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Collaborative intelligence (CI) involves human-machine interactions and is
deemed safety-critical because their reliable interactions are crucial in
preventing severe injuries and environmental damage. As these applications
become increasingly data-driven, the reliability of CI applications depends on
the quality of data, shaping the system’s ability to interpret and respond in diverse
and often unpredictable environments. In this regard, it is important to adhere
to data quality standards and guidelines, thus facilitating the advancement of
these collaborative systems in industry. This study presents the challenges of
data quality in CI applications within industrial environments, with two use cases
that focus on the collection of data in Human-Robot Interaction (HRI). The first
use case involves a framework for quantifying human and robot performance
within the context of naturalistic robot learning, wherein humans teach robots
using intuitive programming methods within the domain of HRI. The second
use case presents real-time user state monitoring for adaptive multi-modal
teleoperation, that allows for a dynamic adaptation of the system’s interface,
interaction modality and automation level based on user needs. The article
proposes a hybrid standardization derived from established data quality-related
ISO standards and addresses the unique challenges associatedwithmulti-modal
HRI data acquisition. The use cases presented in this study were carried out
as part of an EU-funded project, Collaborative Intelligence for Safety-Critical
Systems (CISC).
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1 Introduction

The emergence of CI with Industry 4.0 represents a significant
convergence between human and Artificial Intelligence (AI)
abilities, becoming one of the main focus of the transition to
Industry 5.0 Demir et al. (2019). Particularly in the field of
collaborative robotics, where humans, robots and AI work in
collaboration alongside each other, leading to a new age of enhanced
productivity, adaptability and innovation Villani et al. (2018). The
term CI refers to the execution of shared tasks by humans and AI
systems in which they exploit the strengths of each other to increase
productivity Toniolo et al. (2023). This concept is often studied
under different terminologies, human-centric AI Rožanec et al.
(2023), human-machine-in-loop Mosqueira-Rey et al. (2023) and
human-AI interaction Amershi et al. (2019). However, the current
immaturity of certain capabilities of AI, such as lack of intuitive
reasoning, creativity, common sense, and situational analysis, as well
as limited capabilities of humans in tasks that require long-term
memory, repetition, speed, and accuracy, restrict the application
of either full automation or solely manual operations to complex
production environments (Villani et al., 2018). Furthermore,
collaboration enables flexible and adaptive access to system
resources, resulting in a more advantageous solution than swapping
between human and machine tasks (Angleraud et al., 2021;
Zhou et al., 2022).

One of the fundamental applications of the CI system isHuman-
Robot Interaction (HRI), which allows humans and robots to work
together as a team (Panagou et al., 2024) and complement each
other’s skills. The implementation of HRI systems necessitates the
integration of heterogeneous data, including various data sources
from humans and robots. This includes data on robot dynamics and
kinematics, system and process state data from internal repositories,
workspace and environment data from extrinsic sensors, human-
related data from wearable and other sensors, human feedback from
controllers or interfaces, and intelligent predictive or prescriptive
information from an AI component. Moreover, these systems
rely on real-time sensor data from the environment and human
activity to recognize changes in the environment, enabling the
customization of robot behaviour in accordance with operator
preferences (Heinisch et al., 2024; Gao et al., 2021; Gast et al.,
2009). To build a smooth interaction between humans and robots, a
high quality multimodal data is required to be processed to design
and develop a synergistic HRI system. There is comprehensive
evidence demonstrating the correlation between data quality and
AI model performance in the literature. However, data quality’s
role in CI system development and performance is a less explored
area but equally critical in collaborative systems because of the
interactive nature of CI (Amershi et al., 2019; Rožanec et al., 2023;
Gudivada et al., 2017).Themain attributes of CI systems are accurate
and timely decision-making (Mentzas et al., 2021), transparency
(Vössing et al., 2022), user trust (McGrath et al., 2024) and poor
data quality may result in mismatched in the human-machine
interactions and inaccurate and untrustworthy system behaviours.
Empirical studies on CI systems show that data quality directly
affects system performance (Li et al., 2023), however, the extent of
data quality’s consequence on CI systems remains an open ground
for further research.

Data quality has been thoroughly explored beyond theHRIfields
and has gained significant attention from the industry due to the
multifaceted value that data can bring to the business (Batini et al.,
2009). This effort can be observed by the development of data
and data quality-related standards, namely ISO/IEC 25000 series
(SQuaRE) (ISO/IEC 25000, 2014a), which describes requirements
and evaluations for the quality of systems and software, and (ISO
8000-61, 2022a), which details data management processes. Despite
this, the lack of standards practice and inadequacy in data-related
standards (Odong et al., 2022) is a substantial constraint in achieving
reliable CI systems. In this regard, this study aims to contribute to the
literature by providing a simple framework for the standardization
of data processes and data quality in HRI.

This article contributes as follows.

• The paper describes the key data quality challenges specific to
multimodal HRI data acquisition for CI application, dissecting
the complexities of data collection from various sensors
and input types in industrial scenarios, also considering
data obtained from interactions between humans and
robots as well as, metrics related to physiological measures
indicative of human cognitive and physical state, and
subjective responses.

• Review of existing ISO standards and guidelines specifically
addressing data quality for multimodal HRI data acquisition
and the gaps identified for their applicability and their capacity
to cover all data quality issues in multimodal HRI data.

• Hybrid standardization approach and a five-step data quality
management plan based on ISO standards that can be effectively
adapted for CI applications.

• Demonstration of the application and efficacy of the proposed
hybrid standardization approach in managing data quality
within two specific case studies in industrial HRI.

The paper is structured as follows: Section 2, provides a
comprehensive background, which introduces collaborative
intelligence, human-robot interaction, and an overview of data
quality standards relevant for it. Section 3 presents a hybrid
standardization for CI. Section 4 discusses two HRI use cases, and
presents them to highlight the data collection methodology applied
to the case studies and the issues related to data quality compared
to the “Data Management Steps for CI applications” proposed in
section 3. Section 5 summarizes the contributions, discusses their
implications, and proposes potential avenues for future research.

2 Background and literature review

2.1 Collaborative intelligence (CI)

As previously discussed, CI is the seamless integration of
human cognitive abilities with AI systems in order to facilitate
decision-making, problem solving, and development in many
different areas. Unlike conventional automation paradigms
that aim to replace human work with machines, CI promotes
collaboration between humans and AI systems. This approach
takes advantage of the unique strengths of both entities to

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2024.1434351
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Mehak et al. 10.3389/frobt.2024.1434351

produce results that neither could independently achieve
(Dellermann et al., 2021; Schleiger et al., 2024).

The implications of CI are disruptive in industries, as it
improves efficiency and safety. For example, CI systems merge
human insights with AI to optimize production demands,
streamline the process, and reduce production time (Trakadas et al.,
2020) in the manufacturing sector. Furthermore, it improves
workplace safety by integrating human supervision with AI-
powered surveillance technologies to monitor and predict safety
incidents (Zheng et al., 2023).

The evolution of CI has been accompanied by important
technological developments, particularly in the domains of machine
learning (Moustakis and Herrmann, 1997; Semeraro et al., 2023),
data analytics (Nardo et al., 2020), and Internet of Things
(Bissoli et al., 2019). Current advances in the field of CI emphasize
the necessity of adaptive learning (Sharifi et al., 2021) that can
improve system responsiveness based on user feedback (Mehta and
Losey, 2023), supporting sophisticated and contextually sensitive
collaboration between human and AI systems. Moreover, CI in an
industrial setting faces a plethora of challenges, starting with the
need for heterogeneous data from multiple sources (Victorelli et al.,
2020) subjective and contextual user feedback, the privacy and
confidentiality of data streams (Karat et al., 2007) and data quality
management. Addressing these challenges is critical if one wants
to exploit CI systems to their full potential. This study focuses
primarily on the quality of the data, which serves as the foundation
for successful human-AI collaboration.

