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Negligence of public transport drivers due to drowsiness poses risks not only to
their own lives but also to the lives of passengers. The designed journey tracker
system alerts the drivers and activates potential penalties. A custom EfficientNet
model architecture, based on EfficientNet design principles, is built and trained
using the Media Research Lab (MRL) eye dataset. Reflections in frames are
filtered out to ensure accurate detections. A 10 min initial period is utilized to
understand the driver’s baseline behavior, enhancing the reliability of drowsiness
detections. Input from drivers is considered to determine the frame rate for
more precise real-time monitoring. Only the eye regions of individual drivers
are captured to maintain privacy and ethical standards, fostering driver comfort.
Hyperparameter tuning and testing of different activation functions during
model training aim to strike a balance between model complexity, performance
and computational cost. Obtained an accuracy rate of 95% and results
demonstrate that the “swish” activation function outperforms ReLU, sigmoid and
tanh activation functions in extracting hierarchical features. Additionally, models
trained from scratch exhibit superior performance compared to pretrained
models. This system promotes safer public transportation and enhances
professionalism by monitoring driver alertness. The system detects closed eyes
and performs a cross-reference using personalization data and pupil detection
to trigger appropriate alerts and impose penalties.

KEYWORDS

media research lab, swish activation function, baseline behavior, custom EfficientNet,
pupil detection

1 Introduction

In the realm of public transportation, countless individuals rely on drivers daily
to reach their destinations safely. This necessitates a mechanism that can strictly
monitor driver performance and alert them whenever drowsy driving is detected.
Existing solutions use physiological, behavioural, and vehicle-based methods to detect
drowsiness. A combination of these methods, known as hybrid methods, is emerging
as a superior approach. Physiological measures involve using ECG sensors to track
variations in ECG signal frequency and EEG sensors to monitor brain activity through
EEG signals. Behavioural measures detect drowsiness based on driver behaviour, such
as eye closures, yawning, and head tilting. Vehicle-based measures use lane deviation to
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detect drowsiness. Current challenges with these methods include
late detection, where even a fraction of a second of negligence can
lead to an accident. Lane detection mechanisms that alert drivers
only after the vehicle has deviated from its lane are often too late.
Additionally, the need for sensors to be physically placed on the
driver is a setback for physiological measures. Behavioural-based
measures, which use extensively trained deep learning models to
detect drowsy behaviour, face challenges of high computational
cost and complexity, leading to delayed system performance and
unreliability in critical situations. Moreover, increased false alerts
from existing systems can distract drivers.

To address these challenges, the Journey Tracker System has
beendeveloped, employing an advancedmodel architecture inspired
by Efficient Net principles for closed eye and open eye detection.
This design balances model complexity, computational cost and
performance ensuring accurate and timely alerts for drivers. The
system also features sophisticated reflection detection and filtering
techniques, which remove frame reflections to enhance alert
accuracy. Personalization and pupil detection further refine the
system by cross-referencing detected closed eyes with individual
pupil data, significantly reducing false alerts. By combining efficient
model architecture, advanced filtering and personalizedmonitoring,
the Journey Tracker System provides precise and reliable drowsiness
detection, delivering alerts exactly when needed and significantly
improving driver safety.

2 Related work

Research on drowsy driver detection offers a promising avenue
to address this public health concern, potentially leading to safer
roads and improved wellbeing for all. Driver drowsiness detection
is a crucial aspect of ensuring road safety, and various methods
have been proposed to address this issue. One approach involves
monitoring eye aspect ratios (EAR) and facial expressions using
the iBUG-300w dataset. This method achieved 80% accuracy in
eye detection and 78% in drowsiness detection. However, future
work should focus on addressing challenges related to obstructions
and lighting variations for real-time monitoring (Saranya et al.,
2023). Another approach utilizes computer vision techniques and
a Raspberry Pi to detect driver fatigue and yawning in real-time,
achieving 73.74% accuracy. Potential improvements are necessary
for real-time monitoring, especially under low-light conditions
(Dehankar et al., 2023). A method focusing on face and eye region
detection to determine drowsiness using an eye aspect ratio
threshold achieved 97% accuracy. Future work should improve
performance under varying lighting conditions and address frame
reflections (Kannan et al., 2023).

