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The rapidly increasing capabilities of autonomous mobile robots promise to
make them ubiquitous in the coming decade. These robots will continue
to enhance efficiency and safety in novel applications such as disaster
management, environmental monitoring, bridge inspection, and agricultural
inspection. To operate autonomously without constant human intervention,
even in remote or hazardous areas, robots must sense, process, and interpret
environmental data using only onboard sensing and computation. This capability
is made possible by advancements in perception algorithms, allowing these
robots to rely primarily on their perception capabilities for navigation tasks.
However, tiny robot autonomy is hindered mainly by sensors, memory, and
computing due to size, area, weight, and power constraints. The bottleneck in
these robots lies in the real-time perception in resource-constrained robots. To
enable autonomy in robots of sizes that are less than 100 mm in body length, we
draw inspiration from tiny organisms such as insects and hummingbirds, known
for their sophisticated perception, navigation, and survival abilities despite their
minimal sensor and neural system. This work aims to provide insights into
designing a compact and efficient minimal perception framework for tiny
autonomous robots from higher cognitive to lower sensor levels.

KEYWORDS

frugal AI, minimal AI, resource-constrained, autonomy, navigation, depth estimation,
optical flow

1 Introduction

Nature has spent 3.8 billion years on research and development in genetic evolution.
Over the generations, living beings have evolved based on their daily activities, habitats, and
surrounding environments. This natural evolution has been purposive (or parsimonious)
rather than generic, primarily driven by perceptual behaviors tailored to specific needs
and conditions. One may say that the path to evolution is frugal. Over millennia,
these systems have become highly efficient at solving specific tasks. Such parsimonious
systems, or living beings, provide a blueprint for developing the next-generation of
robots. The essence of parsimony lies in utilizing minimal information or sensing
modalities to achieve goals efficiently. In contrast, the field of robotics and Artificial
Intelligence (AI) has been in development for just 50 years, with much of this time
spent on developing independent and generic modules. Inspired by nature, robot
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autonomy frameworks that rely solely on onboard sensing and
computation can be built, exploring new possibilities at robot
scales that were never thought possible before. The path to robot
autonomy lies at the intersection of AI, computer vision, robotics
and sensing–leading to the tiny palm-sized parsimonious robots that
excel in resource-limited settings.

Robot autonomy within a resource-constrained environment is
a complex and challenging task that requires intricate strategies for
optimal functionality. The core concept involves creating robotic
systems that can independently carry out tasks with limited
computational power, energy availability, or sensor capabilities. This
becomes especially crucial in contexts like aerial robotics, deep-
sea exploration, or space missions, where managing resources is
essential. Algorithms such as reinforcement learning or genetic
algorithms optimize resource use dynamically. These algorithms are
tasked with balancing resource consumption against the quality of
task execution to enhance efficiency. Additionally, sensor fusion is
pivotal for compensating for limited sensor capabilities, combining
data from various sources to enrich comprehension and precision.
Both software and hardware are intricately co-designed to exploit
specific hardware characteristics for improved resource utilization.
Furthermore, autonomy in resource-constrained robots involves a
comprehensive integration of planning, learning, perception, and
decision-making, ensuring effective operation under challenging
conditions.

From the perception perspective, robot autonomy in resource-
constrained environments poses unique challenges and requires
creative solutions. The perception system of a robot, which
might include cameras, lidar, sonar, and other sensors, acts as
its ‘eyes’. However, these sensors’ capabilities might be limited
in environments where resources are constrained. To overcome
this, techniques such as sensor fusion are essential. Sensor
fusion integrates data from various sensor types to enhance the
overall understanding of the environment and reduce perceptual
uncertainty. Additionally, deep learning and computer vision
methods are employed to identify relevant features from the sensory
data and recognize objects and patterns. However, these techniques
need to be efficiently executed due to constrained computational
resources. Energy considerations are also critical, as continuous
data collection and processing can consume significant power.
Strategies like low-power modes and selective perception—where
only pertinent data are processed—are vital. Thus, in resource-
constrained robot autonomy, the perception system must carefully
balance the depth and detail of environmental understanding,
computational demands, and energy efficiency to maintain reliable
functionality. Figure 1 illustrates tiny robots that utilize our
framework. It shows the tiny scale of robots that cannot carry
existing conventional sensors and computers.

Although computationally intensive perception algorithms
can be offloaded to cloud computers or companion computers
via networking, this raises an essential question: ‘Why do we
need onboard autonomy?’. Autonomous systems that depend
on wirelessly connected companion computers nearby or cloud
computing face challenges in wild deployments. Such systems are
vulnerable in GPS-denied environments and are often subject to
latency issues. Onboard robot autonomy enhances system security,
reducing vulnerability to hacking and other security threats and
increasing robustness. While there are capable autonomous robots

with substantial onboard computing that are relatively large (over
300 mm) for both aerial and ground applications, another question
arises: ‘Why dowe need small robots?’ Small robots are safe and agile
and can be deployed in swarms, making them highly scalable and
cost-effective to produce. Additionally, these autonomous swarms
allow robots to navigate and inspect confined or hazardous areas
that are time-sensitive, such as thermonuclear power plants. It is
well understood that robot autonomy is significantly influenced by
factors like memory speed and size, sensor type and quality, and
required power. These factors directly impact the robot’s size, area,
and weight.