2.2 Data quality

The role of data quality cannot be overstated in many fields.
Several works have been published on data quality challenges and
management in AI models, machine learning (ML), and Internet of
Things systems. Studies by (Ehrlinger and Wöß, 2022; Gong et al.,
2023; Zhou et al., 2021) highlight the challenges in achieving
high-quality data in ML, pointing out that the complexity of data
sources often outpace current standardization efforts, such as those
proposed by (ISO/IEC25012, 2008a). Recently, (Eckman et al., 2024)
has introduced the application of survey methodologies to improve
data collection processes, suggesting that the strategies developed for
survey data quality can be adapted to improve ML data acquisition.
By examining data quality aspects within ML pipelines, including
data collection, pre-processing, and validation, (Rangineni, 2023)
emphasize the imperative of adhering to quality standards in ML
development pipelines, exploring the direct correlation between
data quality andmodel performance. Furthermore, (Gudivada et al.,
2017) proposed a data quality management framework for big
data and ML, highlighting the importance of standards to ensure
data integrity in a large-scale data environment. The authors in
(Gupta et al., 2021) discuss the lack of focused efforts to improve
data quality in current research practices and underscore the
fundamental limitation that the performance of ML models is
bounded by the quality of the data used for training. Another
work by (Perez-Castillo et al., 2018) proposed a (ISO 8000-61,
2022a) based quality management framework for sensor data to
overcome the challenges associated with data quality activities in
smart systems. Moreover, the authors in (An et al., 2020) investigate

the application of blockchain technologies as a method to improve
data integrity and security in IoT systems. Their work presents
a decentralized approach to data quality management, using
blockchain’s inherent properties to ensure reliability of IoT data.

Collectively, these studies highlight the importance of data
and dataset quality in system development and functionality, and
advocate for a multidisciplinary approach, combining insights from
data science, ML and quality management to develop strategies to
ensure data reliability in complex computational environments.

2.3 Human robot interaction and data
quality challenges

The field of HRI is significant within the broader domain
of collaborative intelligence. It is dedicated to understanding,
developing, and refining the interfaces and interactions between
humans and robotic systems, ensuring that such collaborations
are as effective and efficient as possible. The type of interaction
includes both direct physical interaction and shared decision-
making processes, inwhich both humans and robots contribute their
respective abilities. Moreover, HRI exceeds traditional automated
systems, introducing robots capable of working alongside human
operators in shared spaces (Hentout et al., 2019).

The development of human data-driven HRI systems has
resulted in notable advances in productivity and safety within
the sector (Liu et al., 2016; Saheb Jam et al., 2021; Admoni and
Scassellati, 2014; Ravishankar et al., 2024; Yang et al., 2021).
In addition, the utilization of human feedback insights such as
cognitive or emotional state data (Khamassi et al., 2018), visual data
(Gao et al., 2021), and direct communication cues (Khamassi et al.,
2018) enable HRI systems to adapt and respond to the needs and
safety of human operators. In addition, these data can be used
in the training of adaptive models to allow robots to adjust their
behaviors and functionality to improve collaboration (Skantze et al.,
2014). Through understanding of the stress levels, concentration,
and fatigue experienced by human operators, robots possess the
ability to independently adapt to or notify humans of potential
hazards, creating a working environment that is reliable and
responsive (Bekele and Sarkar, 2014). Furthermore, the successful
implementation of HRI is based on the precision, dependability,
and timeliness of the data used in the development and training
of the model.

In HRI systems the quality of the data depends on the purpose
of their use, however, common data quality challenges include:
(a) the operationalization of relevant human signals or feedback
(Kim et al., 2020), (b) the distinction between noise, confounding
effects, and individual variation, (c) the prevention or correction
of missing data due to sensor malfunction (Teh et al., 2020),
recording or storing issues, loss of synchronization or human agent
non-compliance with the data collection process (Celiktutan et al.,
2017), or (d) the capture of relevant environmental, workplace
and task contexts that impact the operational design domain
and ecological validity of the system functions (Hoffman and
Zhao, 2020; Han and Williams, 2022). In this context, the impact
of data quality degradation can be measured by its impact
on HRI quality, as assessed by different robot-related metrics,

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2024.1434351
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Mehak et al. 10.3389/frobt.2024.1434351

human-related metrics or human-robot interaction-related metrics
(George Kokotinis et al., 2023).

2.4 An overview of ISO standards regarding
data quality

ISO standards explicitly referring to data quality are significant
within industrial systems, as they establish a structure for evaluating,
controlling, and improving data quality throughout its entire
lifetime. These standards set forth criteria and guidelines to ensure
that data, regardless of their origin, meet the strict criteria necessary
for precise analysis and decision-making. In the context of CI
systems, where decisions are based on data-driven AI analysis and
human input, adherence to these standards is imperative for CI data.
Table 1 summarizes key international data standards that present
data quality frameworks and management protocols that can be
suitable for CI data. To demonstrate the importance of data quality
standards for collaborative data, we have also specified their impact
level based on their contribution to the foundational quality (Perez-
Castillo et al., 2018; Batini et al., 2009; Panduwiyasa et al., 2021) and
expert opinion. For instance, ISO 8000-61 (ISO 8000-61, 2022a) is
marked as high due to its critical role in establishing the data quality
framework, and it is widely adopted and highly endorsed for its
comprehensive approach to data quality (Perez-Castillo et al., 2018).

Among these, the ISO 8000 series plays a crucial role in the
context of data quality management by providing a comprehensive
set of standards. These standards are designed to effectively monitor
data quality in various business operations. Specifically (ISO 8000-
1, 2022b), emphasizes the importance of data quality in achieving
specific goals and objectives. The standard promotes a structured
approach to data quality and governance to improve the decision-
making process. According to this standard, data quality is described
as an objective concept that can be assessed based on how well
the data aligns with its intended purpose. By offering a wide-
ranging framework, (ISO 8000-1, 2022b) addresses data quality
across different data types, formats, and organizational settings.
It can also be applied to leverage data in operational activities
and model training for ML systems, which can be relevant for CI
systems. However, the standard needs more detailed information
on the specific processing methods involved. Furthermore (ISO
8000-8, 2015a), defines and measures the quality of information
and data quality based on three categories: syntactic, semantic and
pragmatic quality. Syntactic quality measures conformance to syntax
requirements, semantic quality measures data alignment to what
it represents in the system, and pragmatic quality measures the
suitability of the data for a particular application. For CI data,
semantic quality verification can involve, (a) Identifying anymissing
data due to sensor malfunction, (b) data acquisition issues, (c)
loss of synchronization or human agent non-compliance with the
data collection process, and (d) ensuring that data variances match
expected patterns to appropriately map data to entities in the
operational domain (ISO 8000-8, 2015a). The practical relevance
of data in CI contexts depends on its pragmatic quality, which
considers the usefulness of the data against costs and benefits,
particularly important when using hard-to-collect human data.
The ISO 8000-61 (ISO 8000-61, 2022a) presents a structured data
quality management approach. The reference model begins with

comprehensive data quality planning, requirement specifications,
rigorous data processing, monitoring, and management. The
framework for considering the characteristics of the CI data in the
present study is specifically derived from the ISO 8000-61 (ISO
8000-61, 2022a).