Facial expression analysis using Open Face software and
Decision Trees achieved 91% accuracy. The system’s effectiveness
in nighttime driving remains an area for improvement (Abad et al.,
2021). Multimodal representations using K-NN and SVM learn
from driving videos, physiological signals, and steering wheel
movements. Future work should address data scarcity and involve
diverse participants to improve accuracy (Qian et al., 2022). A CNN
on Raspberry Pi, using the Viola-Jones algorithm, trained to detect
closed eyes, open eyes, yawning and non-yawning achieved 80%
accuracy. Addressing nighttime driving performance issues could

enhance practical utility (S. I et al., 2022). Driver’s facial landmark
detection and the 2s-STGCN model achieved 93.4% accuracy
on the YawDD dataset and 92.7% on the NTHU-DDD dataset.
Future efforts should focus on robust methods against illumination
changes and occlusions (Bai et al., 2022). Eye location detection
using Haar Cascade and EAR provides another method. Ensuring
reliable performance under various conditions remains a challenge
(Prasath et al., 2022). EEG signals recorded with commercial
headsets provide data for detecting drowsiness, achieving high
accuracy.Vehicle-basedmeasures offer non-intrusive data collection
but face external disturbances (Rezaee et al., 2022). The study using
PPG signals to detect heartbeat peaks achieved a 96% success
rate in detecting drowsiness. Sensor connection issues present
challenges (Purnamasari & Hazmi, 2018). Physiological monitoring
allows earlier drowsiness prediction, while vehicle-based methods
detect drowsiness (Perkins et al., 2023). Self-supervised learning
methods enable training with unlabelled datasets, demonstrating
great potential for drowsiness detection applications (Mou et al.,
2023). An embedded system using a Raspberry Pi, RGB camera,
and cloud computing for real-time drowsiness detection includes
a dataset with diverse samples. Addressing performance under
various driving conditions remains essential (Khan et al., 2023).

However, one critical aspect that emerges from these studies is
the necessity for the system to familiarize itself with the individual
driver’s behaviour over a period of approximately 10. By studying
the real-time behaviour of the driver initially, the system can better
discern the signs of drowsiness and effectively alert the driver when
necessary.

To further enhance the effectiveness of drowsy driver detection,
several pertinent questions arise, guiding the direction of this
research: How can a model architecture designed by specifying its
own structure and layers, using the design principles of EfficientNet
perform better compared to a pretrained EfficientNet model in
terms of accuracy and inference speed [1]? How can the journey
tracker system effectively deal with reflections on the frames,
which hinder the system’s performance [2]? Can incorporating input
received directly from the driver help to improve the real-time
monitoring of the driver’s alertness [3]? How does the information
gathered during the 10 min personalization phase contribute to
understanding the driver’s behaviour and help in reducing false
alerts [4]? and finally, how can the system ensure that drivers feel
comfortable with their frames constantly being captured, while also
addressing privacy and ethical considerations [5]? These questions
aim to provide insights and solutions to enhance driver alertness and
road safety.

3 Methodology

In the methodology section, the strategies to address the
research questions outlined in the related work section are detailed.

3.1 Functional overview

As depicted in Figure 1, the system captures video frames of
the driver’s eyes using a camera. Driver inputs are initially used to
determine the optimal frame capture rate. A 10 min personalization
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FIGURE 1
Functional overview.

phase follows, where the system establishes a baseline of the
driver’s eye behavior.Then, during themonitoring phase, the system
continuously analyzes captured frames for signs of drowsiness.
To ensure accuracy, both personalization and monitoring phases
involve reflection detection and filtering. Additionally, the system
classifies the driver’s eyes as open or closed in each frame. By cross-
referencing this information with the personalization data and pupil
detection, the system determines drowsiness and issues voice alerts
to warn the driver if necessary.