Despite significant differences in size, area, weight, power,
computation, and sensor capabilities, creatures like bees and
birds can perform comparable tasks. However, their sensing
and computation can differ based on their body structure and
environment. Biomimetics, or biologically inspired engineering,
provides essential insights for designing and creating robots by
studying natural systems such as animals, birds, insects, and plants.
For instance, the visual processing capabilities of a dragonfly, which
can detect movement and measure depth with remarkable accuracy,
inspire the development of machine vision algorithms for robotics.
Similarly, the sonar system of bats, essential for navigation and
hunting in complete darkness, serves as a blueprint for crafting
robust echo-based sensing mechanisms, particularly beneficial for
robots functioning in low-visibility conditions. Birds, adept at
adjusting their flight dynamics in response to wind variations,
provide valuable insights into developing adaptive perception and
control systems for aerial drones. The tactile sensitivity of rodents’
whiskers also offers guidance for designing touch-based perception
systems for robots navigating dark or cluttered environments.
Moreover, swarm robotics frequently takes cues from ants’ and
bees’ communication and coordination strategies, enabling them to
perceive their environment and execute complex tasks efficiently
and collectively. Therefore, perception research in biomimetics
focuses on interpreting and leveraging nature’s sophisticated sensory
systems to advance robotic perception and interactive capabilities.

Thus, nature inspiration is a blueprint for developing the next-
generation of tiny robots with onboard autonomy capabilities. It
is key to significantly scaling down current autonomous systems
while maintaining or enhancing their capabilities. Refer to Figure 2,
which illustrates the perception capabilities of various organisms
relative to their body lengths. It is important to recognize that,
generally, perception capabilities increase with body size, meaning
larger organisms have more mature perception systems. However,
there are notable exceptions, such as jumping spiders, cuttlefish,
and certain species of frogs. For instance, jumping spiders possess
a low-resolution vision system that effectively processes fast-
moving objects, allowing them to respond and capture prey
swiftly. Meanwhile, cuttlefish and some frogs have evolved their
visual systems by altering the shape of their apertures, such as
the ‘W’-shaped aperture in cuttlefish and vertical or horizontal
openings in some frogs. Additionally, the blue and green bubbles in
Figure 2 represent real-world tiny robots with onboard autonomy.
Previously, robots as small as 120 mm could perform tasks like
navigation, obstacle avoidance, and maneuvering through gaps of
unknown shapes (Jagannatha Sanket, 2021), as indicated by the blue
bubble. This work progresses, enabling even smaller robots–as small
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FIGURE 1
Tiny autonomous robots that utilize our Minimal Perception framework. (A) Autonomous drone of ∼120 mm in diagonal length and compared with
hummingbird. (B) Autonomous car of about ∼70 mm in length and compared with a wolf spider.

FIGURE 2
A qualitative comparison of (A) living beings and (B) robots regarding perceptual capabilities for their scaled body length. Observe the anomaly in (A)
presented in green bubbles: jumping spider, bat, and cuttlefish. Note that cat and eagle sizes are not to scale.

as a credit card (less than 3 inches in length) – to achieve enhanced
autonomy, as shown in the green bubble.

To achieve scalability, sustainability, and distributability in
these robots, small palm-sized robots must be built capable of
performing parsimonious tasks. In this work, we introduce a
minimal perception framework that is at the heart of robot
autonomy for palm-sized robots.This principle of simplicity guiding
complexity should also inspire our approach to robotics—where we
aim to evolve complex functionalities out of simple designs, focusing
on efficiency rather than excess. One of the profound influences
on this idea comes from Noam Chomsky’s Minimalist Program in
Linguistics. Chomsky, a distinguished linguist, cognitive scientist,
and philosopher, introduced this program as a fundamental
reevaluation of syntactic theory, suggesting that nature, including
human language, functions as straightforwardly and efficiently as
possible. At the heart of Chomsky’s theory is that sentences are
constructed from a basic set of lexical items through binary merges.

This minimizes computational complexity by consistently using the
same operations to structure sentences. This allows for an endless
variety of expressions from a limited number of elements. Another
key aspect of the Minimalist Program is the principle of ‘economy,’
which posits that linguistic expressions adhere to a principle of using
the least resources necessary, reflecting the minimalist credo that
‘less is more.’

We introduce a Minimal Perception framework (see Figure 3)
that takes inspiration from nature and addresses the frugality or
minimalism at all levels–from higher cognitive to lower sensory
levels. This sits at the heart of autonomy frameworks for resource-
constrained robots. The purpose of this work is to introduce the
methodology of minimal perception to the robotics community. To
achieve it in the confines of this paper, we had to rely on a number
of results from our previous and current research along with novel
concepts. Specifically, we utilize our results from Ajna (Sanket et al.,
2023), TinyDepth (Singh, 2023), CodedVO (Shah et al., 2024b)
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FIGURE 3
Minimal perception framework.

and AMI-EV (He et al., 2024) to show a taxonomy of perception-
action questions.This taxonomy constitutes the minimal perception
framework.

