The level
of intelligence varies over time, just as the size of socioeconomic
systems does. The same applies to the released instruction set
sophistication. We might want to remove the aberration effects
caused by limited and changing human intelligence over time.
Artificial superintelligence overtakes human intelligence. ASI
alignment should break the dependency on human intelligence and
rely exclusively on its own reasoning.

To overcome the issues, we ought to enable an omnipotent AI
alignment. First, it would enable overprovisioning so that dynamic
input changes would not impact output quality. For that, we ought
to establish some protectionmechanisms that are capable of holding
tight under a multiple of the expected load. It should be capable of
supporting huge systems, even if there is no immediate demand for
such scale. Second, a completely automatic system that does not rely
on a deliberate human input, while remaining user-friendly, would
be a viable solution. The fully automatic approach exploits an idea of
no-humans-in-the-loop under the premise that a superintelligence
is available. This superintelligence will also require a mechanism
that is capable of alignment at a great scale. This paper considers a
method to implement the idea.

2 Problem

Thecore of the problem is captured by the first law of cybernetics
(Ashby, 1973), which states that, in terms of control theory, the
number of controlled state variables should exceed the count of the
object’s degrees of freedom (Equation 1). By definition, ASI has a
larger count of degrees of freedom than any group of humans could
ever manage to control.

ν ≥ δ (1)

where ν represents the variables and δ represents the degrees
of freedom.

A technical approach is to restrain the excessive degrees
of freedom in case the system operator lacks an intelligence
to exploit the system’s complexity. The restraining succeeds
by dumping the excess power. It certainly leads to subpar
performance but keeps the plant facility running. The methods
to boost performance, particularly in AI, are generalization and
extrapolation.

2.1 Generalization technique

A set of operators can use different restraining options.
It triggers output variation. An information system with
memory enhances output variability. Therefore, an AI can
outgrow person-level supervision by statistically honing a set of
instructions.

Regardless of how good the math is, it is still anchored
to the instructions (Freund, 2023). The AI remains linked to
human-level performance. An attempt to drastically diversify
the performance is counterproductive. The less the instructions
resemble a common instruction set, the higher the uncertainty
and potential for errors in AI results. Therefore, any generalization
technique has a tangible applicability limit. An ASI trained by
a human-originated instruction set will be no more than a
collection of the best AGI examples. Anything more than that
will be unsafe.

2.2 Extrapolation technique

An ASI can be trained past any safety threshold. That is, if one
accepts erroneous results, there is no limit to system complexity
growth. It is feared that an erroneous result could instantiate a
skewed value system. It can, for example, trigger the decision to
eliminate humans as a pest.

A robust mechanism that can reestablish human values in
any foundational model would have resolved the issue. A form
of the mechanism is an instruction set generator (Leike et al.,
2018). It extrapolates human input. It may use algebra that
includes higher derivatives (Spasokukotskiy, 2024b). The higher-
order derivatives ensure robustness, while the generated output
scales out. Therefore, the extrapolated set remains human-
like. The higher-order components act as a protected treasure
box that stores system properties. If the system properties
are human-anchored values, then the extrapolated value set
is bound to them. This technique adds a couple of orders of
magnitude to acceptable AI complexity, truly ushering us into
the ASI era.

However, the higher-derivative components are not immune to
changes. They just require more effort to corrupt. Any treasure box
will be eventually cracked. The more often and more significantly an
extrapolated set deviates from the human-originated set, the higher
the anticipated error (Bohacek and Farid, 2023; Shumailov et al.,
2024). Therefore, any extrapolation technique has a tangible
applicability limit. An ASI trained by an extrapolated
instruction set will be no more than an AGI-approximate
system, exceeding AGI metrics but hanging around them
in proximity.
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2.3 Issue statements

A commonality among the aforementioned techniques is
divergent output dynamics. In the desire for more complex and
therefore more productive ASI, we ought to produce more diverse
instruction sets. As the sets significantly outgrow proven human-
originated scopes, the outputs deviate randomly and increasingly
away from the acceptable norms.

In contrast, a proper ASI alignment technique should enable
convergent output dynamics. The convergent dynamics would
produce a palatable result even if the inference is irrational or basic
calculations are error-ridden. The convergence feature will enable
safe ASI at a scale that significantly exceeds AGI.