The ISO 25000 (ISO/IEC 25000, 2014a) series, addresses
the Systems and Software Quality Requirements and Evaluation
(SQuaRE). They offer a comprehensive framework to guarantee the
quality of software products and systems, mainly those relevant
to ML and potentially CI systems. The key standards of this
series include (ISO/IEC 25001, 2014b), which handles quality
management; ISO 25012 (ISO/IEC 25012, 2008a), which focuses
on the data quality model; and (ISO/IEC 25030, 2019), which
deals with quality requirements. ISO 25012 (ISO/IEC 25012, 2008a)
defines a data quality model required to assess data quality needs
across multiple data processes such as production, collection, and
integration, emphasizing the importance of data quality within
compliance guidelines. It covers different data quality attributes
needed to maintain the integrity and practicality of data within
machines and human interaction.These factors, such as correctness,
completeness, consistency, credibility, and efficiency, are essential
to ensure the reliability and effectiveness of the data (ISO 8000-61,
2022a). As human data is commonly used within the scope of CI,
the concepts of compliance, efficiency, traceability, and accessibility
are significant for human factor impact assessment Schleiger et al.
(2024). In addition (ISO/IEC 25010, 2023a), introduces a quality
model for software that extends beyond data to incorporate
the quality of use, focusing on quality assurance and used in
conjunction with (ISO/IEC 25012, 2008b). To achieve optimal
results, it is critical to take into account both the data and the
application environment, as this perspective is fundamental to CI
applications.

ISO/IEC 22989 (2023b) establishes a framework for AI through
the definition of key concepts and terminology that encompass
various aspects of AI, such as systems and data. It underscores the
importance of data precision, the process of training and validating
ML models and the iterative nature of retraining models, and
highlights the ongoing evolution of AI systems to adapt and improve
themselves over time. Furthermore, the standard emphasizes the
critical role of data quality, annotation, augmentation, and the
significance of data sets in the training, validation, and testing
of AI models, thus influencing the efficacy and reliability of AI
systems. The lifecycle of an AI system comprises multiple stages,
with the standard stressing the pivotal role of data at each phase,
for example, training, validation, and testing. These stages are
fundamental in the evolution of AI models, necessitating the use
of high-quality, varied, and inclusive datasets to construct models
that function dependably and impartially in real-world settings.
By offering a vocabulary for discussing the AI system’s lifecycle,
the standard facilitates the integration of AI into collaborative
environments, ultimately supporting the adoption of CI systems.
Similarly (ISO/IEC 23053, 2022c), offers a systematic framework for
data management in ML systems. This standard focuses on the key
stages of data collection, preprocessing, and validation to ensure the
efficiency and dependability of AI models. The procedure highlights
the importance of precise data classification by segregating training,
validation, testing, and production data sets while ensuring
statistical uniformity to enhance model evaluation and practicality.

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2024.1434351
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Mehak et al. 10.3389/frobt.2024.1434351

TABLE 1 Summary of the key data quality standards for HRI systems.

Standard Title General
description

Relevance to
data quality

Relevance to
CI/HRI context

Impact

IEC 8000-61
ISO (2022a)

Data Quality
Management: Process
reference modal

Provides a process
reference model
framework for data
quality management,
including principles for
data quality planning
and control

Fundamental to measure
the quality of collected
data and improves the
processes to avoid data
nonconformity

Suitable for managing
heterogeneous data
sources and identifying
potential risks associated
with data or system

High

ISO/IEC 25010
ISO (2023a)

System and Software
Engineering

Defines software
product quality model
requirement elicitation
and specification

Integral to quality testing
and quality assurance

This can be applied to
define CI data quality in
use, regarding the
effectiveness,
productivity, safety, and
satisfaction of the user
interaction with the
system

Medium

ISO/IEC 25022
ISO (2008b)

System and Software
Engineering

Defines quality in use,
intended to be use with
other software quality
related standards

Provides evaluation
process and normalizing
quality in use assessment

Offers similar role like
ISO (2023a)

Low

Standard Title General
Description

Relevance to
Data Quality

Applicability to
CI/HRI Context

Significance

ISO/IEC 25012
ISO (2008a)

Software Engineering Defines a quality model
for data used in software
systems, covering 15
data quality
characteristics

Address data quality
characteristics

The quality
characteristics can be
used for data quality
assessment of captured
user feedback,
interaction experience
and data interpretations

High

ISO/IEC 25024
ISO (2015b)

System and Software
Engineering

The standard provides
set of specific quality
measures for each
related components and
corresponding entity

Defines quantitative
measures to assess data
quality and describes an
explanation of applying
those measures for
quality assessment

The quantitative
measures can be used to
analyze patterns and
correlations of collected
multimodal data for the
implementation and
development of the HRI
system

Medium

ISO/IEC 25030
ISO (2019)

Software Engineering
Quality Requirements

Focuses on the
requirements for
software product or data
quality, use for
requirement definition,
use and govern

The offered framework
in this standard use to
evaluate that the data
meets the defined and
expected quality criteria

Supports in determining
clear contexts in which
the CI system will
operate and ensuring
optimal functionality in
different conditions

Low

ISO/IEC 23053
ISO (2022c)

Framework for AI
System Using ML

Offers data acquisition
and data preparation
steps in the ML pipeline

Pertinent for the
development and
maintenance of AI
components in CI
systems

The standard supports
the development,
deployment, and
management of AI
systems within
collaborative
environments, ensuring
that these systems are
built and operated
transparently and
effectively

High
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The standard emphasizes the processes of cleaning and normalizing
the input-output data arrangements to enhance the performance
of the model. It is important to note that complying with the
systematic methodology for data management outlined in (ISO/IEC
23053, 2022c) is a prerequisite for developing AI systems that
demonstrate the ability, dependability, and adaptability required for
certain application domains.

3 Hybrid standardization

Hybrid standardization refers to a systematic approach to
identifying related standards that combines the strengths of
system-driven selection and collaborative preference among
stakeholders (Van Wegberg, 2004). It allows the re-contextualization
of several standards to better cover the emerging needs of complex
systems with multiple interacting components.

This study proposes a hybrid standardization framework to
improve data quality, specifically in CI systems. A CI system, as
depicted in Figure 1, is composed of several subsystems, including
the Computer/AI/ML subsystem(s) that stores, manages, and
employs both “target ML data” and “non target data,” distinguishing
the type of data. The information and interface subsystem
is responsible for user communication and between-systems
communication functions which is an essential component of CI
systems. Other subsystems include human collaborators, robotic
or mechanical subsystems, sensor subsystems, and environmental
components. Data streams from any of these sub-components, often
from more than one, can be used by the ML/AI component or
as contextual supportive information to implement the required
CI functions.

The framework takes into account the changing nature of CI
data, which involves complex interactions with human-generated
content that is subjective and context-dependent. Moreover, it uses
current data standards with best practices in ML data management
and identifies and applies specific standards to two main data
categories within the CI system. They are “target ML data” and
“non-target data.” For “target ML data,” the framework implements
extensive standards application to maintain accuracy, completeness,
and consistency. For “non-target data,” it allows for flexibility to
handle variability and contextual differences, maintaining a quality
baseline to support CI functionalities. The implementation involves
systematic mapping of ML or machine data flows to adhere to
data quality protocols, from collection through processing to the
formation of a well-curated dataset. Following that, it offers a
process guide of five steps for applying the proposed framework to
achieve data quality in CI systems, presented in Figure 2 based on
the guidelines from the standards. This hybrid approach provides
general management strategies to promote quality throughout the
entire lifecycle of the data, which can be extended to CI dataset
creation and use in complex industrial environments. The process is
divided into two main phases. The first phase can be applied before
data collection or acquisition and theoretically before system/model
development. This phase determines the specification of quality
requirements and quality planning, establishing a plan for data
quality risk mitigation and management and followed by the second
phase of data quality preparation and control.The second phase aims

to apply the defined data quality management procedures during
data collection and preparation.

