
TYPE Original Research
PUBLISHED 15 January 2025
DOI 10.3389/frobt.2024.1435197

OPEN ACCESS

EDITED BY

Rui Pimentel de Figueiredo,
Aalborg University, Denmark

REVIEWED BY

Silvio P. Sabatini,
University of Genoa, Italy
Dimitrije Marković,
Technical University Dresden, Germany

*CORRESPONDENCE

Thomas Barbier,
thomas.barbier@uca.fr

RECEIVED 19 May 2024
ACCEPTED 14 October 2024
PUBLISHED 15 January 2025

CITATION

Barbier T, Teulière C and Triesch J (2025) A
spiking neural network for active efficient
coding.
Front. Robot. AI 11:1435197.
doi: 10.3389/frobt.2024.1435197

COPYRIGHT

© 2025 Barbier, Teulière and Triesch. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

A spiking neural network for
active efficient coding
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Biological vision systems simultaneously learn to efficiently encode their visual
inputs and to control the movements of their eyes based on the visual input they
sample. This autonomous joint learning of visual representations and actions
has previously been modeled in the Active Efficient Coding (AEC) framework
and implemented using traditional frame-based cameras. However, modern
event-based cameras are inspired by the retina and offer advantages in terms
of acquisition rate, dynamic range, and power consumption. Here, we propose
a first AEC system that is fully implemented as a Spiking Neural Network (SNN)
driven by inputs from an event-based camera. This input is efficiently encoded
by a two-layer SNN, which in turn feeds into a spiking reinforcement learner
that learns motor commands to maximize an intrinsic reward signal. This reward
signal is computed directly from the activity levels of the first two layers. We test
our approach on two different behaviors: visual tracking of a translating target
and stabilizing the orientation of a rotating target. To the best of our knowledge,
our work represents the first ever fully spiking AEC model.

KEYWORDS

active efficient coding, spiking neural network, event-based cameras, unsupervised
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1 Introduction

For humans and other mammals, learning to see is an active process involving the
development of efficient neural representations and accurate eye movements. The Active
Efficient Coding (AEC) framework proposes that both aspects are learned jointly to improve
the overall coding efficiency of the visual system. This process is thought to occur through
a self-calibrating feedback loop where sensory representations continually adapt to the
statistics of visual signals sampled by eye movements, while eye movements adapt to
enhance the efficient encoding of visual input.

Various AEC models have been proposed to describe the self-calibration of different
aspects of vision, such as active stereo vision (Zhao et al., 2012; Lonini et al., 2013;
Zhang et al., 2014; Klimmasch et al., 2021), active motion vision (Teulière et al., 2015),
accommodation (Eckmann et al., 2020), and torsional eye movements (Zhu et al., 2022), as
well as combinations thereof (Lelais et al., 2019). Notably, AEC has also been extended to
the auditory domain (Wijesinghe et al., 2021).

However, all these studies have utilized network architectures with continuous
activation model neurons. To date, no AEC model has been developed based on Spiking
Neural Networks (SNNs). Such a model would be of great interest due to the increased
biological plausibility of SNNs and their potential for energy efficiency, especially when
sparsity can be exploited in hardware (Christensen et al., 2022; Dampfhoffer et al., 2023).
Furthermore, SNNs are naturally suited for processing visual inputs from event-based
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cameras. These cameras, inspired by the mammalian retina, output
a continuous stream of discrete events rather than periodically
sampled image frames, offering advantages like low data rates, low
latency, and high dynamic range (Gallego et al., 2022).

In this study, we introduce the first fully spiking AEC model. An
event-based camera provides input to the model, which comprises
a two-layer efficient coding network that learns to represent visual
inputs with a minimal number of spikes. A spiking reinforcement
learner is trained to control eye movements, aiding in the efficient
encoding of visual input. This learner utilizes an intrinsic reward
signal generated by the efficient coding network. Consequently, the
system learns both neural representations and visual behavior in a
fully self-calibratingmanner, without requiring external supervision
or an extrinsically provided reward signal.

We demonstrate our approach with two visual behaviors:
tracking a translating target in two dimensions through pursuit
movements of a single camera, and stabilizing the orientation of a
rotating target, a problem relevant, for instance, to stabilizing the
horizon line during flight. The presented tasks are admittedly quite
simple, but they serve as a minimal demonstration of intrinsically
motivated reinforcement learning in spiking networks. Better results
could be achieved with a carefully designed extrinsic reward signal,
but our contribution is intrinsically motivated learning in a fully
spiking framework.

2 Related work

2.1 Learning efficient representations with
SNNs

SNNs have been used to take full advantage of the
asynchronous nature of event streams. Several studies have
modified backpropagation rules in conjunction with supervised
learning for SNNs (Ponulak and Kasinski, 2010; Shrestha and
Orchard, 2018; Cheng et al., 2020). However, the reliance on
extensive amounts of labeled training data makes these approaches
impractical for a self-calibrating vision system. Consequently, our
focus is on fully unsupervised techniques.

Many researchers have explored the combination of SNNs
with the Spike-Timing Dependent Plasticity (STDP) learning
rule to learn effective representations. STDP naturally adapts
neural representations to match input statistics and has proven
effective for digit recognition (Diehl and Cook, 2015; Tavanaei et al.,
2018; Iakymchuk et al., 2015; Hopkins et al., 2018). These works
demonstrate that a layer of Leaky Integrate and Fire (LIF) neurons,
with various homeostatic mechanisms, can produce spike patterns
used to classify MNIST digits using Winner Take All (WTA)
strategies or additional classifiers.While these visual representations
are effective, the applicability and scalability of their networks have
not been demonstrated. Moreover, they do not test their networks
on real event-based data, instead relying on a conversion of MNIST
images to a firing rate representation.

Kheradpisheh et al. (2018) propose a larger convolutional SNN
architecture with up to seven layers, inspired by traditional deep
learning. They effectively distinguish objects in images using a rate-
coding scheme to convert images into spike trains. The complexity
of learned representations increases with depth, from Gabor filters

in the early layers to parts of objects in the final layers. While these
deep spiking architectures are highly performant, they appear not
well-suited for closed-loop vision-based control due to their learning
speed, energy consumption, and potential processing delays. Our
interest lies in more lightweight architectures that can seamlessly
integrate with a reinforcement learning agent.

Paredes-Valles et al. (2019) present a multi-layered architecture
for estimating optical flow from scenes, learning effective
representations based on synaptic delays, and testing on real event-
based data. Akolkar et al. (2015) train a SNN using actual event-
based data from an event-based camera, learning neuronal receptive
fields for classification tasks. Paulun et al. (2018) propose a complex
neuronal architecture trained with STDP, representing a model of
the primary visual cortex, and test it on the MNIST-DVS dataset.