1.1 Related works

Active vision (Aloimonos et al., 1988; Bajcsy et al., 2018;
Bohg et al., 2017; Jagannatha Sanket, 2021) is a dynamic approach
in computer vision and robotics where a system controls where
it focuses its attention instead of passively scanning the entire
scene. This often involves physically moving the sensor or
altering the environment. It mimics the way humans and animals
actively look around to collect information. GapFlyt (Sanket et al.,
2018) explores these behaviors and computes optical flow from
various perspectives to estimate ordinal depth. However, one
major drawback of this approach is its lack of mathematical
guarantees for navigating through gaps since it cannot compute
metric information.

The use of neuromorphic sensors is another minimal source
of information that has become ubiquitous in robotics today.
(Falanga et al., 2020). addresses the problem of dodging spherical
objects on drones. EVDodgeNet (Sanket et al., 2020a) furthers this
research with avoidance and pursuit tasks for unknown dynamic
obstacles. (Xu et al., 2023). introduces a bio-inspired architecture for
event camera drone avoidance.

Sparse sensing has also been extensively studied to enable
autonomy on tiny robots (Duisterhof et al., 2021). introduces
learning on tiny robots (Ostovar, 2022). introduces indoor collision
avoidance with sparse time-of-flight depth sensors. (Müller et al.,
2023). develops robust and efficient depth-based avoidance systems
for miniaturized UAVs (Friess et al., 2024). demonstrates an
onboard SLAM method for distributed mapping on a swarm
of nano drones (Müller et al., 2024). illustrates using ultrasound
sensors for low-power robot autonomy.

Researchers have leveraged camera models to estimate metric
depth from single images in computational imaging by altering
the camera apertures (Gopinathan et al., 2003). introduces custom
coded apertures to existing cameras for efficient motion tracking
(Asif et al., 2016). introduces a thin and lensless camera using
a coded aperture that makes the camera systems smaller. The

use of passive elements on the aperture plane is a well-explored
concept, particularly in applications such as light-field imaging
(Veeraraghavan et al., 2007) and depth estimation (Levin et al.,
2007; Zhou et al., 2011; Takeda et al., 2013). It is understood that
the depth-dependent defocus, known as ‘bokeh’, or the point
spread function (PSF), is influenced by the amplitude and phase
of the aperture employed. The two most commonly used coded
apertures are the amplitude mask (Levin et al., 2007) and the
phase mask (Wu et al., 2019).

2 Materials and methods

Theunderlying principle ofminimal perception is to extract only
the essential information to perform a given task while optimizing
resource utilization in autonomous systems. The principles that
govern the minimal perception framework are as follows:

• Selective Information: Minimal perception involves the
selective extraction of useful information from the
environment. The fundamental idea is to focus and prioritize
relevant data that is useful for a task Ti while disregarding non-
essential and/or redundant data. Techniques such as salient
feature selection/analysis (Simonyan et al., 2014), attention
mechanism (Niu et al., 2021) and passive computing (Singh,
2023) hold the key to minimizing the computational load
especially when dealing with large inputs.

• MinimumPriorKnowledge: ‘What is the informationI required
to solve ℕ set of tasks Tℕ in a given amount of time?’ This
question explores the feasibility of accomplishing tasks with
the least amount of prior knowledge. Strategies of Active and
Interactive Perception (Bohg et al., 2017; Kragic et al., 2018)
are crucial in addressing these tasks when minimal prior
knowledge is available.

• Adaptive Sensing: The utilization of adaptive sensing
strategies to tailor data collection to the specific context
and task requirements is an essential element for a
minimal perception framework. These adaptive sensing
techniques modify sensor parameters dynamically, including
sensing modalities and modifications to aperture shapes, to
efficiently gather the required information. By adapting the
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TABLE 1 Minimal perception versus traditional methods (maximal perception).

Principle Minimal perception Maximal perception

Information Selection Extracts only essential data from sparse or minimal
sensing

Extracts comprehensive data from dense sensor arrays,
including LiDAR and multiple cameras

Prior Knowledge Low Prior Knowledge. Gathers necessary and latent
information through environmental interaction

Higher Prior Knowledge. Utilizes extensive pre-built
maps and databases for navigation and task execution

Sensing Adaptiveness Utilizes lightweight sensors with dynamic parameter
adjustments based on task requirements

Uses high-resolution, fixed-parameter sensors for
detailed environment mapping

Attention Mechanism Focuses computational resources on critical tasks
through attention-based processing

Applies brute-force processing power to manage all
sensor data simultaneously

Hardware Software Optimization Integrates simple hardware with efficient software
algorithms to maximize performance per watt

Uses powerful processors and GPUs to handle
complex algorithms and large volumes of data

sensing process to current conditions, minimal perception
minimizes resource use and enhances the efficiency of data
acquisition.