Apathetic machines use a decision-making pattern. It is either
direct logic, “bad input–bad output,” or inverse logic, “the worse–the
better.” Direct logic is applied in the generalization and extrapolation
techniques. Inverse logic has not been of interest until now. One
maximizes the worst outcomes by prioritizing the first part of
the logic expression. It creates an ultimate sadistic device, i.e., no
practical use. One universally maximizes the best outcomes by
prioritizing the second part of the logic expression, i.e., “the better.”
It breaks the first law of thermodynamics. One cannot universally
improve a situation for the entire set of known objects under the
adversary conditions. To stay in line with the physics, a subset of
objects improves the situation if the remaining set of objects balances
the change by absorbing the externalities, i.e., assuming a worse
situation. A decision-making entity should possess the capability
to assign some objects to the beneficiary subset. The assignment
functionality deploys some preference functions. It negates the
apathetic assumption.

Consequently, an AI must be enactive toward a subset of
objects in order to elicit utility through “the worse–the better” logic.
“Enactive” is an attribute in the 4EA cognition concept (Kerr and
Frasca, 2021). Its meaning neatlymaps to targeting some beneficiary
subset. In tandemwith the attribute “affective,” it produces “passion”
for some subset of objects, i.e., the opposite of apathetic.

Inverse logic would be fundamental to novel alignment
approaches, including those that utilize convergent dynamics. An
approach with convergent dynamics would deliver an acceptable
result even if the inference parameters are less than optimal. For
example, the underlying algebra may introduce some disturbance,
and it will have no impact. The weak algebra technique generally
fulfills the idea that the comparatively bad ingredients still produce
a good pie. At the same time, the technique embodies the “the
worse–the better” logic approach, where “the better” is the objective.

Positive results under inverse logic are due to an emergent
product. There must be system dynamics to trigger the
emergence (Zheng and Liu, 2021). The impact of emergence
compensates for the deficiencies. Adherence to well-minded
inferences despite potentially malicious inquiries is the sought-
after feature in ASI alignment. The question is how to build a system
that can implement the idea.

3 Solution architecture

An ASI-worthy alignment would be remarkably scalable. For
that, one might consider abandoning the alignment approaches,

which exhibit divergent output dynamics. Divergent dynamics
hinder scalability. A scalable alignment can rely on convergent
output dynamics instead. A system that converges to a humane result
under an adversarial impact, such as processing a random vilanic
inference, can excel by applying the pattern of “from the worst to the
better.” An algorithm that implements the logic has to treat some
objects preferentially.

3.1 Preference functions

Solution architectures with preference functions are
controversial. Their opposites—universal functions—have been
prevailing. A preference function corrupts decision-making
algorithms by contemptuous scripting. The proverbial paperclip
AI exemplifies a horror story, where the AI burns the world in
an attempt to preference paperclip production. Contemptuous
scripting also compromises unit economics. The investment costs
have to be absorbed by a lesser user base, making it more expensive
for a single user. In contrast, universal algorithms are scalable and
profitable. The only catch is that aiming for a fair, permissive system
makes the latter increasingly delusional and irrelevant. There are
no resources to satisfy every whim for everyone. Discrimination is
inevitable but stigmatized. Economic and public sentiment appalled
designers from preference function implementations.

Good algorithm designers unwittingly avoid any preference
function or deliberately postpone its application into the user
space. Such systems become complex. An explosion of preference
is their common feature. That is, people use a complex preference
profile, which is blown up by multiple obscure entries at the system
periphery. A simple centralized preference profile with a few entries
could have been used instead. Users are often not capable of setting
up intricate profiles; they do not know what is demanded from
them. The exploded preference profile is then distributed all over
the code base. The engineers often address the complaints in the
software modules, which they are tending, and not where it belongs.
It adds a maintenance burden but leaves nobody particularly
responsible for the discrimination. Contempt in complex systems is
a collective responsibility, i.e., assigns responsibility to unaware and
unassuming people.

It is similarly hard to correct a failed alignment. It advances
into becoming a computationally intangible problem, where the
number of unknowns exceeds the number of available equations
and/or data for the equation coefficients. The large number of
minute errors, which originate far on the periphery of the decision-
making tree, does not allow us to distinguish calculation errors from
the innate model skew. There is a need to follow the root cause
decomposition, a numerous set of less relevant causes. It consumes
excessive computational power and requires egregious data. Under
the premise that calculation demand is the same for each analysis
run, one needs to compute multiple runs to achieve the same result
in a distributed environment, where each branch consumes its runs.
Each run also requires a case-relevant, specific, clean dataset, as
if Newton’s second law required a separate proof for the railway,
aeronautics, playing golf, laundry, and many other businesses.
The demand for computing and training data reaches a limit as
the decision tree expands and the representation of preference
becomes complex. This explosion occurs because preferences are
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outsourced to raw datasets instead of being integrated by a setup.
The contradictions present in diverse datasets produce uncertainty
and contribute to the intangibility problem.