3.2 Architectural design of the proposed
model and training strategy comparison

3.2.1 Design principles of EfficientNet
This architecture ensures superior performance with fewer

parameters and computations compared to other popular
architectures like ResNet and InceptionV3. ResNet 50, while
addressing the vanishing gradient problem with residual
connections, introduces significant complexity and computational
overhead, making it less suitable for real-time applications in
resource-constrained environments. InceptionV3, although highly
effective for tasks like object identification due to its use of multiple
convolutions in parallel, is less suited for drowsiness detection.
This task requires understanding the subtle differences between
closed and open eyes through hierarchical feature extraction,
which goes beyond mere object identification. EfficientNet with
its balanced scaling approach, ensures efficiency as model size
increases, allowing it to perform efficiently across different model
sizes without sacrificing performance. This makes it ideal for the
nuanced task of detecting drowsiness in drivers. Comparative
metrics highlight EfficientNet’s advantages over InceptionV3 and
ResNet 50, demonstrating its superior accuracy, precision and recall
rates, as detailed in Table 1. These factors collectively justify the
choice of EfficientNet for a robust, efficient solution that excels in
performance, scalability and practical deployment for real-time
drowsiness detection and alerting systems.

TABLE 1 Comparison of pretrained and custommodel
performance metrics.

Efficientnet
b0 model

Inception
v3

Resnet 50

Test accuracy 90.35% 92.85% 87.06%

Test loss 0.3594 0.1602 0.2223

Validation
accuracy

98.81% 98.18% 88.43%

Validation loss 0.0351 0.0502 0.0500

Precision
Closed
Open

0.83
1.00

0.88
0.98

0.80
0.98

Recall
Closed
Open

1.00
0.81

0.98
0.88

0.98
0.77

Bold values indicate the best results in the comparison presented in the Table.

3.2.2 Custom EfficientNet model architecture vs.
EfficientNet pretrained models

The customized EfficientNet architecture for drowsiness
detection is tailored to improve performance and efficiency
compared to the original EfficientNet B0. Notably, the number
of blocks has been reduced from 7 in the original to just 4 in the
customized version, streamlining themodel for faster inference.The
convolutional layers have been modified with specific adjustments
in filter sizes and strides—for example, the customized version
uses 3 × 3 and 5 × 5 filters with strides varying from 1 to 2,
focusing on capturing subtle patterns between open and closed
eyes. This contrasts with the original EfficientNet B0, which
uses a broader range of MBConv layers optimized for a wide
variety of image features. Additionally, the output layer has been
simplified to suit binary classification, reducing the number of
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TABLE 2 Comparison of pretrained EfficientNet B0 and custom
model metrics.

EfficientNet B0
model

Custom
EfficientNet
model

Test accuracy 90.35% 94.66%

Test loss 0.3594 0.1366

Validation accuracy 98.81% 98.71%

Validation loss 0.0351 0.0404

Precision 91.93% 95.17%

Recall 90.35% 94.66%

Model size 48.30 mb 2.26 mb

Bold values indicate the best results in the comparison presented in the Table.

neurons and computational overhead. While the original model
is pretrained on the ImageNet dataset with 1,000 classes, the
customized version is trained on the MRL Eye Dataset, which is
specifically curated for eye state detection, significantly enhancing
its accuracy in this application. Moreover, dropout rates have been
adjusted to balance model complexity and prevent overfitting,
ensuring robust performance in real-time scenarios, particularly
in resource-constrained environments.

By carefully selecting architectural parameters, custom
EfficientNet models can achieve comparable or superior
performance with fewer parameters, reducing memory footprint
and inference time. This assertion is supported by Table 2, which
provides a comprehensive comparison between the performance
of the custom EfficientNet model and pretrained EfficientNet
models. It highlights key metrics such as accuracy, inference
speed and memory usage, demonstrating the efficiency of the
custom EfficientNet model architecture in addressing the specific
requirements of the task at hand. Figure 2 provides the architecture
diagram of the custom EfficientNet model. With this the first
research question is addressed [1].

3.2.3 Architectural design of custom EfficientNet
model

Custom EfficientNet model prioritizes balanced width and
depth for efficient feature extraction. The core building block,
the efficientnet_block function, processes data through a fixed
number of convolution layers with Batch Normalization and Swish
Activation.

The efficientnet_model function stacks these blocks in a
predetermined order, progressively increasing filter sizes within
each block to capture finer details. This balanced approach
between expanding filter dimensions (width) and stacking more
blocks (depth) ensures efficient feature learning without sacrificing
accuracy. Finally, the model incorporates Global Average Pooling,
Dropout and regularization to avoid overfitting and a Dense
layer with SoftMax activation for classification. Compiled with an
optimizer, loss function and training callbacks this architecture

achieves drowsiness detection through efficient feature extraction
and balanced model complexity.