• AttentionMechanism:Attentionmechanisms play a crucial role
inminimal perception by directing computational resources on
stimuli. Inspired by nature’s visual attention, these mechanisms
distribute processing power and sensory attention to the
most pertinent aspects of the input data. By selectively
concentrating on essential features or areas,minimal perception
enhances computational efficiency and supports real-time
responsiveness in systems with limited resources. Section 2.2
demonstrates this principle by illustrating the robot’s ability
to estimate dense depth across all spatial directions. However,
it strategically allocates its computational resources primarily
to the direction that presents the highest potential risk,
thereby ensuring effective obstacle avoidance and navigation
during tasks.

• Hardware-Software Optimization: To quote a famous
researcher, Alan Kay, “People who are serious about software
should make their own hardware.” Hardware-software
co-design is crucial for enhancing the functionality and
performance of mobile robots. This approach involves
the integrated optimization of hardware components and
software algorithms tailored to meet the specific needs
of mobile robotic applications. The co-design process
balances computational efficiency, power consumption, real-
time responsiveness, and physical limitations. This balance
enables mobile robots to effectively navigate environments,
execute complex tasks, interact with humans, and adjust to
dynamic conditions.

The notion of minimal perception can be conceptualized
at different levels–from higher cognitive to lower sensor levels.
We classify minimal perception into three different hierarchical
levels (Figure 3) – (a) Minimal Information Models, (b) Minimal
Sensing Modality, and (c) Minimal Data Acquisition. Table 1
illustrates the difference between minimal perception and
traditional approaches for every aforementioned principle.
Note that these principles are valid at each of the three
hierarchal levels.

2.1 Minimal information models

The classical theory of visual perception, which relies on
single images tailored for static scenes, has been highly successful.
However, it falls short in dynamic real-world environments,
posing limitations on robot autonomy. By incorporating motion or
Temporal Information (TI) alongside sensor characteristics, we’ve
unlocked previously untapped potentials in perception. Utilizing
TI allows us to address common robotics challenges, such as
navigation and segmentation, without needing depth or range
sensors. To achieve these tasks, the robot must understand the
environment’s geometry and the physics of its movements rather
than solely focusing on scene characteristics. Let us look at an
example that depicts the importance of observing the environment
from multiple views.

Figure 4 depicts a scene with a foreground and a background.
In Figure 4A, the side view setup is shown, with the yellow region
representing the foreground containing a gap or hole and the blue
region representing the background. Notably, both foreground and
background elements have identical textures. Observing the scene
from a single view, as depicted in Figure 4B, it is impossible to
determine the precise location of the gap. However, by combining
Figures 4B, C, optical flow calculation becomes feasible, enabling the
estimation of ordinal depth. Consequently, the gap in the image can
be identified, as demonstrated in Figure 4D.

Active vision strategies have the potential to greatly augment
the functionality of automated systems in real-world scenarios,
including autonomous vehicles, industrial robots, and surveillance
systems. For instance, an autonomous vehicle outfittedwith an active
vision system can dynamically adjust its sensors to focus on specific
points of interest, such as pedestrians, road signs, or other vehicles.
Likewise, in surveillance applications, an active vision system can
prioritize monitoring unusual movements or behaviors, thereby
enhancing the overall effectiveness and efficiency of the system.
Consequently, active vision is pivotal in advanced AI systems,
enabling them to engage more proficiently with their surroundings.

GapFlyt (Sanket et al., 2018) investigates these behaviors and
introduces TS2P, where optical flow (Ilg et al., 2017) from various
viewpoints is obtained and stacked to estimate ordinal depth.
However, a notable limitation of this technique is the lack of
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FIGURE 4
Segmentation of the gap with similar texture on the foreground and background elements. (A) 3D model of the scene. (B,C) Snapshots of consequent
timestamps. (D) Segmentation result.

mathematical assurances for successful gap traversal. The drone
cannot estimate the metric depth of the gap or determine whether it
has successfully traversed through it.

Temporal information (TI) also introduces uncertainty into
network predictions, a feature currently exploited by roboticists
and computer vision scientists to enhance accuracy. However, these
uncertainties harbor hidden insights with considerable potential
for addressing various robotics challenges. Aleatoric uncertainty, in
particular, characterizes biases inherent in sensor data collection,
such as cameras’ limited perception of obstructed objects. To
illustrate the potential of these additional cues, aleatoric uncertainty
prediction was exclusively applied to TI, specifically optical flow,
for a range of robotics applications. The primary advantage of
relying solely on uncertainty rather than traditional predictions is
a significant reduction in computational costs, often by a factor
of 10–100. Works like Ajna (Sanket et al., 2023) exemplify real-
time robotics tasks utilizing uncertainty, including navigation,
static and dynamic obstacle avoidance, traversal of unknown
gaps, and segmentation. Substantial uncertainties were observed in
challenging areas of optical flow, such as occlusions and motion
blur, effectively aiding obstacle detectionwithin the scene.Moreover,
a promising class of sensors known as neuromorphic sensors or
event cameras, capable of extracting TI at the sensor level, holds the
potential for further enhancing robot efficiency.