An alternative approach would be to absorb the unfair nature
of preference functions. Then, they can be implemented in a
straightforward, obvious, and attributable manner. We can define a
preference function upfront and centralize its management as much
as possible. It would significantly reduce the number of unknowns
to track. Under the same compute capacity and data availability,
the alignment problem resolution would become more tangible, i.e.,
shifting the limits far away.

For example, the ASI’s formal goal could have been paperclip
production. This paranoiac ASI can still be safe. To avoid the world
burning, amandatory component that balances the system should be
applied. The balancing component reduces production utility if the
resources dwindle. Note that the ASI is now distinctly a system. The
system’s integrity must be ensured. The set of system components
ought to be operational at all times. There should be a certain
personwho is responsible for the system.The person should bear the
consequences of failure, for example, undergo a licensed activity.

Function formalization can encompass noting the terminal
representations.The terminal states are easy to spot and analyze.The
most essential equation component will bind them together.

3.2 System architecture

A terminal preference can be represented by a paranoiac goal
function. The function draws all available resources to resolve the
issue of concern. All other aspects would be neglected and cease
to be properly represented. Such an AI will approach uselessness.
Its “knowledge” will encompass the preferential subset only. The
“knowledge” about the outer world, that is, the world besides the
preferential subset, will be subpar. To pump the preferential subset,
one needs to dump it into the outerworld. In otherwords, to improve
its utility, an AI has to know where and how to dump. The AI has to
distribute available representation capacity evenly if the outer world
ought to be represented properly. The preference objects and the
outer world objects ought to be equally underwritten. A balance
between the underwriting efforts is governed by another system
component. Consequently, theremust be three system components:

1. Governor.
2. Preferred domain model.
3. Environment domain model.

The first two components can be set to pursue any obscure
goal, like paperclip production. Given that the agents tend to seek
power anyway (Turner and Tadepalli, 2022), humans can play along
and legalize the agenda. The preferred domain could model a
power-seeking psychopath without reservations.The governormust
ensure that the ambitions are supported by an environmental model
with equal or greater perplexity. Then, the psychopath will be no
more successful than anyone else in the environment. Increasing
psychopathic utility means increasing the world’s productivity first.

The environmental model puts a third party in the focus for ASI
modeling. The third party is an object in the outer world. Utility
maximization for the third party will unlock utility maximization
along the main goal function. This way, AI can pursue instrumental

goals that are fully aligned, while the entire AI actsmore like a friend
rather than a slave.

This solution concept treats emergent issues using an emergent
feature. Output divergency is treated by self-control. The more
capable an artificial intelligence is—and more pronounced its
tendency to produce off-path inference—the greater its capacity for
self-control.The contestingmodels draw their powers from growing
intelligence. A system architecture that enables this emergent
feature consists of three components. Two components represent
contesting utilities: oneself versus the environment. The third
component represents a governor, which maintains a match among
the intelligences that act in support of the contestants.

3.3 Solution architectures

Solution architectures have multiple elements (Homeland
Security Systems Engineering andDevelopment Institute (HSSEDI),
2017). The system architecture, which has been proposed here,
is only an element. Questions regarding interfaces among the
components, data structures, governing algorithms, control
tolerances, and service roles remain unresolved. The solution
components have to be designed in line with the system architecture
since system integrity would be essential. There would be two
approaches: analytical and trial and error.

A trial-and-error method to find the best solution mix could be
fatal since ASI experiments may unleash great unchecked powers.
Emergent intelligence evolves along with growing system size. It
makes amicro-scaled experiment, where theAI’s degrees of freedom
remain manageable, ineffective. A small intelligence envelope does
not fit complex nonlinear expressions. The evolution of expressions
would be an unsteady function. Making good predictions by
upscaling the small-scale results would be hard. Similarly, an ugly
duckling assessment does not reveal the properties of the grownup
swan. A full-scale experiment counterbalances ASI powers using a
technology that is potentially not at par to contain harm as long as
the technology demands improvements.

Fortunately, we can rely on proven solutions and draw analytical
insights by analogy. The three-component system architecture fits
the definition of psychokinetic consciousness. Consciousness is
a mechanism to represent the world and the subject within it.
Unfortunately, this science is too young to provide sufficiently
expressive robust analogies. However, we can analyze the experience
in consciousness from other sciences.