Chandrapala and Shi (2016) propose a two-layer SNN that
learns invariant feature representations similar to simple and
complex cells in the brain, using gassom instead of STDP.
Their model differentiates digits from the MNIST-DVS dataset
with 90% precision, outperforming other event-based processing
methods. Debat et al. (2021) designed a three-layer SNN to estimate
trajectories, outperforming human capabilities. Guyonneau et al.
(2004) show that SNNs can effectively learn efficient visual
representations from the spatio-temporal structure of spike patterns,
robust to fast visual stimuli, and emphasize the importance of
sparsity in neural codes.

Inspired by these principles, we designed our model
with a novel combination of homeostatic mechanisms,
STDP rules, and architectural features based on prior work
(Barbier et al., 2020; 2021). Our approach aims to address the
limitations of previous models by developing a more efficient and
adaptable vision system.

2.2 Spiking reinforcement learning

Learning effective policies using traditional reinforcement
learning algorithms is challenging with SNNs due to their
asynchronous and spiking nature. Hybrid strategies are often used,
where networks are trained using conventional reinforcement
learning frameworks and then converted for use with SNNs,
as demonstrated by Patel et al. (2019), or where SNNs are
combined with traditional deep reinforcement learning for
training as in Tang et al. (2020). However, we believe that one can
achieve comparable performance using fully spiking-based learning
strategies, and demonstrate this approach in here.

The brain’s learning process heavily relies on both extrinsic
and intrinsic rewards, similar to how dopamine modulates
behavior. The Reward Modulated STDP (R-STDP) learning rule
mimics this process by integrating a reward factor with the
classic STDP rule. Frémaux et al. (2010); Florian (2007) provide
detailed descriptions of R-STDP, which can incorporate rewards
directly or through eligibility traces to associate rewards with
past actions Gerstner et al. (2018).

While R-STDP has been applied to tasks like MNIST
classification Mozafari et al. (2019); Ghaemi et al. (2021), it lacks a
traditional reinforcement learning framework involving an agent
in a controlled environment. Yuan et al. (2019) address this by
combining stochastic and deterministic plasticity learning rules
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to create neuronal agents, designing the Stochastic-Deterministic
Coordinated (SDC) spiking reinforcement learning model, though
limited to the design of a logic gate and a simple 19-state random
walk application.

Most spiking reinforcement learning models utilize a Temporal
Difference (TD) actor-critic framework based on R-STDP. Early
works such as Potjans et al. (2009); Jitsev et al. (2012); Nichols et al.
(2013) used that framework on simple grid-world and robotic
applications.

Weidel et al. (2021) proposed an actor-critic model with
a recurrent representation layer and a reward-modulated
output layer, validating their model on the mountain car
environment. Anwar et al. (2022) created a network for playing
a modified pong game, solving 2D visual environments using a
spiking reinforcement learning framework. Their network includes
a visual cortex for frame transformation, an association cortex for
learning visual representations, and a motor cortex for outputting
motor commands. The main limitation is the use of a rate-based
frame coding approach while we are interested in fully spiking
frameworks.

Frémaux et al. (2013); Frémeaux and Gerstner (2016) extended
the TD learning framework to a continuous spiking model, using
it with a fully spiking actor-critic agent to solve simple maze
environments However, their model used fixed-place cells and
did not learn efficient representations. Hence, here we extend the
framework from Frémaux et al. (2013); Frémeaux and Gerstner
(2016), with learnable efficient representation, and apply it to visual
environments observed through event-based cameras. Additionally,
we aim to learn visual representations that can be directly utilized by
the actor and critic populations within the reinforcement learning
framework.

2.3 Intrinsic reward

One of the biggest limitations of reinforcement learning
frameworks is their dependence on externally provided or
“extrinsic” rewards. While this can be biologically plausible in
certain cases, such as animal experiments where humans deliver
food as a reward for successful actions, it is less plausible as a model
of how the brain self-calibrates basic sensorimotor loops.

Jaegle et al. (2019) showed that primates heavily rely on visual
signals of novelty and curiosity to generate interest and develop
specific motor behaviors. Although this is more geared toward
higher-level behaviors, such as food search, it suggests that intrinsic
motivation plays a significant role in visuomotor learning. It is
believed that the human visual system is capable of generating
intrinsic rewards based on the efficiency of visual stimuli encoding
during eye gaze. Chorley and Seth (2011) attempted to predict
dopamine signals using a competitive excitation/inhibition model
but did not link this to the learning of concrete visual behaviors.

Gibaldi et al. (2010, 2015) were able to learn vergence control
of the eyes using an internal representation of visual input. They
utilized disparity-tuned neurons similar to complex cells in the
brain to estimate object depth and designed reinforcement learning
strategies that used these cells to verge on the target object. Effective
gaze strategies were associated with efficient visual encoding and
were reinforced over time.This approach was particularly successful

for eye vergence, where the left and right visual fields produce
very similar stimuli. However, these methods do not operate in the
spiking domain and are not applied to event-based visual input.
Furthermore, they rely on predefined filters found in the primate
visual system and do not learn the efficient coding part.

In this paper, we present a novel approach for generating
intrinsic rewards directly from efficient SNN coding layers using
plastic synaptic lateral and top-down inhibitory connections. As
far as we know, we are the first to propose a fully spiking
reinforcement learning framework capable of solving control
tasks while intrinsically generating rewards from its internal
representation layers.

Figure 1A illustrates the three stages and main features of our
AEC spiking architecture.

3 Methods

3.1 Efficient coding model

The efficient coding model encodes the visual event stream into
a more abstract and compressed representation. We use the efficient
coding model described in Barbier et al. (2021). For completeness,
we summarize its main elements here. More details regarding
homeostatic mechanisms, including refractory periods, threshold
and spike rate adaptation, weight normalizationmechanisms, as well
as weight sharing, can be found in Supplementary Appendix. The
model comprises two layers inspired by simple and complex cells in
the primary visual cortex of mammals.

3.1.1 Sensory input
Ourmodel is designed toworkwith event-based data as its input.

Event streams are a sparse and asynchronous representation of visual
data. Real event-based recordings were captured using a DAVIS346
event-based camera with a resolution of 346× 260 pixels. Synthetic
event streamswere created using traditional videos at high framerate
and then converted to event data using the V2E tool Hu et al. (2021).
Both ON and OFF events from the event-based camera are fed into
the network and handled via separate groups of synapses.