While uncertainties are valuable for integrating multiple
measurements, we believe their potential in robotics remains
largely untapped. This is primarily because uncertainties offer
contextual insights beyond their combined capabilities. Before
exploring specific examples, let’s introduce two common types
of uncertainties: Aleatoric, also known as observational data
uncertainty, and Epistemic, which relates to model uncertainty.
Aleatoric uncertainty reflects the sensor’s inherent bias in data
collection, while epistemic uncertainty stems from the scenarios
used to train themodel. For instance, aleatoric uncertainty would be
significant in transparent or dark regions when using RGB-D data.
In contrast, when applied to outdoor data, a network trained indoors
would exhibit high epistemic uncertainty. Estimating epistemic
uncertainty demands variational inference and multiple neural
network runs, often impractical for real-time applications without
employing multiple accelerators. Conversely, aleatoric uncertainty
suits real-time use, requiring minimal parameter increases and a
single network pass for prediction. This study focuses on estimating
heteroscedastic aleatoric uncertainty, offering specific observational
uncertainty insights for input data.

We address the following question–How can we estimate
heteroscedastic aleatoric uncertainty in neural networks? What
informational cues does it provide for various robotic tasks? This work
presents a novel generalized approach for heteroscedastic aleatoric
uncertainty in neural networks.

Consider an input x to a neural networkℕ with weights W. The
estimated output of the networkℕ is represented by ̃y (Equation 1),
while the actual prediction is denoted by ŷ.

̃y = ℕ(x|W) (1)

We optimize the following problem by learning the weights
W using Equation 2:

arg minW,Ψ f (ŷ, ̃y) s.t.Ψ = k ( f (ŷ, ̃y) ,x) (2)

Here, the symbol f represents a distance metric between the
predicted value ̃y and the ground truth value ŷ. The symbol
Ψ corresponds to a monotone function k that depends on the
heteroscedastic aleatoric uncertainty of the underlying probability
distribution p(x, ̃y|W). This uncertainty is positively correlated with
the expected error or risk. The correlation between two random
variables X and Y is formally expressed as the Pearson correlation
ρX,Y, where the symbol 𝔼 denotes the expectation operator.

From (38), we can say that Ψ symbolizes the predicted output’s
expected error, risk, or uncertainty. A self-supervised optimization
of the following function is required to calculateΨ, hereafter referred
to as “uncertainty” for clarity.w

arg min ̃y,Ψ (λg (Ψ) + f (ŷ, ̃y)h (Ψ)) (3)

In the optimization function above, the function g signifies a
monotonic relationship with uncertainty, preserving domain order
and convexity. Conversely, the function h reverses the monotonicity
of g, ensuring ρh,g < 0 (where h might also depend on g). This
formulation aims to establish a two-way coupling between Ψ and
̃y to avoid trivial solutions and scale the values appropriately.

In the presented formulation, Ψ can represent either uncertainty
(similar to covariance) or lack of confidence (risk) of any arbitrary
distribution. For intricate distributions, Ψ may become a complex
function of the variance ν, resulting in qualitative uncertainty rather
than quantitative. However, by judiciously selecting functions f, g,
h, and λ, Ψ can be transformed into a quantitative function of ν with
straightforward closed-form solutions. In such instances, it is also
feasible to strive to certify the robustness of neural networks within
a confined training/operating data domain.
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Now, we address the question – ‘What informational cues does
the uncertainty hold for tiny robots?‘. The answer to this question
can be found by considering the uncertainty in optical flow. Unlike
GapFlyt, we are not required to compute dense optical flow for
navigation. Rather, we utilize only uncertainty in optical flow to find
unknown shaped gaps and dynamic obstacles. This is because the
uncertainty in flow increases due to failure in optical flow, which is
high in the regions with occlusions, light changes, and motion blur.

It is important to highlight that this work aims to showcase the
application of uncertainty in diverse robotics tasks and how such a
formulation can integrate various categories of robotics challenges.
Hence, in our experiments, we refrain from incorporating additional
information such as color, optical flow, or depth, except for
comparative analysis in this chapter. Furthermore, we do not make
any assumptions regarding the placement or type of structures used
in our experiments. Our control decisions are based solely on theΨ
derived from the current image pairs without employing temporal
smoothing or filtering techniques.

The results of this section are presented in Section. 3.1.

2.2 Minimal sensing models

Minimal sensing in robots refers to implementing a simplified
sensory system that allows a robot to perceive and understand
its environment with a limited number of sensors. The aim is
to create a sensing setup that uses resources efficiently while
providing enough information for the robot to carry out its tasks
effectively. This method selects the essential sensors needed to
capture critical environmental details like proximity, orientation,
or object detection, tailored to the application’s specific needs. By
limiting the number and complexity of sensors, robots can cut
costs, reduce power use, and lessen computational demands while
maintaining adequate situational awareness. The challenge is to
strike the right balance between the richness of sensor input and
system constraints to achieve reliable and efficient functionality in
practical settings.

For autonomous robots, accurately measuring distances and
understanding the geometry of a 3D scene are crucial. Robots often
depend on depth maps for navigation in complex and changing
environments. Traditional depth estimation techniques, whether
based on single or multiple camera systems, typically require heavy
computation or high-end sensors, making them impractical in
settings with limited resources. An alternative is using motion
cues such as parallax, seen in nature with birds like pigeons, to
simplify depth calculations. Efforts have been made to reduce the
computational load by decreasing resolution or utilizing predictable
environmental cues. However, these methods often compromise
accuracy for tasks like obstacle avoidance or do not adapt well
to new or unfamiliar environments when deployed in real-world
conditions.