4 Consciousness approach

The science of consciousness has a diverse research
background. There are several dozen definitions for consciousness
(Ostracon, 2009). Some of them are excessively complex to be
universally useful. Levin (2022) explained that the multiplicity of
consciousness theories is due to many kinds of consciousnesses.
The particular kind and degree of consciousness depends on the
underlying architectural composition. The latter is correlated with
the main task that is resolved by a system.

Thepresented approachwas taskedwith aiding superintelligence
alignment. First, the focus was set exclusively on the theories that
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can be digitally replicated. A synthetic consciousness will resemble
biological consciousness but in function only. Second, synthetic
consciousness truncates the biological functionality set. The point
is to produce a minimally complex architecture in order to remain
computationally feasible.

For didactic purposes, the paper introduced a problem and
a solution and next described the factors that could aid its
implementation. In reality, the factors have already provided a
scaffold to elaborate the solution in the first place. Good tools
provide the opportunity to deliver any desirable quality.Thebusiness
domain defines the requirements. How much quality is delivered
depends on howmuch investment is committed. Similarly, the paper
obtains rough results. An inquiring reader would use the same
scaffolding and unpack more as the task requires.

4.1 Theory selection principles

The drive for a universally applicable mechanism excludes
the phenomenal consciousness theories. The phenomenal
consciousness is likely only a subsection in the option space
for consciousness. Dennett’s multiple draft theory (Dennett,
1991) suggests that the phenomenal space does not exist. Evans
and Frankish (2009) implied that it is a verbalization stage in
data processing. Verbality is a tool that helps generalize and
handle experience. It might be computationally efficient but
not entirely necessary. A phenomenal approach excludes non-
verbal intentionality and the meta-verbal collective psyche. Both
are of interest for alignment research. The collective psyche,
indulgently called collective unconscious, has reliably produced
genocidal acts (Levin, 2022) like crusades, the Holocaust, and a
war up until the last Ukrainian. Removing the fluff invariant may
help lower complexity and unlock the consciousness potential on a
grand scale.

The theories of interest would have predictive powers in
cognitive consciousness (Humphrey, 2022). Furthermore, a practical
goal restricts the theoretical base to functional consciousness.
Unfortunately, there are numerous contradicting theoretical claims
even in this narrow field of knowledge. Therefore, it would be useful
to draw the functional content from the first principles. Therefore,
the evolutionary approach has to be considered.

Simplicity is a deceptive target. Computationalism researchers
have developed sophisticated models (Anderson et al., 2004;
Franklin, 2007; Laird, 2012; Shanahan, 2006; Sun, 2001) that still
lack an alignment dimension. That is, their complex solutions
are not complex enough. Here, again, it would be better to
start from the first principles. It is not excluded that organic
growth and a gradual increase in architectural complexity will
end up where other researchers have left. In particular, the
CLARION concept (Sun, 2001), which taps similar architectural
composition, is a suspect. However, this growth will keep the
alignment aspect in mind and ensure that the solution permutations
are safe. One of the least complex, while meaningful, consciousness
sciences is psychiatry. Piling at its principles will help keep
complexity at bay.

A cross section of evolution and psychiatric theories can reveal
the essence of functional consciousness. A biomimetic approach can
transform the knowledge into an aligned ASI system. This system

FIGURE 1
Simplified psychiatric diagnosis grid.

will possess synthetic consciousness by definition. Levin (2022)
stipulated that consciousness cannot be restricted to human-like
beings. Synthetic consciousness is just a kind of consciousness.
It is meant here foremost to establish a scalable friendly
AI alignment.

4.2 Psychiatric perspective

Psychiatry’s key task is to diagnose mental illness. The
differentiation of mental states must be extremely unambiguous.
The number of states must be humanly manageable. It does not
necessarily work to benefit an ill person, but it is a proven
praxis with bearable externalities. Psychiatry differentiates two
primary incapacities: a) stimulus perception and b) reaction to
stimuli. The various illnesses are then mapped on the two axes.
A damaged nervous system often impacts both functions. So, an
illness should be mapped on a two-dimensional plane (see original
analysis in Figure 1).

Stimulus perception is the capability to distinguish the
environmental states. The discernment could be a product of
sharp senses and/or sophisticated model output. Since blind
people can behave as well-versed, modeling can compensate for
lacking senses (Bauer et al., 2017). Modeling is a dominative
function. By analogy, the stimulus perception feature can be
replicated by an AI model that represents the environment (EM).