3.1.2 Neuron model
Webase all our cells on a LIF neuronmodel, a simple yet efficient

model widely used in SNNs. To complement this model, we include
homeostatic mechanisms that regulate spike rates, create inter-cell
competition, and increase learning diversity in the network. To limit
winner-take-all behaviors where one cell becomes overly active,
we added (i) a refractory period and (ii) a spike rate adaptation
mechanism. A neuron’s membrane potential then follows:

Ṽ (t+Δt) = V (t)e
−Δt
τm −VSRA (t)e

−Δt
τSRA − ηRPe

ts−t−Δt
τRP , (1)

V (t+Δt) =
{
{
{

Ṽ (t+Δt) : Ṽ (t+Δt) < Vθ

0 : Ṽ (t+Δt) ≥ Vθ,
(2)

where V(t) and τm are the membrane potential and the membrane
time constant, VSRA(t) and τSRA are the spike rate adaptation
membrane potential and the membrane time constant, ηRP and τRP
are the refractory trace and refractory time constant, respectively.

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2024.1435197
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Barbier et al. 10.3389/frobt.2024.1435197

FIGURE 1
(A) AEC spiking model comprising three main blocks: sensory input, efficient coding model, and reinforcement learner. The sensory input from an
event-based camera is processed by the efficient coding model to create sparse representations. The reinforcement learner uses these representations
to generate motor commands, guided by intrinsic rewards from dynamic inhibition, to optimize visual encoding. (B) Sensory input and sparse encoding
SNN architecture. The pixel array transmits visual stimuli via ON and OFF channels, which are processed through simple and complex cell layers.
Excitation and inhibition mechanisms, including plastic lateral and top-down inhibition, help create sparse, efficient neural representations. Static
inhibition stabilizes activity within the complex cell layer. Figure 1B reprinted with permission from N’Dri et al. (2023), Copyright © 2023, IEEE.

3.1.3 Simple cell layer
The first layer of our network aims to approximate the

behavior of biological simple cells. These cells learn a more
abstract representation of the visual inputs, highlighting features
such as orientation, motion, or depth, while also sparsifying the
representation.

Our model includes a threshold adaptation mechanism that
regulates the membrane potential threshold Vθ according to cell
activity S(t), promoting a more uniform spike rate among all cells.

Synaptic weights are learned using an STDP learning rule. We
update the weights wi after each neuron’s spike. The simple cells
are connected to the input pixels in their receptive field using two
different sets of synaptic weights, one for the ON and one for the
OFF events. We track the exact timings of all the presynaptic spikes

ti but only the last two postsynaptic spikes ts and ts−1. The weight
update is given by:

ΔwLTP
i = ηLTPe

ti−ts
τLTP

ΔwLTD
i = −ηLTDe

ts−1−ti
τLTD ,

(3)

where ts ≥ ti ≥ ts−1. ηLTP and ηLTD control the height of the
potentiation and depression windows, whereas τLTP and τLTD
control their widths. We use a simple weight normalization
mechanism to avoid unbounded growth.

To facilitate rapid and efficient representation learning, our
model also includes a weight-sharing mechanism between simple
cells. Neurons that look at different locations of the visual field jointly
learn the same set of synaptic weights. These neurons belong to the
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same “neuronal map.” The use of multiple neuronal maps still allows
for learning diverse simple cell tunings.

3.1.4 Complex cell layer
Complex cells pool information from multiple simple cells and

have larger receptive fields. They learn a higher-level representation
that comes from the combination of simple cell receptive fields. We
use a different STDP window in the form of a step function with
the window centered around the spike time. Both the Long Term
Potentiation (LTP) and Long Term Depression (LTD) parts of the
window are positive, as follows:

ΔwLTP,c
i =
{
{
{

ηLTP:|ti − ts| ≤ τLTP

0:|ti − ts| > τLTP.

ΔwLTD,c
i =
{
{
{

ηLTD:|ts−1 − ti| ≤ τLTD

0:|ts−1 − ti| > τLTD.

(4)

We do not use weight-sharing here since it would have limited
purpose for a pooling layer such as this one. Figure 1B shows the
SNN architecture in more detail.

3.1.5 Inhibition mechanisms
Our framework is based on the use of three different inhibition

mechanisms, as can be seen Figure 1B that resumes our SNN
architecture.

We use a simple static inhibition mechanism to encourage
diversity among neurons’ receptive fields. Neurons with the
same receptive field location are connected via static inhibitory
connections. When a simple (or complex) cell spikes, it inhibits
all simple (or complex) cells with the same receptive field location,
reducing their membrane potential by a fixed amount:

Ṽ (t+Δt) =max{Vmin,V (t)e
−Δt
τm − ηI} (5)

where ηI sets the strength of this inhibition. This mechanism
decorrelates neural responses and facilitates the learning of a diverse
set of receptive fields.

Importantly we also use two adaptive inhibition schemes that
establish a relationship between the quality of the encoding of the
visual input and the amount of spiking activity in the network.
This is achieved by learning top-down connections from complex
cells to simple cells and lateral connections between simple cells.
The rationale is that visual stimuli seen more frequently will
trigger more inhibition, thereby reducing network activity for these
common stimuli. This activity reduction will be the basis of our
intrinsic reward.

In the top-down inhibition scheme, complex cells inhibit
all simple cells that excite them via learned connections that
instantaneously reduce the membrane potential of the simple cells
by an amount corresponding to the learned connection weights.
These weights are learned similarly to the excitatory ones, using
the STDP rule from Equation 3 applied to inhibitory connections.
Simple cells receive inhibitory spikes from the connected complex
cells and store them. Once a simple cell spikes, it updates the
inhibitory connection weights using a similar STDPwindow as used
for excitatory connections, with the same values for τLTP and τLTD,
but different learning rates, ηILTP and ηILTD. A specific normalization
factor is applied to inhibitory connections.

The primary effect of this inhibition mechanism is that
cells firing together on a specific visual pattern will inhibit
each other, reducing their cumulative spike rate. This effect is
illustrated in Figure 2A. For instance, with a moving edge, cells
locally close together will experience the pattern simultaneously,
driving up their membrane potential and triggering associated
complex cells. These complex cells transmit immediate inhibition
signals to the simple cells, reinforcing the inhibitory connections
with repeated stimuli. After multiple presentations of the same
pattern, the inhibitory connections become strong enough to
prevent spiking in the set of simple cells, thereby reducing the
average activity rate of the network.