To explain further, the first step of the framework is the
identification of key quality characteristics, followed by the
definition of the associated quality requirements for the global CI
system and AI/ML subsystem/s that are affected by the training
dataset quality. The quality requirements should be based on
the category of the system and subsystem, their function, and
criticality, as described in ISO 25030 (ISO/IEC 25030, 2019). These
requirements are defined for the system quality in use (QIURs)
or directly for the system/product characteristics ((PQRs). QIURs
and PQRs requirements and corresponding quality measures can
be defined based on the quality model in ISO 25010, ISO 25022
and ISO 25023, respectively. In a second phase, the data quality
requirements (DQRs) should be specified directly for the data used
by the system/subsystem based on the previously identified system
requirements, non-functional requirements and constraints, such
as data-domain-specific provisions. In addition to that, DQRs can
be defined by the data quality Model in the ISO standard 25012
and quality measures in ISO 25024. The differences of purpose
between ML/AI data (target data) and other context data (non-
target data) should be taken into account, as well as if their quality
impact on the system behavior can be controlled or predicted.
This should be considered when setting the strictness of the
quality requirements. Afterward, it is important to evaluate the
defined quality requirements in order to satisfy them in third step.
Prior to data collection and dataset compilation, risks for data
quality need to be determined, including the risk associated with
human factors, and a method should be specified to mitigate their
impact on the data and the system. The three steps above fall
within the Requirement Specification and Data Quality Planning
stage (first three steps in Figure 2), that outputs a data quality
strategy and how to implement it, taking into account the specified
data requirements, relevant policies, or domain-related standards.
Active management of data quality typically begins only after data
collection process (Gong et al., 2023). Once the data quality plan
is prepared, the quality implementation procedures for system and
human data should be identified, including dataset definition, data
acquisition, and quality review as discussed in ISO 22989 as part of
the second phase.

In data preparation and data quality monitoring and control, the
fourth step in Figure 2 is about addressing and implementing data
quality management procedures, following the recommendations
associated with the data quality risks identified in the previous step,
for each data management stage (a) dataset definition, (b) data
acquisition, (c) data annotation, (d) data preparation and cleaning,
(e) data augmentation, data sampling, (f) dataset composition,
and (g) data quality checking (ISO/IEC 23053, 2022c).The non-
target contextual data may not require such management stages,
however at minimum, a data quality check should be performed
and considered in improvement efforts of the system quality. The
fifth step, is about the identification and report of unresolved
data non-conformity and quality issues. Potential impacts on the
CI system performance should be analysed and quantified when
possible and the data quality plan should also be evaluated for
further improvement of the processes. This is the final step of the
feedback process to systematically improve the data quality and
eliminate identified root causes of data non-conformity. This step
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FIGURE 1
Hybrid standardization framework for CI (system) data quality management.

therefore depends on how data is collected to create a datasets and
should guide the final dataset collection.

4 Case studies

In this sectionwe demonstrate the application and efficacy of the
proposed hybrid standardization approach inmanaging data quality
within two specific case studies in industrial HRI. The case studies
were designed and conducted at Irish Manufacturing Research,
Ireland. Given that the datasets have not yet been published, we have
provided a high level description of the data. We focus on the data
quality challenges and management methods used, while offering
some practical strategies to ensure good quality CI datasets.

4.1 Human-robot teaching interaction
through kinesthetic programming by
demonstration (PbD)

This case study investigates human and robot teaching
interaction using Programming by Demonstration (PbD). PbD
is a supervised method which allows humans to impart skill to a
robot without explicitly programming the robot through different
direct or indirect input methods. One of the direct input methods
is kinesthetic teaching, where operators manually guide the robot’s
movement to demonstrate specific tasks.

The method is suitable for where traditional programming
struggles to adapt complex and frequent customization of
tasks in HRI. This approach reduces programming setup
time and increases the robot’s adaptability to varied task
requirements (Villani et al., 2018).

In developing our case study, we built upon the experimental
framework that was detailed in our previous work Mehak et al.,
2023). The framework has been specifically designed for collecting
multimodal collaborative data. The purpose of collecting this data
is three fold; first, to assess human performance and robot’s
learning curve in real time as it requires new skills from
human demonstration; second, to evaluate the ergonomics and
cognitive impact on human operators; and third, to train an
ML model to develop an adaptive HRI system. To collect the
collaborative data, we used state-of-the-art tools (Lin et al., 2023)
and metrics (Skaramagkas et al., 2023) for evaluating human
performance and analyzing the robot’s task execution algorithms.

The experimental setup of this study involves a collaborative
robotic arm with gravity compensation control to accurately
mimic human movements, an RGB-D vision sensor for object
tracking, and a mediaPipe-based vision system (Ma et al., 2022) is
developed to capture human ergonomic data of teaching postures.
We use a wearable eye tracker to capture the cognitive load
and focus of human operators during their teaching interactions.
During the experiment, operators perform two of predefined tasks,
demonstrating each step to the robot. Task one is simple object
manipulation and the other task involves object sliding over the

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2024.1434351
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Mehak et al. 10.3389/frobt.2024.1434351

FIGURE 2
Data Management Steps for CI applications.

slider representing traditional activities on a production line that
could benefit from automation. At the end of the experiment,
participants are asked to fill out questionnaires to give their
subjective feedback. The collected data consists of three sets:
humanmotion data, robot demonstration data and human cognitive
data. Further, we applied our hybrid standardization approach
and guidelines from data acquisition to dataset compilation,
following the procedure illustrated in Figure 2. A comprehensive
breakdown of data sources, tasks, and challenges related to data
quality that cover the need for high precision and consistency is
presented in Table 2.

The following sections detail the implementation of hybrid
standardization in our case study.

4.1.1 Quality requirement identification for the
system

In this case study, the system consists of two main subsystems;
the human subsystem, which is responsible for demonstrating tasks
to the robot, and the robot, which learns them and later executes
them. The additional subsystems include a human motion tracking
system and an eye tracker head system, as previously mentioned.
The quality requirements for the motion tracking system are set
to capture images at a resolution of 1080p with a frame rate of 60
frames per second, ensuring real-time data processing to accurately
track human movements. The eye tracker system is required to
operate with a sampling rate of at least 100 Hz and a latency of
less than 10 milliseconds to precisely monitor cognitive load and
attention. These specific requirements are tailored to the needs of

our collaborative robotic training environment, demonstrating that
the exact specifications can vary based on the application and system
goals. The requirements are identified on the basis of performance
efficiency described in (ISO/IEC 25010, 2023a). At the system
level, quality requirements focus on ensuring complete data flow
and interaction between these subsystems (ISO/IEC 25012, 2008a),
scalability to adapt to varying user interactions, and robustness to
operate effectively under various situations, as outlined by ISO/IEC
25030 (ISO/IEC 25030, 2019). Some additional requirements are not
explicitly covered by these standards, such as real-time adaptation,
multimodal data integration, and the scalability necessary for
dynamic environmental responsiveness, which are some of the
characteristics of collaborative systems (Odong et al., 2022).