Output from the average pooling layer will be of size 1x1x80
which is flattened to vector of dimension 80x1.

Logits are calculated by taking the dot product of the output of a
fully connected layer and theweights followed by adding a bias term.

Logit0(z0) =
80

∑
i=0
⬚Output[i]xw1 (1)

Logit1(z1) =
80

∑
i=0
⬚Output[i]xw2 (2)

where, the value of each element in the flattened vector of dimension
80x1 is represented by Output[ⅈ] and w1andw2 represent the
weights associated with each class “closed” and “open” respectively.

SoftMax activation function is applied to the Logits to obtain
the class probabilities. The probability of class 0 (P0) and class 1 (P1)
are calculated using the SoftMax function.

P0 =
ez0

ez0 + ez1
(3)

P1 =
ez1

ez0 + ez1
(4)

where, z0 and z1 represent Logits obtained from Equations 1, 2.
e represents Euler’s number, which is a mathematical constant
approximately equal to 2.71828.

Cross-entropy loss function is used to measure the difference
between the predicted probabilities and the true label. yi is the true
label (1 for the correct class, 0 for the incorrect class. Pi is the
predicted probability of class i, obtained using the SoftMax function
in Equations 3, 4.

L = −
1

∑
i=0

yi log (Pi) (5)

Regularization terms are added to the loss function to penalize
large weights and prevent overfitting.

R = λ
2
(‖w1‖2 + ‖w2‖2) (6)

where λ represents the regularization parameter.
Total loss or the sumof the cross-entropy loss and regularization

is calculated as in Equation 7.

Total Loss = L+R (7)

where L and R represent the Loss Function value obtained
from Equation 5. R represents the regularization term
obtained from Equation 6.

The update rule for the weights using the gradient descent with
Learning Rate is as in Equation 8.

wnew = wold − α×
∂L
∂ω

(8)

where wold represents the old weight parameter value. wnew
represents the new updated weight parameter value. ∝ represents
the Learning Rate. ∂L/∂ω represents the gradient of the loss function
with respect to weight.

Momentum update rule for the weight W is as in Equation 9.

wnew = wold − α× vt+1 (9)
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FIGURE 2
Model architecture diagram.

vt+1 = β× v1 + (1− β) ×
∂L
∂ω

(10)

vt represents the momentum at time t. vt+1 represents the
updated value of the momentum term after some time interval as
obtained in Equation 10. β represents the momentum parameter.

4 Experimental setup

4.1 Dealing with reflections

TheVGG16 architecture is employed for the reflection detection
model. Although resource-intensive with larger datasets, its
exceptional feature extraction capabilities proved beneficial for our
smaller dataset. Real-time captured frames are initially processed
through VGG16 for reflection identification. If reflections are
detected, Color normalization is applied to these frames. Color
normalization is crucial for removing reflections and enhancing
image quality. This process involves converting the image from
the RGB color space to the LAB color space, where the LAB
model separates lightness (L) from color information (A and B).
Contrast Limited Adaptive Histogram Equalization (CLAHE) is
then applied to the L channel to enhance contrast while preserving
color of the frame. LAB color space facilitates device-independent
color representation and allows for independent manipulation

of lightness and color components. Overall, color normalization
utilizing LAB color space and CLAHE improves image quality,
enhances details and ensures natural color appearance. With this
normalization the reflections in the frames are removed which
was a hindrance to the closed eye, open eye detection model to
have accurate detections. The normalized frames are then passed
as inputs to the subsequent EfficientNet model for closed and
open eye detection. This approach underscores the importance
of combining multiple models to achieve superior performance
in complex tasks. With this the second research question is
addressed [2].