The lateral inhibition scheme is similar to the top-down scheme,
but acts from simple cells to other simple cells. Designed so
that one simple cell inhibits neighboring simple cells, this differs
from static inhibition which only works on cells of different
neuronal maps sharing the same receptive field location. The
same general properties and learning rules as the top-down
scheme from Equation 3 apply, with reduced learning rate and
normalization factor due to the higher frequency of simple
cell spikes.

This lateral inhibitionmechanism can be interpreted as a formof
predictive learning. When presented with a moving stimulus, like a
moving edge, adjacent simple cells activate close in time in a specific
pattern. The first set of simple cells activates and sends inhibitory
signals to adjacent simple cells. As the edge moves, it activates
neighboring simple cells, some of which just received inhibitory
signals.These connections are reinforced, as illustrated in Figure 2B.
With repeated visual patterns, the inhibitory connections become
strong, making simple cells predictors of the pattern. For example,
a moving edge triggering the first set of simple cells will strongly
inhibit those associated with the next location, reducing total
network activity for this pattern. If a different pattern, such as an
edge moving in another direction, is presented, network activity
remains unchanged since the inhibition does not affect simple cells
triggered by this new pattern.

3.2 Reinforcement learner

3.2.1 Temporal difference error
Our reinforcement learning agent is based on a TD learning

actor-critic framework by Frémaux et al. (2013). The discrete time
formulation of the TD learning framework is based on an estimate
V(xt) of the true value function Vπ(xt):

δt = γV(xt) −V(xt−1) +R(xt,at) (6)

with δt the temporal difference error at discrete time step t, γ the
discount factor, V(xt) the value function associated to the specific
state xt and R the reward associated with the state xt and action at.

However, in a fully spiking environment, there are no real
discrete steps of time t, or if there are (due to the limitation in
temporal resolution of event-based cameras), they are too small to
be used effectively. Therefore, a continuous TD error is defined as:

δt = V̇(xt) −
1
τr
V(xt) + r(xt,at) (7)
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FIGURE 2
(A) Top-down inhibition. Complex cells inhibit simple cells that excite them, strengthening inhibitory connections through repeated visual stimuli,
which reduces network activity. (B) Lateral inhibition. Simple cells inhibit neighboring simple cells, with inhibitory connections reinforced by repeated
visual patterns, thereby decreasing overall network activity for frequent stimuli.

where V̇(xt) is the time derivative of the value function, and τr is
the reward discount time constant that plays a similar role to the
conventional reward discount factor.

The TD error gives us an indication of the quality of the value
estimate. If the value function perfectly evaluates the real value of a
state-action pair, the TD error should be equal to zero. Otherwise, it
indicates if the value of a state-action pair is overestimated (negative
δt) or underestimated (positive δt).

3.2.2 Critic neurons
The value function estimation is essential to learn a good policy.

In SNNs, we cannot evaluate functions as easily as in traditional
neural networks. Inputs are arriving continuously, which forces us to
look at the evolution of activity in a population of neurons instead.

Thefirst layers of the SNNwill serve as a state representation, i.e.,
their activation patterns represent the state in which the agent is. By
connecting those cells to a population of critic neurons, we can learn
to associate specific neural activity with a state value function.

Considering one spiking neuron as a value estimator, we can
define its value estimate as follows:

V(st) = νρ (t) +V0 (8)

with ρt the firing rate of the neuron, V0 the baseline for when the
neuron has no activity, and ν a scaling factor.

This equation, defines an affine relationship between neuron
firing rate and value estimation. Since the firing rate of a neuron
is always positive, we can obtain a negative value estimation by
carefully selecting V0 to be negative. This neuron is called a critic
neuron as it performs a similar task as the critic in the discrete
formulation.

To make the system more robust, we use a whole population of
such critic neurons. Therefore, the Equation 8 can be written as:

V(st) =
ν

Ncritic

Ncritic

∑
i=1

ρi (t) +V0 (9)

We usually select a population size of Ncritic = 100.
The firing rate of neurons evolves continuously over time.

An exponentially decaying kernel is used to evaluate the firing
rate, defined by:

κ (t) = e
−t
τk − e

−t
νk

τk − νk
(10)

with τk = 100 ms and νk = 5 ms.
Frémaux et al. (2013) used the derivative of the critic kernel

to get an approximation of the value derivative V̇(st). However,
we found that the input natural variability of event rates led to
instabilities in the derivative. We thus simply use a second-order
numerical differentiation on the value, which can be written as:

V̇(st) =
ηactor

N

t

∑
i=N−t

V(si+1) −V(si−1)
2

(11)

with ηactor a scaling factor andN the number of value points we take
into account (since the simulation has a minimal time step of 1 ms).

One limitation of the above formulation is that the value
function estimation is proportional to the critic neuron spike rate.
Neuronal spike rates are dependent on twomain factors: the synaptic
weight value of inputs, and the amount of input itself. When
submitted to many events, the network’s simple and complex cells
will inevitably spike more than when fewer events are present.
This, in turn, will drive the critic neurons more, which will impact
the value estimation. This is an important difference compared to
the work of Frémaux et al. (2013). In their model, they ensure that
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the amount of activity in the population of state representation
spiking neurons stays constant over time. But with event-based
visual input, the amount of activity can vary substantially.

To make the value estimation depend only on the values of
the weights rather than the event rate, we normalize the value
function by the event rate itself. Cell rates in the network are highly
correlatedwith the input rate, which allows us to normalize the event
rate without introducing too much variation in the value function
estimation.

3.2.3 Actor neurons
In an SNN there are no regular time steps at which actions can

be chosen from the output of a readout layer. But similarly to the
critic neurons, we can assign spiking neurons to certain actions. In
biology, neurons can trigger muscles they are connected to, eliciting
fine-tuned movements. Frémaux et al. (2013) used only one actor
neuron per action, but to increase stability in the action selection, we
use 50 actor neurons for a specific motor action in our framework.

As with the critic neurons, actor neurons are connected to
the representation layers so that they can access the agent states’
information. Then, we select actions at regular intervals by looking
at the activity of those actor neurons. This process is somewhat
of a simplification that is not very biologically plausible. We could
envision selecting actions only when a certain amount of activity
has been registered in the actor neurons, but that would introduce
substantial variability in the control loop. The action selected is
the one from the actor population that has the strongest activity.
This is a simple WTA mechanism that can be found regularly in
biological systems. For simplicity, we do not use a slidingwindow for
computing the firing rate of actor neurons, but instead simply count
the number of spikes that occurred since the last chosen action.