4.1.2 Data quality requirements
The quality of data from both human and robotic sources is

a key factor in building a reliable HRI system (Mia and Shuford,
2024). This kind of data is often collected in an experimental setting
from a diverse group of participants, including some who have never
interacted with robots before. The collaborative data for this use
case consists of multiple categories of data, including human motion
data, robot programming data, user feedback and cognitive aspects of
operator recorded during the teaching interaction. The examples of
data instances can be visualized in Figure 3. Ensuring the integrity of
thedata is crucial, as itwill beused for systemperformance assessment
and the training of a deep learning model in the future. Therefore, we
adhere to ISO/IEC 25012 (ISO/IEC 25012, 2008a) and ISO 8000-
61 (ISO 8000-61, 2022a) to define the quality requirements for the
data. Data accuracy is one of the important quality requirements for
collaborative data (ISO 8000-61, 2022a). In this use case, to ensure
accuracy, it is needed to record the actual movement of humans and
capture precise positional coordinates, orientation and joint states
of the robot. Another quality requirement is defined to ensure data
completeness (ISO/IEC 25012, 2008a; ISO 8000-61, 2022a)that no
data points aremissed and capture a full representation of human and
robot interactions. Timeliness is an additional data characteristic (ISO
8000-61, 2022a), with data processed within a 10 m window to
provide immediate insights into the operator’s cognitive aspects and
integrity throughout the data acquisition phase. These requirements
are derived based on the functionalities of each subsystem tomaintain
data quality.

4.1.3 Risk identification and data quality plan
To identify possible risks related to data acquisition of

each type of data we referred to the guidelines presented by
data quality (ISO 8000-61, 2022a). The primary risks include
accuracy risk, where inaccuracies in task demonstration data could
lead to misinterpretation of human actions by the robot resulting
in incorrect task execution. Moreover, the completeness risks arise
from the vision system’s occlusion problem. This identification
highlight that even a minor deviations in recording human postures
can lead to substantial errors such as missing data, which in turns
can generate inaccuracies in the analysis, thus affecting the overall
validity and reliability of the research findings. The risk related to
cognitive data involves preciselymeasuring and timely processing of
cognitive assessments such as engagement levels and cognitive loads,
which are critical for enabling real-time adaptive teaching responses.
Additionally, the subjective nature of user feedback data requires
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TABLE 2 Use case 1 summarized: data sources, data quality challenges, impact and applicable standards.

Data sources System
operations

Description Unique
challenges in
CI

Data quality
issues

Impact on
system
performance

Applicable
standards

Human Motion Data Data collection from
vision sensor

Recording of human
postures while
performing teaching
tasks

- Susceptibility to
noise,

- Variability across
individualise

- Issues in data
reliability and
accuracy

- Impaired
evaluation of user
performance,

- Misalignment
leading to
inefficient
task execution and
safety issues

- ISO/IEC 25012
and ISO 800-61

Human cognitive
state data

Extracting eye
tracking data

Eye-tracking
metrics, involving
cognitive process
and visual attentions
recorded during
HRI.

- Extensive
preprocessing
required,

- Inconsistent
performance due
to changes in
environmental
conditions

Timeliness, and
consistence

- Inconsistent
performance due
to changes in
environmental
conditions

- Delays in data
processing
can impede the
real-time
interaction

- ISO/IEC 25012
Data quality
model,

- ISO 8000-61 Data
quality
management

Robot data Data collection from
robot sensors

Robot
- learned behaviors,
which are policies
acquired through
human
demonstrations

- Task adaptation Accuracy and
timeliness

- Reduced system
learning efficiency
and adaptation
efficacy

- ISO/IEC 25012 and
ISO/IEC 23053

Unified multimodal
data

- Data integration
and
synchronization

Combined data from
different data
channels

- Ensuring data
coherence across
different
modalities
and managing
diverse data
sources effectively

- Disparities in data
types can lead to
integration issues

Completeness,
integration, and
synchronicity

- Incomplete or
erroneous
responses from the
HRI system

—

comprehensive design and implementation of feedback methods as
they reflect user experiences, thereby supporting accurate system
adjustments based on real user feedback.

To manage the defined potential risks in this case study, the data
quality measures specified in ISO/IEC 25012 are followed as quality
assessment plan.

4.1.4 Quality control in data acquisition
The data acquisition is conducted in a laboratory setting. The

participants perform two simple assembly tasks (a) target object
placement and (b) object sliding on the slider. While completing the
tasks, a head mounted eye tracker system collects participant gaze
and pupil dilation. At the same time, the motion tracking system
captures the data about their teaching postures which include body’s
joint movements. In addition, subjective feedback on workload
and usability is also recorded using online questionnaires. These
responses are context-driven for developing the understanding
of HRI interaction dynamics and refining the robot’s learning
algorithms. After data acquisition, an initial investigation of the
data was performed to ensure that the data values and formats

were accurate, as a data preparation step in (ISO/IEC 23053,
2022c), and the data are categorised into two groups as user data
and robot data.

4.1.5 Dataset preparation and quality control
management

After data collection, the first step is to extract data from system
specific format to user accessible format for data preprocessing
involving data cleaning, where inaccuracies and inconsistencies
were removed. This involves cleaning out noise from the eye
tracking data and motion data, realigning the posture data, and
handling missing or extreme values. Furthermore, cleaning of eye
tracking data involves eliminating data points with unrealistic
values above an acceptable physiological limit for pupil size and
eye movement direction. Non-informative spikes such as blinks
and data loss due to poor calibration are retained and filled
via linear interpolation. Simultaneously, for motion data, the
missing values due to occlusions are addressed using smoothing
algorithms to impute the data. The data were annotated to
allow for contextual meaning that is crucially needed for the
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FIGURE 3
Visualization of data examples from case study 1. (A) Display of randomly selected data points derived from signals gathered and processed during the
Programming by Demonstration (PbD) task, featuring varying sampling rates and temporal dynamics. (B) Heatmap representing the cumulative
duration of gaze fixations, superimposed on the robotic setup from a side view. (C) Mapping of human posture trajectories, illustrating movement
patterns during the interaction.

preparation of CI data. For instance, annotations pertaining to
user data are labeling human postures as “ergonomic” or non-
ergonomic and cognitive data that have high task engagement levels
inferred from the eye tracking data and questionnaire responses.
The next step is to combine both data groups into a complete
dataset in order to correlate and analyze data from different
sources; this step is called data integration in (ISO/IEC 25012,
2008a). Lastly, the data set is transformed into suitable formats
to align with the technical requirements of analysis tools and
learning models.

After data set compilation, an internal report was produced to
highlight key processes and expert feedback on data quality and
unresolved issues. Each data streams present specific issue that were
reported with action taken from (ISO 8000-61, 2022a).