We proposed a model that utilizes a sparse depth sensor and an
RGB camera to learn and predict dense depth maps (Singh, 2023).
Themethod proposed calculates a high-resolutionmetric depthmap
by analyzing a pair of standard color images and sparse Time-of-
Flight (ToF) depth data (with an 8× 8 pixel resolution) from two
perspectives. This input consists of eight channels: six for RGB color
information and two for sparse depth maps. Before delving into

the specifics of the neural network, let’s first explore the sensor
arrangement.Our setup comprises anRGBcamera and aVL53L5CX
sensor (or L5), firmly attached to one another.

To learn high-resolution depth maps, we first need to provide
enough learning data that constitutes dense depth maps, L5 data,
and RGB data. To simulate the L5 data, it is essential to understand
how theVL53L5CX collects data.TheL5 employs a histogram-based
algorithm to compute depth. Each zone of the L5 sensor yields the
mean distance (or depth) value derived from the distribution of all
photons hitting that specific sensor zone. With 100 bins in each
zone, the ToF L5 sensor covers a depth range of up to 400cm, with
each bin representing a 4 cm interval. This design choice renders
the sensor both low-power and low-bandwidth. Additionally, the L5
sensor flags any instances of insufficient samples or unstable results,
ensuring that unreliable zone values are disregarded for inference.

We emulate sparse L5 data using ground truth depth maps
sourced from the NYUv2 dataset (29) to train our depth maps.
We resize the aligned RGB and depth images to a resolution of
320× 320 pixels. To simulate L5 signals, we partition the ground
truth depth image into 8× 8 zones, each with a resolution of 40×
40 pixels. It is important to note that we maintain the same 320×
320 pixel resolution for both RGB and L5 data to expedite the
learning of pixel-to-pixel correspondences between the two sensor
datasets, as opposed to using 8× 8 pixel L5 data for training. Within
each zone, we compute the mean of the normal distribution of
the depth data histogram and approximate it to the nearest binned
L5 value (multiples of 4 cm), representing the L5 signal for that
zone. Additionally, Gaussian noise is introduced to each L5 signal to
prevent overfitting of the TinyDepthmodel to the L5 data.Moreover,
a few L5 signals are randomly removed to simulate the unstable
zones of the VL53. Notably, we refrain from normalizing the depth
data, preserving it in metric units ranging from 0m to 4 m to
learn the scale.

To prioritize learning the depth via geometry of the scene and
prevent regression or overfitting on textures, we implement an
eight-channel input strategy (320× 320× 8). This input comprises
six channels for RGB data and two channels for simulated L5
data, observed from two distinct viewpoints, say, C1 and C2.
This approach enables the integration of motion cues into our
network. Assuming Lambertian surfaces within the field of view,
we leverage a convolutional encoder-decoder architecture featuring
skip connections, incorporating residual learning.

For our depth prediction, we adopt loss functions inspired by
those commonly employed to train optical flow networks, as they
have demonstrated superior generalization (Sanket et al., 2020b;
Sun et al., 2018). We also add forward-backward consistency and
edge-aware losses to our network formore generalizable and optimal
performance in depth estimation. More network details and loss
functions can be found in (Singh, 2023).

The results of this section are presented in Section 3.2.

2.3 Minimal data acquisition

While designed for various applications, autonomous agents
share a common approach in their perceptual systems—the
generation of a 3D scene representation (Taketomi et al., 2017).
Subsequent tasks, including navigation and interaction, are planned
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FIGURE 5
Minimal Data Acquisition: (A) Illustrates asymmetric perception system in nature (from top to bottom–vertical aperture in frogs, horizontal aperture in
frogs, W-shaped aperture in cuttlefish and asymmetric ears in owls.) (B) Represents a typical camera system. (C) Demonstrates our data acquisition
methods that use passive elements at the aperture. (D) This represents our method, which utilizes an active element before the lens.

based on this model to facilitate autonomous behavior (Marr,
1977; Thrun, 2002; Lluvia et al., 2021). This design philosophy
stems largely from the perception algorithms traditionally based
on the primate or human visual system, which was not initially
evolved for navigational autonomy (Pentland and Addison, 1986).
Applying these generalized algorithms in autonomous agents, such
as drones, often results in inefficiencies due to their non-specific
nature. In contrast, perceptual systems in biological entities, both
visual and auditory, are adapted to their environments and have
evolved to be highly efficient. For example, animals like frogs have
both vertical and horizontal pupils (Figure 5A) based on their
environment, habitat, and day-to-day tasks. This variation in pupil
shape is not only evident across different species but also within
the same species. Figure 5(A-iii) shows the W-shaped aperture
of a cuttlefish. From an auditory standpoint, owls have evolved
asymmetrical ears for precise sound localization. Furthermore, it
is known that bats possess large ears relative to their body size to
enhance their auditory capabilities. Inspired by these asymmetrical
biological designs, we propose a design language of data acquisition
for robot perception to process and extract latent information
efficiently.