3.2.4 Three-factor learning rule
Learning associations between the representation layers and the

neurons of the critic and actor is done using the R-STDP learning
rule. It is composed of two parts, the traditional STDP rule 3 in
addition to a third term, a reward, which is often sparse and will
modulate the first rule.

In the traditional STDP rule, wemodified the weights every time
a neuron spiked. However, this is not possible with a R-STDP rule,
as the reward can be sparse and will not always arrive at the same
time as the spike of the neuron. For that reason, we only update the
weights when the reward signal is transmitted to the neuron.

But we still need to keep track of all the usual changes that the
STDP rule would create. To do that, we use synaptic eligibility traces.
Each synapse connected to the critic or actor neuron possesses a
small eligibility trace that is updated every time the neuron spikes.
We apply the usual STDP potentiation and depression to it, in
addition to a decay term written:

Δwei (t+Δt) = wei (t)
e−Δt

τe
(12)

withwei the eligibility trace and τe the eligibility decay time constant.
As the agent moves in state space, the critic and actor neurons’
eligibility traces will keep track of the neuronal patterns coming
from the representations layers. The time constant τe determines
from how far back in the past information is kept. Then, once the

reward is received, we apply the changes to the real weights. For that,
we simply multiply the weights with the eligibility traces:

Δwi (t) = ηwei (t)δt (13)

with η the learning rate and δt the TD error that acts as the
neuromodulator.With this rule, it is possible for the neurons to learn
even with sparse and delayed rewards.

Actions are selected at regular intervals predefined beforehand,
which in turn corresponds to the transmission of the reward to the
actor and critic neurons. We update both the weights of the critic
and actor neurons every time an action is selected, using the current
TD error. Importantly, we only update the actor neurons fromwhich
the previous action was selected since the TD error estimation arises
from that specific action.

If the action contributed to a positive TD error, then we
strengthen the actor neurons’ association with the representation
layer. In the opposite case, a negative TD error will decrease the
weights accordingly.

3.2.5 Exploration and exploitation strategy
Learning both the value and policy at the same time can be

difficult. A good policy can only be learned after an effective
value approximation has been computed, which requires properly
exploring the state space. In this work, we encourage the agent to
first explore its environment by selecting random actions regularly,
before slowly changing to an exploitation strategy. To allow the
network to exploremost states at the beginning, the network selects a
random action with the probability λ EXP, called exploration factor.
As learning progresses, we decrease this probability, which will drive
the agent towards an exploitation phase. In that second phase, the
agent has more time to refine its policy.

3.2.5.1 Decay intervals
We handle the change from exploration to exploitation using a

simple decay mechanism. Every Δdecay time interval, we decrease
some of the learning parameters, including the exploration
factor, action selection interval and critic and actor learning rate
η following:

Δη = (1−
Δηηdecay

100
) (14)

with ηdecay the decay rate.
At the beginning of the learning, the value function has not yet

been learned properly. For that reason, it is preferable to reduce the
actor learning rate slower than the critic learning rate.We, therefore,
use a smaller ηdecay for the actor neurons.

Table 1 details all cell parameters used in our framework. Table 2
presents the reinforcement learning parameters.

3.2.6 Intrinsic reward from activity
The reward itself is directly generated from the activity of the

simple cells. To be precise, we compute a rolling average of the simple
cell population activity every 1 ms as follows:

St = αSt + (1− α)St−1 (15)

with St the activity rolling average, St the averaged sum of all simple
cell spikes in that 1 ms window, and α a smoothing factor that we
set to 0.75.
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TABLE 1 Parameters configuration for the network’s cells in the reinforcement learning tasks.

Param Unit Simple
Cells

Compl-
ex cells

Critic
Cells

Actor
Cells

Vthresh mV 30 3 2 2

Vreset mV −20 −20 −20 −20

η LTP mV 0.00077 0.2 0.077 0.077

η LTD mV 0.00021 0.2 0.021 0.021

η I mV 15 15

η TA mV 1

η RP mV 1 1

η SRA mV 0.6

η ILTP mV 0.0077

η ILTD mV 0.0021

τm ms 18 20

τ LTP ms 7 20 7 7

τ LTD ms 14 20 14 14

τ RP ms 20 30

τ SRA ms 100

S∗ sp.s−1 0.75

λ 4 10 4 4

λlateral 100

λtopdown 300

η mV 0.2 0.1

ηdecay 5 1.66

νk ms 5

τk ms 100

τe ms 250 250

Finally the intrinsic reward R is computed as:

R = γ
(β− St)

Et
(16)

with Et the average event rate, which is computed similarly to
the simple cell event rate. γ and β are simply scaling factors.
We chose γ = 5 and β = 90 based on experimental results. This
reward encourages actions that lead to efficient visual encoding (low
activity).

3.3 Control on various visual tasks

In this paper, we focus our attention on agents learning to solve
a task in a simulated environment. We use CoppeliaSim to create
diverse scenarios upon which the agent evolves and acts. It is a
robotic simulator coupled with an efficient physics engine. In our
case, we used Bullet 2.78 as the physics engine.

By default, CoppeliaSim is not capable of generating event-
based camera output. To solve that issue, we capture frames at a
very high rate using a small simulation time step of 1 ms. This
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TABLE 2 Reinforcement learning framework parameters.

Action rate Action rate (min) λ EXP Δ decay V0 τr η actor ν N

Unit ms ms % ms mV ms mV

Value 250 10 75 2000 −20 1 80 1,000 100

FIGURE 3
(A) Tracking environment, composed of one motorized agent (gray boxes) and one ball (with white and red stripes). The goal is to bring the ball to the
center of the visual field, as seen in the top right of the image. Simulation images are sampled at high frame rates and then transformed into event
streams, as seen under the visual field representation. The agent can either turn right or left in the horizontal plane. (B) Stabilization environment,
composed of one motorized agent (gray boxes) and a grating stimulus of white bars on a black background. The goal is to align the bars to a horizontal
orientation by rotating the camera around its optical axis.

gives us a frame rate of 1,000 images per second, which we then
convert to event streams using an event-based camera emulator
called PIX2NVS Bi and Andreopoulos (2018). Even though this
is not as precise as real event-based data, the emulator and frame
rates are enough to produce accurate models of event streams.
Since images are created every 1 ms, we also jitter the events
in time to more accurately simulate the output of a real event
camera and avoid a cluster of events around frame timestamp
generation.