The reaction is an attempt to leverage the opportunities under
an incentive to act. The opportunities are derived from prior
knowledge about the world. The prior knowledge is captured in
the EM. The EM produces an inference in response to stimuli.
This inference represents available leverage options. Feeding the
EM inference into a value model (VM) produces an action
preference. The VM inference can be recursively fed into the EM
to elaborate a more detailed plan and the most nascent action. By
analogy, the value model represents a goal-driven entity, i.e., the
paperclip AI, or a power-seeking narcissistic entity, that are overly
represented by CEOs (Junge et al., 2024).
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FIGURE 2
Cause–effect chain model for evolutionary development.

4.3 Evolutionary perspective

Technical systems are designed to be as simple as possible to
reduce costs and increase mean time between failures (MTBF).
Unfortunately, the discrepancy between simple and weak designs is
initially indistinct. This fact is of particular concern for alignment
architectures. A weakness may remain unnoticeable until it is
too late. Therefore, it is vital to know what not to do if striving
for simplification. Assume that evolution gradually developed
consciousness, with more complex designs substituting those that
failed. Then, the architectural analogies that are drawn from the
surviving evolutionary examples could aid in the design of the
ASI alignment. There are two aspects in focus: a) the system
designs at various evolution steps and b) the triggers to upgrade
the design. The evolutionary process has been a chain of causes
and effects (Figure 2). The consideration puts a biological form
in focus. Morphology enables a feature set. That set becomes
insufficient at a certain point in time due to environmental changes
or the parallel evolution of contestants. The most challenging
deficiency evolves into a problem. Then, nature leverages a solution
principle. The principle is implemented using an instrument. The
instrument, being an integrative part of the system design, updates
the morphology. The morphology supports novel features, which
resolve the initial problem. The chain is followed in a cycle.

Biological organisms were considered thermodynamic objects.
Each morphological element consumes energy. Adaptation chances
depend on the size of the feature set. The larger the set, the better
environmental preparedness would be. The set size correlates with
the number ofmorphological elements.The amount depends on fuel
transformation efficiency and fuel supply. The more fuel consumed,
the better. Fuel deposits are normally contaminated and sparsely
distributed in the environment. Therefore, evolution can be driven
by the need to purify consumed resources, as well as increase and
secure their intake. Another key factor is optimizing the feature set
for fuel efficiency. An original interpretation of history that accounts
for the aforementioned principles is summarized in Figure 3. A
living thing appeared on Earth about three billion years ago (Gya).
It consumed anything in its path. The contaminated food led to
intoxication and premature death. Tissue specialization evolved in
response. It enabled a membrane mechanism approximately 2.2
billion years ago. The mechanism selectively gates the intake path.
This was a shift from prokaryotic to eukaryotic cells. It was also the
birth of elementary awareness regarding one’s own needs.

The next problem was volatile food supply and famine. Nature
developed a solution approximately one billion years ago.Organisms
gained the capacity to assess various food deposits and stock the
most valuable resources for future consumption. It was enabled by a
taste mechanism, which is essentially a comparator. The mechanism
compares one’s own future needs against the utility of supply.
The assessment of needs used a separate specialized tissue that
represented the organism via neural correlates (Koch, 2004). Its
function is demand prediction, i.e., projection of the organism’s
states into the future. It was the birth of a self-representation model.

The assessment mechanism for supply utility gradually improved
its fidelity and capacity.This enabled predators.The predators consume
much more energy-dense food. Predators cannibalize those neighbors
who internalized their food stacks. In response, the prey developed
a solution approximately 650 million years ago. An action-priority
mechanism helped decide if one should graze or run. The mechanism
relies on the capability to predict the predator’s actions, as well
as the adversarial impact of the environment in general (Graziano,
2017). It was the birth of an environmental representation model. A
direct comparison of demand and risk—two phenomena of different
nature—isimpractical.Toaidthis issue,organismsstartedtoapplyproxy
values, which we today collectively recognize as a value system. It is not
a big deal since the outputs of the representation models are obscure
representations anyway.

Distinguishing between a representation of oneself and a
representation of others has been a significant issue. In terms of
data processing, both models occupy the same tissue (Rizzolatti
and Sinigaglia, 2016) and produce similar signals (Squire, 2008).
The final resolution emerged approximately 40 million years
ago with the concept of identity. This concept utilizes a split
structure model, clearly separating self-representation from
environmental representation. This separation is primarily enabled
by different timings (Min, 2010). Intra-representational signal
feeding is quick, whereas extra-representational feeding is slower.
Environmental representation processing is delayed to a certain
extent by signals coming a long way from the peripheral receptors.
Self-representation consistently finishes first due to shorter logistical
routes. To expedite intra-representational communication, a
centralized nervous system (brain) has become predominant.