4.2 Inputs from the driver

Driver inputs play a critical role in assessing their level of
restlessness and potential risk of fatigue-related issues while driving.
Three essential variables are collected: previous sleep duration,
previous working hours and any medication taken. These inputs are
fundamental in determining whether a driver may be experiencing
restlessness due to extended working hours or insufficient sleep.
Based on this information, the system adjusts its monitoring
levels accordingly. If a driver report extended working hours
or inadequate sleep, indicating potential restlessness the system
intensifies monitoring by increasing the frequency of eye frame
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analysis for detecting drowsiness. This proactive approach aims
to mitigate the heightened risk of driver drowsiness and ensures
timely intervention to maintain safety standards. Conversely, when
a driver reports adequate rest and arrives alert, the system adjusts
the frame analysis rate to allow longer intervals between checks
for drowsiness. This adaptive strategy optimizes system resources
while ensuring continuous monitoring aligned with the driver’s
condition. Bymonitoring these key inputs, including sleep duration,
working hours and medication effects the system gains valuable
insights into the driver’s state and effectivelymanages fatigue-related
risks through targeted adjustments in monitoring intensity. This
approach enhances the practicality of the system by enabling strict
monitoring to provide accurate alerts in critical situations, thereby
ensuring proactive measures are taken to uphold safety standards
during driving operations. With this the third research question is
addressed [3].

4.3 Cross-referencing drowsy eye
detection

The drowsy eye detected frames in the monitoring phase shall
be cross referred using personalization data and pupil detection
method before alerting the driver to reduce false alerts and have
more reliable system.

4.3.1 Personalization data
The initial 10 min phase for personalization is chosen because

drivers typically do not experience drowsiness immediately upon
starting to drive. In most cases, they remain awake and alert
for at least 10 min. This initial period provides an opportunity
to establish the driver’s baseline behaviour, which is crucial for
accurate monitoring and to prevent false alerts. Throughout this
phase, thresholds for open and closed eye blink rates are determined
by dividing the 10 min into multiple 10 s segments and recording
detections. Maximum counts for open and closed eyes across these
segments are set as thresholds. During ongoing monitoring, if a
closed eye is detected, the system examines the last 10 s window
of detections. If the count exceeds the threshold, it confirms a
closed eye condition and triggers alerts. Similarly, detecting an
open eye with a count twice the threshold indicates potential
drowsiness with open eyes, prompting necessary actions. This
method ensures validation of closed eye detections from the
deep learning model, enhancing alert accuracy and minimizing
false alert.

4.3.2 Pupil detection
The preprocessing of the eye region for pupil detection involves

several steps aimed at preparing the image for accurate analysis.
Initially, the eye region is converted to grayscale and thresholded
to create a binary image emphasizing the pupil where the pixel
values below 75 are converted to pixel value 0 representing black
and then pixel values above 75 are converted to 255 representing
white.Morphological closing is then applied to smooth irregularities
and enhance the pupil’s boundaries. Contours are detected in the
processed image, filtering out noise and small artifacts to focus
on significant features. The largest contour is identified as the
pupil, and its bounding rectangle is calculated to determine its

position and size. If a valid pupil is detected, a green rectangle is
drawn around it on the original eye region image. This process
facilitates the accurate detection of the pupil, enabling further
analysis and tracking of eye movements. The function returns True
if a pupil is detected and False otherwise, indicating the success
of the detection process. Figures 3, 4 illustrate how pupil detection
works, showing a grayscale image and a bounding box around
the detected pupil region. With this, the fourth research question
is addressed [4].

4.4 Privacy consideration

During personalization and real timemonitoring phase only the
eye frames are captured to address privacy concerns and ethical
considerations. By focusing solely on the eyes, sensitive facial
features are not recorded, respecting the privacy of the driver. This
approach ensures that only the necessary data for eye detection
is collected, minimizing any potential intrusion into the driver’s
privacy. With this the fifth research question is addressed [5].

5 Results

To ensure balanced training, the drowsiness detection dataset
was split to contain 40,837 images for each class (open and closed
eyes). These images were divided for training (32,670 images/class),
validation (8,168 images/class) and testing (1,612 images/class).
To assess model performance, metrics like test accuracy, test loss,
validation accuracy, validation loss, precision and recall were used.
Initially, these metrics were used to compare the performance
of pre-trained models (InceptionV3, ResNet 50, EfficientNet B0),
with EfficientNet B0 demonstrating the best performance with
98.81% of validation accuracy as shown in Table 1. Subsequently, the
focus shifted to EfficientNet B0. The same metrics were employed
to evaluate the performance difference between the pre-trained
EfficientNet B0 and a custom model built using EfficientNet design
principles. Results shown in Table 2 proved that custom model
with EfficientNet Design principles performed better compared to
pretrained EfficientNet B0 being more precise. Furthermore, the
custom EfficientNet model underwent fine-tuning with various
activations and combinations of learning and regularization pairs.
It was discovered that Swish activation with learning rates of 0.001
and 0.01 yielded better results in terms of precision and recall, as
demonstrated in Tables 2–4.