4.2 Human-in-the-loop telerobotics

The human-in-the-loop teleoperation case-study aims to
address flexible and dexterous manufacturing tasks by leveraging
the strengths of humans and robots (Figure 4). This type of
remote operation of a robot is well suited for medical device
manufacturing applications, that may involve the use of dangerous
tools, maintaining sterile conditions, andmanipulation of miniature
and malleable device parts. Moreover, it frequently involves high-
customization and low-volume production constraints. The human
operator bears the important role of adaptability and dexterity,
reducing the implementation costs compared to a fully automated
system.However, this role can be hindered by the teleoperation
interface design when it reduces the operator’s awareness, presence,

or engagement in the task. For optimal performance, a human-
in-the-loop teleoperation system should be able to monitor and
recognize in real-time the operators’ internal state, either cognitive
or affective, and adapt accordingly to improve their performance.
The systemcan resort to different adaptation strategies depending on
the user needs, such as adjustment of the interface design, changes
of the interaction modality or automation level (Dehais et al., 2020).
The internal state information can be estimated from different
types of human-related data, including behavioural, physical and
physiological indicators (Lim et al., 2018). In our CI system, an
operator’s mental workload recognition function is implemented
by a multimodal end-to-end deep learning model, that fuses two
physiological data streams (Electroencephalography (EEG) and
Eye-tracking).

An experimental teleoperation setup was developed for data
collection, including a remote robot station with a six-degree-of-
freedom robotic arm, a hot-wire mounted on the end-effector,
and several cameras to provide different views of the remote
environment. On the operator station the graphical user interface
is presented on a monitor, providing the operator with the real-
time camera streams and other robot state information. For training
and implementation of the deep-learning model, the physiological
data were collected from the subjects and prepared into a
dataset. Moreover, data related to the teleoperation interface, robot
kinematics, and task performance are recorded simultaneously to
provide context, generate labels, or be used as additional input
streams to the adaptation mechanism. Next, we specify the key
data quality management processes used to achieve the final goal
of dataset creation (including dataset definition, data acquisition,
data processing and cleaning), particularly those more relevant for
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FIGURE 4
Human-in-the-loop teleoperation CI system with cognitive computing ML component. Icons designed by Freepik, https://www.freepik.com

this type of CI data and application, guided by the proposed hybrid
standardization framework.

4.2.1 System quality requirements
The overarching goal of such a CI system, with collaboration

between a human operator and a teleoperation robotic system, is
to maintain a clean room environment and enhance productivity
in high-customization and low-volume production scenarios. These
goals require the system to support robotmanipulation dexterity and
flexibility, while providing higher handling precision and velocity.
The implementation of the CI system includes a computer sub-
system, a human collaborator/operator, a robotic sub-system, the
sensors sub-systems, the interfaces between them, and the relevant
environment for the system. The computer component implements
an AI sub-system with the goal of monitoring and real-time
recognition of the operators’ internal cognitive state. The operator
state recognition function is implemented by a multimodal model
that receives as input EEG and Eye-tracking sensor data, and outputs
the level of mental workload. The output of the recognition model is
communicated to the teleoperation system, which adapts according
to the recognized operator state (following a rule-based approach),
as depicted in Figure 4. This AI sub-system is not considered safety
critical for medical device manufacturing applications, but it is
essential to maintain the productivity of the cell.

The first step of the data quality management guide (Figure 2)
involves the identification of quality requirements for the system
and sub-systems according to their function, criticality, and the
context of use. The most relevant quality characteristics of the CI
system to meet the stakeholders’ needs in this case study (based
on the quality model in (ISO/IEC 25010, 2023a),are performance
efficiency, interaction capability, flexibility and reliability. A CI
production cell throughput requirement can be set no lower than
the manual production throughput, and a performance efficiency
measure should be selected to indicate the degree to which the
system meets this requirement. As a human-in-the-loop system,
the interaction capability measures the degree to which the system
is learnable within a specific amount of time, is easy to operate
and control, is engaging to the user, and can prevent human error.
Considering the high-customization and low-volume production
needs, the reliability of the system is important, mainly because it
is operational and accessible when required for use, fault tolerant,
and flexible to adapt to production parts and production workload
variation.

For the AI sub-system instead, functional suitability and
compatibility are essential.The sub-system should cover and provide
accurate results for all of the specified manufacturing tasks and
intendedusers and should be compatiblewith the other sub-systems,
particularly the sensor systems.
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4.2.2 Data quality requirements
To implement the second step of the data quality management

guide, we first identified the type of data required for the ML
task, then the data quality needs, and the most important quality
characteristics to monitor and examine, as advised in ISO 25030
(ISO/IEC 25030, 2019) and ISO 8000-61 (ISO 8000-61, 2022a).
The cognitive state recognition component requires synchronized
time series signals from biosensors and corresponding human state
labels. For this particular use-case, we highlight the importance
of accuracy, completeness, consistency, credibility, traceability, and
understandability characteristics of the 15 data quality dimensions
of the ISO 25012 Data Quality Model (ISO/IEC 25012, 2008a). The
accuracy of the training and testing data shall be considered as to
how accurately reproduces with high-fidelity the operational data,
also required to meet system functional correctness requirements.
Some examples of data accuracy measurements are the proportion
of outliers in the training dataset compared to the operational
data (ISO/IEC 25024, 2015b),the training and operational data
distribution difference, or the differences between the acquisition
chain used for the development of the model and the one used
in operation (Cappi et al., 2021). The compliance with data
completeness requirements, and the related data representativeness
dimension (Cappi et al., 2021), can be measured by more traditional
measures such as the proportion of samples with not null values for
a specific attribute/feature (ISO/IEC 25024, 2015b),or more simply
as the number of variables and variable values covered by the data
from the defined Operational Design Domain (ODD) (Cappi et al.,
2021). As the use-case data require extensive pre-processing and the
synchronization of multiple data streams, the data collection and
processing protocol shall be well annotated and logged, to support
credibility and traceability on this high-dimensional data, that is
not easily interpreted and understandable by non-experts. Some
examples of data credibility measures are the proportion of feature
values validated/certified by an expert or specific process (ISO/IEC
25024, 2015b),or the proportion of samples flagged during data
collection has potentially affected by a quality degradation source.

4.2.3 Risk identification and data quality plan
Data quality risks were then identified for each of the data

quality requirements, and a plan was formulated to prevent or
manage the risks, following the third step of the guide. One of
the major risks in the dataset definition stage is the non-rigorous
definition of the ODD, which does not take into account the
manufacturing task to perform or the targeted operational context
and consequently introduces bias or collects non-representative
samples. A data quality risk specific to this use case is the loss of
synchronization between the biosensors, particularly when acquired
with different devices and systems. Another major quality risk in CI
data acquisition is data contamination by the human operator/agent.
Data collection should be tailored towards the target users, e.g., for
teleoperation operators, as the skill level of different operators may
impact their physiological signals and reactions to different task
conditions. Similarly, when the task requires the operator to move,
steps should be taken either during data collection or after data
collection, to minimize the risk of data quality degradation due to
movement artifacts or occlusions. The likelihood and impact of CI
data quality issues are task and application dependent and should
be estimated accordingly. For example, in industrial tasks carried

out inside a building, with fixed lighting levels and interaction
through a screen display or virtual reality headset, such as in
the present case study, the light effects on the pupil signal and
pupil occlusions are less likely than for tasks carried out outside,
or for eye tracking data collected with portable glasses. For EEG
data, instead, it is empirically known that muscle and movement
artifacts have a bigger impact on the signal quality than heart
artifacts, due to their magnitude and lower availability of artifact
removal/correction methods. Moreover, for multimodal systems,
the impact of quality degradation in one of themodalities is expected
to be lower than in an unimodal system (Poria et al., 2017).
Paradoxically, during data preparation the quality of the data can
be affected by data transformations and the cleaning process. It
is crucial that the data processing procedure is planned and well
justified beforehand, and not changed during or after this stage to
avoid the introduction of bias.

Subsequently, we present some practical examples of how these
risks were minimized or handled during data acquisition and data
preparation.These examples serve as actionable solutions tomanage
data quality risks.