Minimal data acquisition in robot perception involves the
strategic and efficient collection of sensory data essential for
effective perceptual tasks in robotics. This method emphasizes
the selective capture and prioritization of crucial data, enabling
robots to optimize their computational resources and enhance their
decision-making processes in real time. The focus is gathering only
the necessary information for accurate environmental perception

while excluding superfluous or irrelevant data. Active perception
and sensor fusion are pivotal in reducing data acquisition. Active
perception employs intelligent control strategies to direct the robot’s
sensors toward specific areas of interest, thereby maximizing the
relevance and utility of the data collected. Sensor fusion integrates
inputs from various sensors to construct a detailed and dependable
environmental model. By implementing strategies of minimal data
acquisition, robots can improve their perceptual efficiency, decrease
computational demands, and streamline their operations across
diverse applications like navigation, object recognition, and scene
interpretation.

A passive or active element can be introduced in front of the
camera lens or sensor plane to modify data acquisition without
additional computational work. Passive elements, like custom
apertures, and active elements, such as rotating prisms, can filter data
directly at the hardware level.

2.3.1 Minimal acquisition via passive elements
Inspired by the evolutionary adaptations of eyes and pupils,

researchers have utilized coded apertures to gather depth
information using passive monocular camera systems. In this
section, we propose coded apertures (see Figure 5C) – designed
specifically for metric depth estimation in RGB cameras and
high-speed 3D tracking of objects in event cameras.

Optical cameras capture images based onwavelength and depth-
dependent blurs called point spread function (PSF) – the response
of an optical system to a point source with a specific position
and wavelength. A PSF can be simulated using Fourier optics
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theory (Goodman, 2005). The PSF h induced by the lens system
of the camera with specific amplitude modulation A and phase
modulation ϕ is given by Equation 4:

h = |F (A exp(iϕDF (d) + iϕ))|2 (4)

Where ϕDF(d) represents the defocus aberration due to the
point source being d units away from the focal plane, and F
indicates the 2D Fourier transform. Leveraging this model, coded
(or blurred) images Ic can be derived from AiF images I via a
nonlinear blurring process outlined in (Ikoma et al., 2021), which
can be expressed as Equation 5:

Ic =
D

∑
d=1

h ∗I
h ∗∑d

d′=1
Od′

D

∏
d′=d+1
(1−

h ∗Od

h ∗∑d
d′=1

Od′
) (5)

In this equation,∗ denotes the 2D convolution operator and
{1,…,D} denotes a set of discrete depth layers. Od and h are the
occlusion mask and PSF at depth d, respectively.

Owing to the variation in blur patterns at different depths,metric
depth can be inferred from a single coded image Ic (Levin et al.,
2007). We utilize a U-Net architecture for depth estimation,
extensively employed in tasks requiring pixel-wise predictions. We
introduce a depth-weightedmetric loss that encourages the network
to prioritize learning depth differently across various depths as
detailed in Equation 6:

L = 1
N

N

∑
i=1

wD̂i
⋅ ( ̃Di − D̂i)

2;wD̂i
= α−βD̂i (6)

Here, wD̂i
represents depth-aware weights within our proposed L

loss, which exponentially change according to the estimated depth
D̃i. D̂i is the ground truth depth. The parameters α and β are
empirically set to 2 and 0.3, respectively.

In this work, we plug and play our predicted depth maps in
existing RGB-D visual odometry methods such as ORBSLAM
(Mur-Artal et al., 2015). However, for RGB frames, one could
either utilize the coded image Ic or recover AiF I image from
Ic using different refocusing techniques (Veeraraghavan et al.,
2007; Elmalem et al., 2018; Saito and Saito, 2019). However,
recovering I from Ic requires additional computing and is prone to
inconsistent errors. Prior computational imaging neural network-
based methods (Ikoma et al., 2021; Liu et al., 2022) generate
inconsistent artifacts between frames and hinder the performance of
feature correspondences and tracking. Thus, we utilize coded image
Ic as a tractable alternative RGB input along with our predicted D̃
for RGB-D odometry methods. In-depth details of the work can be
found at https://prg.cs.umd.edu/CodedVO.

Furthermore, we can achieve high-speed real 3D tracking of
points in real-time using amplitude masks with event cameras.
Please refer to the work in (Shah et al., 2024a) for more results.

The results of this section are presented in Section 3.3.

2.3.2 Minimal acquisition via active elements
Neuromorphic vision sensors, or event cameras, have

significantly advanced visual perception by offering exceptionally
low reaction times, thereby paving the way for applications in
high-dynamic robotics. The camera output is influenced by both
motion and texture, yet they struggle to capture object edges that

move parallel to the camera’s trajectory. This limitation, intrinsic
to the sensor design, poses a significant challenge for algorithmic
correction. In human vision, perceptual fading is countered through
involuntary eye movements, notably microsaccades, which by
continuously and subtly adjusting the eyes during fixation, help
preserve texture stability and visibility (Rucci and Victor, 2015).