5.1 Swish activation: a smooth performer

Thechoice of activation function plays a crucial role in a neural
network’s performance. This model employs the Swish activation
function, a recent addition known for its benefits over traditional
options like ReLU, sigmoid, and tanh. Unlike ReLU, which
sets negative values to zero, Swish offers a smooth, continuous
transition from negative to positive values. This smoothness
in the activation function translates to improved optimization
during the training process, as evidenced by the results presented
in Table 3.
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FIGURE 3
(Left) Grayscale image of the eye used for detection. (Right) The same eye image with a bounding box drawn around the detected pupil region,
demonstrating the accuracy and effectiveness of the pupil detection algorithm.

FIGURE 4
(Left) Grayscale image of the eye used for detection. (Right) The same eye image with no bounding box, indicating no pupil was detected in
this instance.

5.2 Using SoftMax activation with
categorical cross-entropy in binary
classification

Through extensive experimentation, observed that the
combination of SoftMax activation and categorical cross-entropy
yielded significantly better performance metrics compared to using
sigmoid activation and binary cross-entropy. Specifically, our model
achieved a validation accuracy of 98.71% and a test accuracy of
94.66% with SoftMax, compared to a validation accuracy of 50%
and a test accuracy of 69% with sigmoid.

5.2.1 Normalization effect
The SoftMax activation function normalizes the outputs into a

probability distribution, where the sum of all probabilities equals

1. This normalization helps in cases where the decision boundary
between classes (open and closed eyes) is not sharp, providing more
stable and reliable gradients during training.

The mathematical expressions for the model performance
metrics are as follows:

Accuracy(A):A = TP+TN
TP+TN+ FP+ FN

Precision(P): P = TP
TP+ FP

Recall(R):R = TP
TP+ FN

F1–Score(F1): F = 2× P×R
P+R

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2024.1433795
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Yashaswini et al. 10.3389/frobt.2024.1433795

TABLE 3 Comparison of the performance of custommodel trained with
different activations in the convolutional layers.

ReLU Sigmoid Tanh Swish

Precision

Closed 0.94 0.83 0.92 0.90

Open 0.92 0.95 0.82 1.00

Recall

Closed 0.91 0.96 0.78 1.00

Open 0.95 0.81 0.94 0.90

Accuracy 93.14% 88.33% 86.14% 94.66%

Bold values indicate the best results in the comparison presented in the Table.

TABLE 4 Performance comparison of custommodel trained with
different learning and regularization rates with swish as
activation function.

Learning rate
and
regularization
rate pairs
Swish activation
function

(0.001,
0.01)

(0.01,
0.001)

(0.001,0.001)

Precision

Closed 0.90 0.96 0.94

Open 1.00 0.91 0.90

Recall

Closed 1.00 0.90 0.89

Open 0.90 0.97 0.95

Accuracy 94.6% 93.3% 91.7%

Bold values indicate the best results in the comparison presented in the Table.

Where TP is True Positives, TN is True Negatives, FP is False
Positives and FN is False Negatives.

6 Conclusion

Through meticulous experimentation and analysis, the
custom model architecture, incorporating the Swish activation
function, a learning rate of 0.001, and a regularization rate of
0.01, significantly enhances the reliability and effectiveness of
the journey tracking system for detecting driver drowsiness in
real-time. Fine-tuning hyperparameters and evaluating model
architectures resulted in a remarkable accuracy rate of 95%,
surpassing the performance of pre-trained models. This optimized
system ensures the safety of passengers and drivers, promoting
professionalism and accountability within the transportation sector.

Comprehensive monitoring and personalized alerts, represent a
significant advancement in ensuring driver alertness throughout
the journey.
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