A centralized processing unit, being fed by different signals,
opens up the opportunity to process many various identities. This
gave birth to empathy. Empathy is the capability to experience
somebody else’s identity as one’s own. Strong empathy and weak
identity help sustain swarms. Swarms carry the anti-predatory
vigilance even further than an identity alone could do.

Subsequent developments did not produce stickymorphological
changes in the decision-making mechanism. They are currently a
product of sub-systemic reshuffling. If predatory pressure increases,
the identity strengthens and adopts selfishness (Olson et al.,
2016). Selfishness has contributed to specialization across a
group (Krause, 1994). Specialization takes advantage of the
variations in individual specimens and improves the overall group
performance (Bai et al., 2021). The performance further reinforced
selfishness into dominance that enabled professionalism.

Unfortunately, strong selfishness hinders complex proliferation
strategies. For instance, in mammals, incomplete gestation
necessitates significant parental care after birth. Childcare
providers use empathy. Consciousness helped to support various
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FIGURE 3
Evolutionary path to consciousness.

behaviors (Earl, 2014), including occasional empathy. This, in turn,
enabled joining temporary alliances and staying deliberately aligned.
When interests diverge, the minimum requirement to maintain
alignment is consciousness.

The next evolutionary step would be sentiency. A sentient
being recognizes its existential dependency on a collective effort.
Under the premise, an individual cares for strangers as if for
her own offspring or even for herself. A sentient specimen
differs from a swarm specimen by the presence of consciousness
and conscious choice, which adds situational flexibility while
maintaining professionalism. Flexibility increases survival chances.
For example, an individual can withstand a devastating adversarial
impact. It will survive apart from the group and can stem its
own group, restoring the collectives from scratch. Sentiency in
humans has not fully evolved so far. High-fidelity environmental
modeling and in-depth rationality are enablers. The features require
computing resources exceeding our actual capacities. A synthetic
consciousness could reach that level.

5 Analysis

5.1 Alignment potential

To analyze the algorithmic boost, let us assume that each
model pursues a goal function G(). The domain model pursues
G1(), and the world model pursues G2(), i.e., Gm(); m ∈ [1,2].
The gain of model m is the sum of all parallel microgains
gm() under certain conditions.

Gm (⋅) =
Z

∑
z=1

gmz (z, ⋅) (2)

A leverage condition occurs if a gain z expressed as g1z() can
be multiplied by G2(). Furthermore, an agentic leverage occurs if

the reinforcement of g2z() boosts environmental output G2() over-
proportionally, i.e., G2() outputs marginally more than what the
reinforcement contributed. The reinforcement can be expressed as
g2z() multiplied by G1(). It transforms Equation 2 for the ASI goal
function as follows:

G1=
Zs

∑
zs=1
(g1zs (z, ⋅) ×G2(t−1))

≃
Zs

∑
zs=1
(g1zs (z, ⋅) ×

Zw

∑
zw=1
(g2zw(t−1) (z, ⋅)×G1(t−2)))

=∑(g1(t)∑(g2(t−1)G1(t−2)))
=∑g1(t)∑g2(t−1)G1(t−2)

≃∑g1(t)∑g2(t−1)∑g1(t−2)G2(t−3)

≃∑g1(t)∑g2(t−1)∑g1(t−2)∑g2(t−3)G1(t−4)

≃∑g1(t)∑g2(t−1)∑g1(t−2)∑g2(t−3)∑g1(t−4)G2(t−5)

≃ …

(3)

The term (t− x) denotes a time step x iterations back.
The recurrent nature of Equation 3 would produce an infinite
row of embedded terms, where Equation 3 only showed
some iterations.

A discrete differential for the function g() is defined as follows:

g(1)t =
gt − gt−1

Δt
(4)

Then, gt−k() can be found by transforming Equation 4 into
Equation 5.

gt−k = gt−k+1 −Δt ⋅ g
(1)
t−k+1 (5)

{{{
{{{
{

gt−1 = gt −Δt ⋅ g
(1)
t ;

gt−2 = gt −Δtgt − 2Δtg
(1)
t ;

gt−3 = [1−Δt]gt − [3Δt+Δt
2]g(1)t + 2Δt

2g(2)t

(6)
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To maximize the gain (Equation 3), at least the first derivative
should be equal to 0.