To increase the number of events generated by the moving
objects, we added a constant jittering to the camera. This
is similar to eye microsaccades and ocular drift, which has
been shown to increase visual acuity Intoy and Rucci (2020).
It moves left, right, up, and down in saccadic movements,
following an Orsnstein-Uhlenbeck stochastic process that can be
written as:

dxt = θ(μ− xt)dt+ σdWt (17)

where θ > 0 and σ > 0 are parameters that control, respectively, the
attraction and drift components. μ is the central point to which the
system goes back. Wt denotes a Wiener process, a stochastic value
generator. Similar jittering techniques have been implemented in
Ahissar and Arieli (2012); Testa et al. (2023). The idea behind this
jitter is that the camerawill continuously drift from the central point μ
due to the Wiener process, while being attracted back to it over time.

We created two different environments to test our framework,
each having specific properties and challenges.

3.3.1 Tracking task
The tracking task consists of onemotorized camerawith one axis

of rotation. Figure 3A presents a screenshot of the environment. A
textured ball is moving in a circle around the camera, whose radius
is 1.3 m from the optical center of the camera. It is either moving
clockwise or counter-clockwise. The goal of the task is simple, to be
able to track the ball by keeping it in the center of the visual field.The
simple cell layer is composed of a thin strip of 30 neurons in width
and 6 neurons in height that covers the entire ball. We specify the
parameters of the architecture in Table 3.

3.3.2 Stabilization task
The stabilization task also consists of one motorized camera.

The environment is shown in Figure 3B. This time, the rotation
is performed around the camera’s optical axis. This task tries to
simulate in a simplified way the process of a flying insect that would
have to keep its flight horizontal using visual cues. We generate the
visual cues from a set of straight bars. A leveled flight corresponds
to the bars being horizontal.

This task is harder than the previous one since the network
must be able to process the bar orientation to effectively distinguish
between states. We will demonstrate in Section 4.1 that the network
cells can efficiently differentiate between oriented stimuli, which
makes them effective state representation for such a task.The actions
are rotating clockwise or counter-clockwise to bring back the bars to
the desired horizontal state.

We changed the neurons’ spatial arrangement for that task to be
able to fit the entire visual stimulus in the visual field of the network.
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TABLE 3 Connectivity parameters. The values indicate dimensions of the following form: (x× y× z) cells.

Simple cells Complex cells Critic cells Actor cells

Retina size # cells Receptive field # cells Receptive field # cells # cells

Network architecture for the tracking task

(300× 60× 2) (30× 6× 64) (10× 10× 2) (10× 2× 16) (3× 3× 64) (100) (100)

Network architecture for the stabilization task

(160× 160× 2) (16× 16× 144) (10× 10× 2) (4× 4× 16) (4× 4× 144) (100) (100)

FIGURE 4
Screen capture of four event recordings, (A)shapes on a sheet of paper, (B)view of an office, (C)someone juggling, and (D)view from a robotic platform
in an urban environment.

Thestimulus is located in a square in the center of the visual field.We
summarize the parameters of the network architecture in Table 3.

4 Results

In this section, we evaluate separately the different stages that
compose our AEC model, namely the efficient coding model, the
intrinsic reward calculation, and the reinforcement learner.

4.1 Efficient coding model

The efficient coding model is the foundation on which the
whole AEC model rests. As discussed in Section 3.1.1, events are
mostly triggered by the moving edges of objects. An edge can
be characterized by different properties, such as its orientation,
speed, or disparity in the case of stereovision. A good coding
representation must be able to capture all this information while
removing unnecessary and redundant parts of the information itself.
We showed in Barbier et al. (2020, 2021); N’Dri et al. (2023) that our
network is able to learn simple and complex cell-like receptive fields
based on synthetic and natural event-based recordings, such as the
ones presented Figure 4.

Here, we study the simple and complex cell responses to various
types of event inputs. We selected four event recordings in different
environments: shapes drawn on a sheet of paper moving in front
of the sensor, a recording of an office, someone juggling with balls,
and a mobile robotic platform in a small recreated urban road
environment. Each recording is a few seconds to a few minutes long.

We created a network of similar architecture than the one
presented in Table 3 for the stabilization task. We did not add actor
and critic cells since we are not interested in motor control for
this specific experiment. We first trained the network on the shapes
recording, then we fed the four event recordings to the network and
recorded the cells’ activity. The shape data contain edges of multiple
orientations, speeds, and widths, so that the network can efficiently
learn a wide representation of oriented filters.

Event streams are already sparse by nature, but still contain up
to millions of events per second. The simple cell layer, due to the
integrating nature of simple cells, reduces that number by a huge
factor. We recorded the number of spikes for the simple and complex
cell layers, as well as the difference between the normalized event
activity and the normalized simple cell activity. We present those
results in Table 4.

We measure the activity reduction induced by the efficient
coding layers as the number of input events divided by the total
number of spikes of the layer. Here, on average, the trained efficient
coding layer is able to reduce the input activity by a factor of 116 for
the simple cell layer and 657 for the complex cell layer.

To verify that the encoding by the simple cell layer reflects the
amount of input events we also computed the correlation coefficient
between the number of events and the simple cell activity. These
correlation coefficients are given in Table 4. We can observe that
the correlation between the input and simple cell layer is very high,
especially for the shapes recording that was used for learning the
representations.

We showed in previous work N’Dri et al. (2023) that our
network is capable of retaining essential information from the visual
input stimuli. There we used a classical neural network approach
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TABLE 4 Sparsity analysis on four different event recordings. We show the result for a network with learned representation. We present the activity
reduction, the number of events divided by the number of spikes in the cell layer. We also present the correlation coefficient between the events and
simple cell activity.

Scene Urban Office Shapes Juggling Mean

# of events 11, 8M 3, 6M 6, 5M 27, 9M

Simple cell
activity reduction

173 112 67 112 116

Complex cell
activity reduction

983 610 623 410 657

Simple cell
correlation coefficient

0.84 0.90 0.98 0.92 0.91

FIGURE 5
(A) Activity of the control and experiment network when presented to a ball moving from the left to the right of the visual field. In purple, the
experiment network after learning the inhibition on a normal distribution of ball positions centered on the middle of the visual field. In blue, the control
network is the experiment network without inhibitiory weights. The bottom graph presents the normal distribution used for learning in red
superimposed on the activity difference between the control and the experiment network. (B) Activity of the network when presented to oriented
gratings from 0 to 360°. In purple, the experiment network after learning the inhibition on a Gaussian distribution of oriented gratings centered around
0°. In blue, the control network is the experiment network with shuffled inhibition weights. The bottom graph presents the Gaussian distribution used
for learning in red superimposed on the activity difference between the control and the experiment.
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to reconstruct specific parameters from the activity of the simple
cells layer. Information such as position, width, length, orientation
and movement direction from a set of generated moving bars
was correctly predicted, ranging from 80 to almost 100% accuracy
depending on the type of information reconstructed. We refer the
reader to the mentioned article for more detail on that experiment.