4.2.4 Quality control management during data
acquisition

Having identified the data sources, data features and data
quality needs of the system, as part of a dataset definition step
(Picard et al., 2020), data collection was planned and carried out in
an experimental setting. During the performance of a teleoperation
task, a screen-based eye-tracker system recorded the subject’s gaze
and pupil changes with a 60 Hz sampling rate, a mobile EEG
system recorded the subject’s brain activity changes with a 500 Hz
sampling rate, along with simultaneous recording of the robot
kinematics, task duration, and performance. After each trial/task,
the subject was requested to fill in online questionnaires to assess
their perceived cognitive state and to help generate operator state
labels for the data. To summarize, three groups of related data were
acquired: (a) user state data, (b) user behavior data, and (c) user
performance data (see Figure 5 for examples of the data collected).

During data acquisition, data quality monitoring and control
procedures were implemented for the identified data quality risks,
as advised in ISO 8000-61 (ISO 8000-61, 2022a). The EEG and
eye tracking signals were synchronized during collection with the
Lab Streaming Layer (LSL) (Kothe et al., 2024), using keyboard
events to mark the start and end of the tasks. LSL is a standardized
protocol that allows any sensor device that uses it to stream
different data types and multiple channels in a real-time, unified,
and synchronized way. Using this protocol allowed for easier
and higher quality data synchronization; however during data
collection, we nevertheless monitored the status of the streams and
that the event markers were being recorded (through real-time
stream visualization), to catch and correct any synchronization and
acquisition errors early. If loss of synchronization still happened
during the acquisition, a manual synchronization protocol was
implemented post-data collection, albeit having lower precision.
This issue was flagged when it happened, and during data
preparation, its impact on the data streams was analysed (e.g. lower
temporal correlation compared to the other recordings).

For our use case, as the data were collected from non-experts,
we monitored the subjects during the task to ensure they did not
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FIGURE 5
Visualization of data examples from the Human-in-the-loop Telerobotics case-study. (A) One hundred data points from signals collected and
computed during the teleoperation task, with different sampling rates and temporal dynamics. (B) Heat map of the total gaze fixations duration,
overlapped on top of the visual interface of the system. (C) Robot’s end-effector path during a cutting task.

show signs of confusion about the instructions, as the data recorded
in this situation will not be relevant to the ML task. Moreover, we
monitored them to detect any potential source of noise or artifacts
in the sensor data, coaching the subject to avoid unnecessary
movements or moving away from the workstation. This last step is
particularly important for the physiological sensors used, as they are
sensitive to several subject-related noise and typically have a physical
distance limit up to which they can capture the signals. Nonetheless,
the collected data should represent the expected movement and
range of motion of the human in operational conditions to comply
with data representativeness requirements (Cappi et al., 2021).
Similarly, for eye-tracking data, special care should be taken to
match the expected lighting conditions during operation with those
during data collection, when possible to control this factor. When
lighting levels are variable, the data can be cleaned during data
preparation. However it may not be possible to identify and remove
all lighting change effects on the eye-tracking data. Annotations of
potential sources of noise and the corresponding time stamps can
serve as a preliminary quality report of the data and can aid in the
data cleaning and processing step.

The interpretation of CI data, which can include indicators
of latent states and partially observable variables, may vary
significantly. Therefore, context information should be used for
more effective collaborative interactions (Zachary et al., 2015). The
user behavioral and performance data was collected and recorded
by ROS (a commonly used Robot Operating System), triggered by
the same events markers streamed with LSL. The data were added
to the final dataset by either synchronizing with the physiological

streams (e.g., real-time robot kinematic streams) or by annotating
data segments (e.g., annotating the trials with the associated task
performance). This context can be used as additional input streams
to the model or to label different ML tasks, supporting the reuse of
the final dataset to train other human-robot related tasks.

4.2.5 Quality control management during data
preparation

Following data acquisition, an initial exploration of the data was
performed to confirm that the values and formats are as expected
and reasonable for the task - data preparation step in (ISO/IEC
23053, 2022c). Before data cleaning, error rates were computed
with respect to NaNs, missing values, invalid data, or outliers, and
subsequently, cleaning, filtering, imputation, or discarding of the
data was performed according to the acceptable rates (considering
how the data streams are segmented for real-time recognition).For
example, for a pupil diameter signal with missing data, small gaps
can be interpolated over, while long gaps above 40 ms should
be marked invalid to avoid introducing unrealistic values (Kret
and Sjak-Shie, 2018). The intra- and inter-subject data distribution
should be measured to detect inconsistencies within subjects or
the population. It should be noted that, for human data, outliers
are common and may correspond to a normal variation in the
measured signals. We leveraged the data collection annotations and
additional context streams to better understand if outlier values
were due to normal variability or caused by non-task related sources
(e.g. when the subject was distracted or asked for help during
the experiment).
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The physiological data was further preprocessed and cleaned
according to community domain standards. For EEG data, different
approaches have been used in the literature (Kastrati et al.,
2021). The validity and usefulness of different EEG preprocessing
approaches for the use of deep learning are still being studied
(Kingphai and Moshfeghi, 2021), as there is a lack of methods to
compare them. For our CI application, as fast stream preprocessing
is required (within a few seconds for real-time implementation), we
employed an automated minimal processing protocol that applies
data resampling, spectral filtering, automated artifact correction
with the Artifact Subspace Reconstruction algorithm (Mullen et al.,
2015), and average re-referencing. This protocol aims to be feasible
in online operational conditions and avoids the need for manual
intervention, which can introduce bias and discrepancies between
the training and operational data acquisition chain. In our use case,
movement during the task was limited and eye-related artifacts were
themost common type of contamination. Nonetheless, for tasks that
require the subjects tomove, aminimal processing protocol may not
be enough to remove/correct these artifacts. For eye tracking data,
the transformation of the signals may first be needed to retrieve data
related to the pupil or gaze. The cleaning of these signals should
target periods with unrealistic values or distortions due to blinks
or other interference with eye tracking. Specifically for pupil-related
data, correction for lighting levels may be necessary to increase
signal quality and keep only task-related changes (remove pupil light
response effects in pupil size) (Lu et al., 2015).

All streams were then segmented into trials according to the
keyboard markers and subsequently into a few-second epochs. This
segmentation process varies depending on the data acquisition
protocol, but it is important to add the relevant metadata so that the
link to the raw data is not lost. For our use case, information about
the task condition ID, subject ID and epoch order within the trial
was kept. As data were collected from different subjects, different
days/sessions, and different streams, it is important to normalize and
scale it for each subject separately [see (Guo et al., 2022) for examples
of the use of normalization methods to reduce subject differences
and biases], particularly for subject-independent state recognition
models, as advised in (ISO/IEC 23053, 2022c).

4.2.6 Data quality report
After dataset compilation, all the processing steps are reported

along with the data, as well as data quality issues that were
not resolved or even when corrected may affect the model’s
performance. In our use case, we note the identification of
synchronization and event marker stream recording errors that
were corrected manually, which may introduce variations in the
quality of the data. As the effect of these types of errors is not
trivial to assess, caution should be taken at the model evaluation
stage, estimating the model’s output confidence for the affected data
samples (model performance may be over- or under-estimated).
Additionally, we recommend the continuous assessment of the
suitability of the dataset and production model to the operational
data and task. As the interaction technology and the non-linear
dynamic nature of human-system interactions evolves in complex
CI systems (Karwowski, 2012), so does the risk of concept drift and
the quality of the CI solution. An ideal CI system should be able
to use real-time dynamic data to retrain, update, and improve its
behavior continuously according to the new data.