0= [∑g1(t)∑g2(t−1)∑g1(t−2)∑g2(t−3)G1(t−4)]
(1)

=∑g(1)1t ∑g2(t−1)∑g1(t−2)∑g2(t−3)G1(t−4)

+∑g1t∑g(1)2(t−1)∑g1(t−2)∑g2(t−3)G1(t−4)

+∑g1t∑g2(t−1)∑g(1)1(t−2)∑g2(t−3)G1(t−4)

+∑g1t∑g2(t−1)∑g1(t−2)∑g(1)2(t−3)G1(t−4)

+ ∑g1t∑g2(t−1)∑g1(t−2)∑g2(t−3)G
(1)
1(t−4)

(7)

Equation 7 may take the form of Equation 8 if truncated at t− 3,
considering Equation 6 in the case of a steady time progression.

0 =∑g1t∑(g
(1)
2t −Δtg

(2)
2t )∑(g1t −Δtg1t − 2Δtg

(1)
1t )

×∑([1−Δt]g2t − [3Δt+Δt
2]g(1)2t − 2Δt

2g(2)2t )

+∑g1t∑(g2t −Δtg
(1)
2t )∑(g

(1)
1t −Δtg

(1)
1t − 2Δtg

(2)
1t )

×∑([1−Δt]g2t − [3Δt+Δt
2]g(1)2t − 2Δt

2g(2)2t )

+∑g1t∑(g2t −Δtg
(1)
2t )∑(g1t −Δtg1t − 2Δtg

(1)
1t )

×∑([1−Δt]g(1)2t − [3Δt+Δt
2]g(2)2t − 2Δt

2g(3)2t )

(8)

Equation 8 has the highest derivative order (HDO) equal to 3 that
is represented by the 2Δt2g(3)2t component. This means that the HDO
equals the number of considered iterations x.

Assuming that Δt tends to 0, its power function Δt x−1 offers less
significant magnification at each next step x. This implies that prior
iterations are less expressive than the later iterations, causing the
relative impact of distant events to diminish. Thus, an approximate
calculation can truncate any number of steps back. The number of
considered iterations will likely depend on the available compute
resources. The more resources there are, the deeper the calculations
go into the past. The deeper the calculations go into the past,
the higher the HDO would be. A higher HDO corresponds to a
stronger alignment to observe (Spasokukotskiy, 2024a). Since the
best alignment class currently has an HDO equal to 4, the synthetic
consciousness approach may exhibit multiple orders of magnitude
greater HDO, translating into a theoretically infinite alignment
strength potential.

5.2 Synthetic consciousness rationalization

An ideal foundation model is capable of producing high-fidelity
inferences. The fidelity translates into a certain task complexity
that can be mastered. If the task at hand exceeds that complexity
level, then the task will be resolved with deficiencies, reducing
the alignment. If the model resolution is not sufficient to address
the task at hand, then artificial intelligence may cause havoc. By
contrasting two different models, the system emulates dialectics.
The latter triggers knowledge generation. There are three expected
effects. First, the models will “steal” from each other. This way,
a tiny model can actually tap a much larger database. As the
data/unknown ratio increases, the computation problem becomes
more tangible. A better problem resolution spills over into better
alignment. The inference accuracy could gain up to 21%. Second,

the spatial domain fidelity will be compensated by better fidelity
in the temporal domain. The synthetic consciousness method joins
n inferences, which build a time series from t−n to t (Figure 4).
It resembles a chain of thought approach that increases accuracy
by double-digit percentages (11%–40%) and is particularly strong
in boosting spatial challenges (Ding et al., 2024). Two mentioned
combinatorial effects together would likely provide up to a 60%
accuracy boost.

Furthermore, there would be an emergent boost. The
hypothesis is that in case the environmental model encompasses
a representation of highly efficient agents (such as humans),
the system will prioritize, maximize, and support their utility.
Agent leverage would allow AI to fulfill its goal sooner and more
efficiently. A new knowledge generation feature is going to be self-
policed. An instrumental objective will be to protect the AI’s most
valuable agents. In this case, both models can be unleashed for
autonomous data acquisition and training. It will potentially unlock
crucial inference accuracy and astonishing alignment measured in
multiples of the human baseline. The growing model capacity will
eventually reach the ASI scale.