4.2 Intrinsic reward calculation

To generate an intrinsic reward signal, we rely on the ability
to reduce network activity via a form of learned inhibition. This
inhibition reduces network activity for frequently observed stimuli.
To demonstrate that, we learn with specific well-controlled input
statistics and the results show that the network activity is inversely
related to the frequency of observed input patterns. Here, we are
using the tracking simulation environment to generate stimuli. We
show the network a repetition of a short recording that involves
the ball moving back and forth around a specific part of the visual
field. Since the network should show reduced activity for central
visual stimuli, we need to expose the network to a majority of visual
patterns happening in the center of the visual field. For that purpose,
the position of the ball in the visual field is selected according to
a normal distribution whose mean is located at the visual center.
That way, we make sure the network is mostly exposed to visual
inputs that will excite the center cells, which in turn will drive
up the inhibitory connections between those cells. With enough
repetitions, the network starts to learn to strongly inhibit inputs at
the center of the visual field, while not somuch on the borders of the
visual field. In the first experiment, we fix the excitatory weights and
only learn the top-down and lateral inhibitory connections.

Figure 5A presents the result of a single recording of the ball
moving from the left to the right of the entire visual field at the end

of learning. We recorded the total cell activity and present it as a
histogramof activity over time. In blue, we have the control network,
which is the network with shuffled inhibitory weights. In purple,
the experiment network with inhibitory weights learned on the
distribution mentioned above. The distribution can be seen in red
in the bottom graph. The latter also presents the activity difference
between the control and experiment network.

The activity of the experiment network drops significantly when
the ball approaches the center of the visual field. More importantly,
the drop is gradual.Thismeanswe can use the activity of the network
as an effective intrinsic reward signal. Low activity implies a high
reward, whereas high activity implies a low reward. The activity of
the networks drops when the ball exits the visual field on the right or
left since there are much fewer cells to excite in those regions. This
does not pose a problem since we normalize the intrinsic reward by
the number of events.

For the second experiment, we consider the stabilization task
environment. Again, the excitatory connections are fixed and we
only learn the lateral and top-down inhibitory connections. We
present oriented gratings to the network whose orientations are
drawn from a normal distribution centered around the horizontal
orientation. The first graph in Figure 5B shows the network activity
as a function of grating orientation. The distribution of orientations
is shown in red in the bottom graph, along with the activity
difference between the experiment and control conditions.

We observe that the activity of the network decreases
significantly close to the center of the distribution, i.e., for horizontal
stimuli. This is represented as a bigger activity difference between
the control and experiment network. Furthermore, the decrease in
activity is gradual as we change the orientation. This means we can
extract a smooth reward directly from the network activity and use
it for reinforcement learning.

FIGURE 6
(A) Evolution of the value function during training for various ball positions. Color progression from blue (early training) to red (late training) indicates
training stages. The purple curve represents the learning distribution used for learning the intrinsic reward. (B) Evolution of the agent’s policy during
training, shown as actor cell spike rates. Color intensity varies from light (early training) to heavy tones (late training). Actions for left and right
movements are depicted in blue and orange, respectively.
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4.3 Reinforcement learner

4.3.1 Learning the tracking task
We consider a simple scenario with only two possible actions,

moving the camera to the right or to the left. We used 100 critic
neurons, as well as 100 actor neurons, 50 for each action. These cells
receive inputs from the simple and complex cell layers.

For this task, we first learned the weights of the efficient
coding layer and fixed them to focus on the reinforcement
learning framework. We learned a diverse basis similar to the one
presented in Section 4.1. We start in full exploration mode, where
every action is selected randomly. During that phase, only the
weights of the critic neurons are updated. Every 2 s of simulation
time, we decrease both the exploration rate, critic and actor learning
rate aswell as the time between two action selections. Aswe continue
to decrease the exploration rate, the actions selected are less and less
random, and the network fine-tunes its policy.

We recorded the weights of the network every 2 s in the
simulation. Then, we observe the evolution of the network’s

performance in a simple validation task. The tracking environment
consists of moving the ball back and forth once from the left to
the right part of the visual field. For each location, we accumulate
spikes from both critic and actor neurons to calculate the estimated
value and policy. We submit the network to this validation for
every recorded network checkpoint during training. We observe the
change in value and policy as the network learns the task in Figure 6.

Figure 6A shows the evolution of the value function over the
course of the whole training. Evolution over time is represented
by a shift in color from blue to red. In the beginning, the value
function is flat and noisy, but very quickly, over a few simulation
seconds, it learns to associate a high value to states with a small
angular error. As the learning rate decreases, the value stabilizes.
The value function is somewhat representative of the learning
distribution used in Figure 5A to generate the intrinsic reward,
represented here in purple.

Figure 6B shows the policy evolution during training. The blue
and orange curves correspond respectively to the left and right
motor action. If the ball is in the left part of the visual field, the

FIGURE 7
Validation scenario for the tracking task (A) Angular error is plotted as a function of time during the validation scenario. Red dashed lines indicate the
times when the ball is reset to a random location. Zero angular error corresponds to the ball being in the center of the visual field. (B) Value function at
the end of learning, with mean and error bands of 1 standard deviation from five experiments with different starting seeds. The purple curve represents
the learning distribution used for learning the intrinsic reward, shown for visual comparison. (C) Agent’s policy at the end of learning, depicted as actor
cell spike rates with mean and error bands of 1 standard deviation from five experiments with different starting seeds. Left and right actions are shown
in blue and orange, respectively.
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agent must rotate the camera to the left to bring the ball back to the
center. The opposite is true if the ball is in the right part of the visual
field. The blue and orange curves show the actor’s spike rates for
the different ball positions in the visual field. As training progresses,
the network learns to select the correct action depending on the
position of the ball. The evolution of the policy over time during
training is represented by the color intensity in the curves, from light
to deep tones.

In this environment, the network was able to learn an effective
policy in a very short time. After only a minute of training, the
network easily differentiates the different states of the ball and can
select the correct action accordingly.