Table 3 presents a summary of the proposed data quality
management processes for the teleoperation case-study.

5 Conclusions and impact for future
work

This work was inspired by the empirical challenges that were
encountered during data acquisition and management, aimed at
developing and testing the application of CI, specifically in the HRI
area of the CISC project (Leva and Estrada Lugo, 2023). Some of
those challenges can affect the ability of collaborative applications
to be fully used in industrial settings, potentially limiting their
efficiency.In the HRI context, the difficulty in operationalization of
relevant human signals can affect the safety of the human-robot
interactions and user experience/ergonomic benefits of HRI, while
the quality of human feedback can affect the robot’s knowledge
acquisition ability. The presence of noise, unaccounted individual
variation and missing data may limit the system’s interaction ability
and the implementation of complex system functionalities, such as
workspace or workpiece sharing.

Consequently, the article reported on the need for better
data integration and data quality management. These issues were
generalized, starting with limitations and challenges encountered
within the specific case studies. Therefore, it is worth highlighting
that they are informed by the technology deployed, the methods used
and the software tools available at the time of the experiment. For
example, the experimental data collectionmethods for the telerobotic
case study reported in Section 4.2 have several limitations that can
have an impact on the quality of the dataset and trained model,
namelyduetothecollectionwithinacontrolled labsetting,performing
only one specific teleoperation task during data collection, with a
limited number of experimental conditions. Even the proprietary
software used for EEG and eye tracking data acquisition did not
offer a user-friendly protocol for interfacing with each other and
did not facilitate the synchronization of the time stamps with other
data (no absolute time stamps were recorded). For the case study
regarding human-robot teaching interaction in Section 4.1, the real-
time feedback fromtherobot regarding theperformanceonthequality
of the trajectory demonstrated by the user is only observable after an
actual execution phase.

The two studies were covered by research ethics approval.
However, in general, issues related to the use and monitoring of
physiological data, such as those considered in this work, may need
to be explored further in connection with the need to monitor
human performance and how they can be deployed to avoid possible
stigmatization (O’Brolchain and Leva, 2020). Moreover, the impact
and relevance of these aspects can be very meaningful, as discussed
in Section 2. Following are some important considerations.

• The need for specific human in the loop provisions in safety
critical application, required by the EU AI act (Laux et al.,
2024), will come in conjunction with the necessity for those
applications to demonstrate better integration of their data
components to handle the automation/robotic inputs and
outputs, the control system inputs and outputs, and the many
possible forms of human inputs and outputs such as action,
physiological signals and subjective feedback.
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TABLE 3 Use case 2 summarized: data sources, data quality challenges, impact and applicable standards.

Data sources System
operations

Description Unique
challenges in
CI

Data quality
issues

Impact on
system
performance

Applicable
standards

Data Sources System Operations Description Unique Challenges
in CI

Data Quality Issues Impact on system
Performance

Applicable
Standards

Human cognitive
state data

Sensor data
collection

Recording of sensor
data as proxy to
understand the
internal operator
state

- High-fidelity
reproduction of
operational data,

- Sample
representing well
a population,

- Data with noise
and artifact
contamination

Accuracy,
Representativeness

Lower
generalization ability
and recognition
performance

ISO/IEC 25012 for
Accuracy and
Reliability

Human cognitive
state data

Sensor data
processing

Retrieving
meaningful latent
information from
human sensor data

- Extensive
preprocessing
required,

- Introduction of
bias in the
processing stage

Credibility,
Traceability, and
Understandability

Difficulty in tracing
and identification of
data quality root
causes for
non-experts on the
data type

- ISO/IEC 25012
Data quality
model,

- ISO 8000-61
Data quality
management

Multi-modal data Data
synchronization and
integration

Combining
heterogeneous data
types for analysis
and processing

Data coherence
across different data
types

Data consistency,
Integration,
Synchronicity

Reduced system
learning efficiency
and adaptation
efficacy

—

Human data, with
robot and task
context

System real-time
adaptation to
operator

Adjusting to changes
in operator state and
performance

Real-time system
processing of
operator data, with
robot and task
performance context

Data
contextualization in
unstructured and
complex
environment

Reduced system
flexibility and
efficacy in dynamic
conditions

—

• There is a need for improved customization in HRI. The
customization relies on utilizing human data for each operator,
adjusting interface preferences and task allocation. Successful
implementation requires precise, dependable, and timely data
for development and training, as poor quality can lead to task
inaccuracies and communication disruptions.

• Finally, these CI data quality and management issues are to be
supported by other data-related organizational processes, such
as the management of multimodal data storage architecture,
data transfer, data operations, and security. In addition,
organizational structure and human resources are key to
implementing and maintaining data quality policies and
cultures. These can be subject to other industry standards
and guidelines not considered in the present study (which
was limited to ISO standards), such as those issued by the
International Society of Automation.

5.1 Summary of key findings

The key recommendations derived in the present paper can be
summarized as follows.

• The use of standardized protocols can ensure seamless
integration and processing of multimodal data and address
challenges related to data format discrepancies.

• Maintaining robust metadata management practices and
documenting the origin, context, and preprocessing history
of data can facilitate its traceability and reliability in diverse
analytical scenarios.

• Understanding the data types, heterogeneous data sources,
nature of data (qualitative or quantitative), and intended use
of data within the CI context is of the utmost importance.This
understanding provides transparency in system behavior which
is useful in ensuring data quality in accordance with established
data quality standards.

• CI systems are not immutable and are characterized by their
dynamic and adaptive nature, as discussed in both the use cases
presented in this paper and the latest literature (Schleiger et al.,
2024). We must foster a culture of continuous improvement,
where feedback is actively sought and used to refine data
processes, improve system performance, and address any
emerging issues (such as possible changes in paces and
interaction as the level of experience and familiarity between
the system and the operator increases over time.

Recent works have started to address data-related issues and
their impact on the performance and quality of ML/AI data, mostly
focused on mitigating the risk of small, noisy, biased or corrupted
datasets through data resampling methods or model optimization
for increased robustness to specific quality issues (Whang et al.,
2023). The standardization of the data quality management process

Frontiers in Robotics and AI 15 frontiersin.org

https://doi.org/10.3389/frobt.2024.1434351
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Mehak et al. 10.3389/frobt.2024.1434351

can help in the systematic prevention of quality degradation, thereby
contributing to the improvement of the safety and behavioural
performance of data-driven and collaborative systems. Furthermore,
with the Artificial Intelligence Act (Laux et al., 2024) coming
into force, proposed by the European Commission to regulate
AI in the EU, this framework can be used to put a data
quality management system in place that ensures compliance
with this regulation and supports traceability, accountability and
fairness requirements. Finally, taking into consideration the narrow
definition of data quality employed in the proposed hybrid
standardization framework, that highly depends on the purpose
and conditions of the data use, its application to foundation and
general purpose AI models is limited. Further work is needed to
understand how the lack of a clear link between data purpose
and data quality affects these models' quality and trustworthiness,
the ethical collection and use of personal data (principle of data
minimisation), and the responsible use of data storage resources.

Future research will aim to explore other standards relevant
to collaborative systems in other domains, such as automation for
the process industry and energy sector related to control rooms
and distributed control systems. For prospective collaborative
intelligence and decision-support applications, paying attention
to aspects similar to those discussed in this paper may
also be required.
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