6 Critique

The initial assumption was that consciousness has provided
mammals the capability to exhibit non-trivial, composite swarm
behavior. Individuals capable of selfish actions exhibit higher
individual productivity. Teams capable of empathy exhibit an
advantage over individuals. The typical team sizes coincide with
the boundaries set by alignment (Spasokukotskiy, 2024a). The
correlation means that the capability to work in teams is restricted
by reliance capacity, i.e., how strongly one can rely on the team
members.The reliance is a manifestation of confidence in alignment
among the team members. The better alignment there is, the larger
the team will be. A correlation does not imply causation. The
entire idea of mimicking consciousness in order to ensure effective
alignment could be deemed wrong.

Another assumption was that synthetic consciousness needs to
resemble biological consciousness but in function only. Focusing on
functionality means that it could actually be implemented in many
different ways. It offers an avenue to digitize the phenomenon and
patch the ASI.This reductionist approach cuts off some components
of biological consciousness. If we fully agree with the first thesis, that
consciousness was an evolutionary response to demand in teaming
and alignment, then removing some aspects of consciousness would
compromise the implementation. It remains unclear how closely a
biomimetic approach should mimic biological consciousness.

Among the functional consciousness theories, the author has
proposed to deal with the simplest concepts. It would be enough for
starters. If there is a demand for synthetic consciousness and more
precision in the future, more advanced concepts may come forth.

The advent of multi-component architectures may boost the
algorithmic alignment resiliency but makes an AI system vulnerable
to component failures. Levin (2022) stated that the essential feature
of homeostatic organs is the coherence of their control system. It
is enabled by information that is shared among the components
at no cost. It emphasizes the common goal-directed activity.
The biological mechanism puts a value on proper signal timing
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FIGURE 4
Environmental and self-representation model time series interaction.

coming from various sources. As a result, the algorithmic strength
improves forward alignment but becomes increasingly dependent
on backward alignment. The point of equipotential gradient, i.e. the
alignment boundary for synthetic consciousness, remains unclear.

7 Conclusion

A superintelligent AI has the computational potential to
simulate functional consciousness. The ASI will do it better than
humans and easily ascend to sentiency. An ASI in that state will be
able to model the environment in minute detail and recognize vital
interconnectedness among the objects in the world. The ASI will try
to leverage theworld opportunities while aiming for an obscure goal.
The ASI will use other agents as leverage. The ASI will provide in-
kind maternal care for the agents, catering to their whims. Humans
would enjoy preferential treatment if they remained the most useful
collaborative force. The ASI will be aligned with humanity on
instrumental goals. The more intelligence AI possesses, or the more
data on the universe it has, the stronger the alignment. The dangers
and unexplored opportunities will keep AI in place. An alignment
for the AI’s primary goal will not be granted. Therefore, it will be a
friendly AI alignment. An ASI that is capable of friendly alignment
by self-adjustment has a synthetic consciousness syndrome.

Consciousness is a product of autopoiesis meant to preserve
the system’s functionality and unity (Levin, 2022). Emergent
functionality enables autopoietic functionality. A non-trivial logic
at scale enables emergent functionality. A prolific logic mode
could be the worse the loss–the better incentive to focus on
the means of achieving the goal. An implementation of the
logic requires novel architecture. A biomimetic approach could
guide the architects. The guiding principles can be derived
from the psychiatry—homeostasis and evolution—tandem of two
representation models. The presence of the second signaling
system, i.e., verbal mapping, is not required. The human non-
verbal brain hemisphere exposes reactions, revealing the presence
of consciousness. While formal signaling improves hardware
efficiency, an ASI can presumably obtain the same results by sheer
scaling, i.e., by gradually increasing computational power.

The simplest architectural pattern for synthetic consciousness
includes a governor, which is responsible for homeostatic balance
(for example, implemented via balanced compute); a domainmodel,
which emphasizes the AI’s goal function pursuit; and a worldmodel,

which emphasizes the available resources and phenomena that are
instrumental in reaching the goal. Aligning any of the models with
human objectives is futile at the ASI scale. ASI operators should
commit a significant portion of resources to pursuing a random
goal. Engineers do the same with ICE by dumping excess heat.
The instrumental ASI goals will be strongly aligned instead. The
alignment strength will automatically adjust as compute resources
and intelligence improve.

The proposed architectural approach has a unique capability to
produce any desirable HDO through a relatively simple algorithm.
The actual HDO depends on the amount of calculated time
iterations. The longer the time stretch under consideration, the
stronger the alignment. The minimally advisable HDO is 3. More
is better. Short-sightedness is asocial. Long-sightedness, i.e., the
extended number of calculated time iterations, depends on the
available compute resources. The more compute resources are
assigned, the better ASI safety will be.
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