To estimate network performance, we tested the final policy
of the network in the simulated environment. The network selects
actions every 10 ms, and every 2 s, we reset the ball to either
the left or right border of the visual field. We keep track of the
angular error between the center of the visual field and the center
of the ball. Figure 7A shows the resulting error during the test. We
observe that the network successfully brings back the ball to the
center of the visual field every time the ball is reset, represented by a
red dashed line. Then, the network keeps the ball in the center. We
can note that the tracking is not perfectly stable, as there is some
jittering when trying to keep the ball in the center, but in general,
the policy is effective.

We submitted the network to a validation scenario similar
to that when using two actions. The ball is going back and
forth from left to right, then right to left. We kept track of the
spike train of both the critic and actor neurons and created a
histogram of activity based on the angular error from the ball
to the center of the visual field. Figure 7B presents the critic
histogram in blue, while the purple curve represents the learning

distribution used to generate the intrinsic reward. We can see
that the activity of the critic neurons tends to match the learning
distribution. Figure 7C shows the activity of the two subgroups
of actor neurons, 1 for each action. When the ball is in the left
part of the visual field, the actor neurons associated with the
turning left action spike the most. On the contrary, the actor
neurons linked to the turning right action spike more when the
ball is on the right part of the visual field. The learned policy
is sensible and allows the network to efficiently track the ball in
any situation.

4.3.2 Learning the stabilization task
Just like for the tracking task, we also learned the efficient

coding layer independently first. We also use a similar exploration
and exploitation learning strategy. We saved the weights at regular
intervals during training and present the results in Figure 8.
Figure 8A demonstrates that we learn an efficient value function
during training. Very quickly, the value starts to reflect the learning
distribution that was used for generating the intrinsic reward as seen
in Figure 5B. Similarly, Figure 8B shows that the actor neurons learn
to separate the states as training progresses.

We also recorded the angular error between the actual and
optimal bar orientation (horizontal) during an exploitation test
scenario on the fully trained network. Actions are selected
every 10 ms. Figure 9A presents those results. The bar orientation
is reset every second at a random orientation. We can observe that
the network can bring the bars to the right orientation no matter
the initial angle. Once in the right orientation, the network can keep
the bars horizontal most of the time, even though it presents a small
oscillating behavior.

FIGURE 8
(A) Evolution of the value function during training for various bar orientations. Color progression from blue (early training) to red (late training) indicates
training stages. The purple curve represents the learning distribution used for learning the intrinsic reward. (B) Evolution of the agent’s policy during
training, shown as actor cell spike rates. Color intensity varies from light (early training) to heavy tones (late training). Actions for clockwise and
counter-clockwise movements are depicted in blue and orange, respectively.
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FIGURE 9
Validation scenario for the stabilization task. (A) Angular error is plotted as a function of time during the validation scenario. Red dashed lines indicate
the times when the camera’s rotation is reset to a random angle. Zero angular error corresponds to maintaining the grating horizontal. (B) Value
function at the end of learning, with mean and error bands of 1 standard deviation from five experiments with different starting seeds. The purple curve
represents the learning distribution used for learning the intrinsic reward, shown for visual comparison. (C) Agent’s policy at the end of learning,
depicted as actor cell spike rates with mean and error bands of 1 standard deviation from five experiments with different starting seeds. Clockwise and
counter-clockwise actions are shown in blue and orange, respectively.

Then, similarly to the tracking task, we designed another
simple validation scenario to observe the value and policy of the
network when changing the bar orientations. We start with bars
at −90° orientation (vertical in our case), then rotate them to
+90° and back again to −90°. That way, the network observes all
possible orientations in both rotation directions. During that test,
we deactivated the actions and recorded the spike trains of the critic
and actor neurons.

Figure 9B shows the activity histogram of the critic neurons. We
averaged the clockwise and counterclockwise rotations together for
more accuracy. The value function effectively associates a higher
value to states with a smaller angular error. Figure 9C presents a
similar representation but for the actor neurons. We can see the
switch in which actor neurons spike the most around the horizontal
orientation (0°). We note that the decision boundary is slightly
shifted to the right, which can also be observed in Figure 9A. This
shows that our spiking reinforcement learning framework works
well overall, but might lack resilience for learning a precise policy
on more complicated visual tasks.

5 Discussion

We have presented the first spiking neural network
implementation of the AEC approach. From visual sensing with an
event-based camera all the way tomotor output, everythingworks in
the spiking domain. Our network autonomously learns simple visual
behaviors. The efficient coding component learns efficient visual
representations in an unsupervisedmanner, while the reinforcement
learning component uses an intrinsically generated reward based on
the spiking activity of the efficient coding component. Thus, the
method requires neither supervision nor an externally provided
(“extrinsic”) reward signal.

We demonstrated the feasibility of the approach with two
admittedly very simple tasks: tracking a moving object through
pursuit movements or stabilizing the orientation of a rotating
(horizon) line. As such, our work should be viewed as a
proof of concept rather than a highly performant solution
to these particular tasks. It should be noted, however, that
AEC is quite general and has been applied to various active
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perception skills in the past including active stereo vision Zhao et al.
(2012); Lonini et al. (2013); Klimmasch et al. (2021), active motion
vision Zhang et al. (2014); Teulière et al. (2015), accommodation
control Eckmann et al. (2020), torsional eye movements Zhu et al.
(2022) and combinations thereof Lelais et al. (2019) as well as
echolocation in bats Wijesinghe et al. (2021). This suggests that our
spiking approach toAECcould be extended to any of these behaviors
and possibly more.

A limitation of the approach presented here is that in
order to establish the intrinsic reward signal, we enforced
a particular distribution of sensory inputs (ball positions or
grating orientations) during learning of the lateral and top-
down inhibitory connections. Therefore, the current approach
does not learn fully autonomously. This is in contrast to
previous (non-spiking) AEC models which did not require such
interventions.

Many parts of our model are inspired by findings on the
mammalian brain, such as the presence of simple and complex
cells in visual cortex or the utilization of temporal difference
learning. However, the model is not fully biologically plausible.
Some obvious limitations in this respect are the use of instantaneous
synaptic transmission in excitatory or inhibitory connections or the
violation of Dale’s law, i.e. single units in our model can both excite
and inhibit other units, which does not seem to be the case in
biological neural networks. Also, the reinforcement learner’s action
choices are based on an external clock and sampled at regular
intervals. We believe that some of those limitations with respect to
biological plausibility could be overcome relatively easily, but this
was not our focus.

Since our model is formulated entirely as a spiking neural
network, it would be interesting to implement it on neuromorphic
hardware Javanshir et al. (2022); Rathi et al. (2023). This could
speed up computation and allow learning visual behaviors
in real-time, opening the door to real-world applications of
the approach.
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