Drawing inspiration from microsaccades and previous works
that enhance the perception of neuromorphic vision in an active
manner (Testa et al., 2023), we have developed an event-based
perception system that maintains both a low reaction time and
stable texture visibility. Our approach involves the use of a rotating
wedge prism positioned in front of the event camera’s aperture,
which redirects light to provoke event detection (See Figure 5D).
The geometric optics of the rotating prism enable algorithmic
adjustments to counterbalance the added rotational movement,
thereby ensuring stable texture appearance and high-quality output
regardless of externalmotion.This integrated hardware and software
system,whichwe have named theArtificialMIcrosaccade-enhanced
EVent camera (AMI-EV), has shown superior data quality in
benchmark tests, outperforming both standard and event cameras
in various scenarios. Through numerous real-world tests, AMI-EV
has demonstrated its capability to enhance robotic perception for a
broad range of vision tasks, from basic to advanced levels.

This work addresses the key challenges in achieving accurate
and stable event-driven data association, focusing on an integrated
approach that combines hardware and software design. Rather
than merely imitating natural mechanisms, we introduce a
nature-inspired yet more sophisticated solution, the Artificial
MIcrosaccade-enhanced EVent camera (AMI-EV). This system
enhances event camera capabilities using a rotating wedge prism
to manipulate incoming light effectively. The AMI-EV proactively
triggers events in areas of high spatial frequency, such as edges,
ensuring consistent texture representation and high-quality data
output, even in the absence of sensor motion.

Our compensation algorithm integrates seamlessly with existing
event-based perception algorithms, making the AMI-EV a ready-
to-deploy solution. We demonstrate the system’s versatility and
effectiveness by applying it across a spectrum of vision tasks, from
basic to complex, thereby validating its potential in diverse application
scenarios. For more details, please refer to (He et al., 2024).

The results of this section are presented in Section 3.4.

3 Results

3.1 Navigation via minimal information
models

We evaluate our uncertainty method in (Sanket et al., 2023)
on a drone for various real-time robot applications–dodging
dynamic obstacles, navigating through unstructured environments,
flying through unknown shaped gaps, and object segmentation via
interactive perception.

This section’s experiments are conducted using a custom-
designed quadrotor platform, PRGLabrador500 (Sanket et al.,
2019), as shown in Figures 7A, B. This quadrotor features an
X-shaped frame with a motor-to-motor span of 500 mm. It is
equipped with T-Motor F80 Pro 2500 KV motors and 6042× 3

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2024.1431826
https://prg.cs.umd.edu/CodedVO
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Singh et al. 10.3389/frobt.2024.1431826

propellers. Vision and planning algorithms run on the Jetson TX2,
executing at a frequency of about 8 Hz with Python 3.6. All flight
experiments occur within the Brin Family Aerial Robotics Lab at the
University of Maryland, which provides a controlled environment
with dimensions of 7.3× 5.5× 5 m3.

The perception pipeline processes consecutive RGB color frames
with a resolution of 320× 240 pixels at a frame rate of 30 Hz. These
frames are fed into amodified version of the EVPropNet architecture
(Sanket et al., 2021), where the number of output channels has been
increased to four from the original one (Sanket et al., 2021). The
modified network, named Ajna, comprises 2.72 million parameters
and demands approximately 6.3 GFLOPs for each forward pass. The
model’s size is 10.40 MB, and it performs inference in about 49 m
per frame (20.4 Hz) with a batch size of one.

Ajna (Sanket et al., 2023) is trained using a loss function
that combines self-supervised learning for uncertainty estimation
and supervised learning for predicting target outcomes, as
detailed in Equation 3. The network specifically aims to predict
dense optical flow ̃̇px and its associated dense heteroscedastic
aleatoric uncertaintyΨx.The initial training phase spans 400 epochs
on the Flying Chairs 2 dataset (6, 16) with a learning rate of 10−4.
This is followed by an additional training period of 50 epochs on the
FlyingThings3D dataset (24) using a reduced learning rate of 10−5. A
batch size of 32 is used throughout the training process. We employ
this technique to quantify uncertainties in the drone images. This
allows us to effectively differentiate and segment static and dynamic
obstacles, facilitating successful avoidance and navigation around
these objects.

Figure 6 demonstrates the results of successfully dodging
dynamic obstacles, flying through indoor spaces, and unknown-
shaped gaps. For gap experiments, we achieved a detection rate (DR)
accuracy of 91% across 100 trials, navigating through four different
gaps of unknown shapes with aminimum clearance of just 8 cm. For
dodging experiments, we achieve an overall success rate of 83.3%
over 60 trails with multiple objects.

Utilizing the heteroscedastic aleatoric uncertaintyΨ of the optical
flow,we identifyobjectboundaries createdbyaccretionsanddeletions,
which are fundamental for conducting ‘depth-based segmentation.’
This segmentation technique is integral to addressing the fouroutlined
taskswithastreamlinedperceptionstack.TheΨassociatedwithoptical
flow provides additional informational cues crucial for detecting
dynamic obstacles and aidingnavigation, particularly throughmotion
blur, which can render optical flow undefined. In scenarios where
a dynamic obstacle moves significantly faster than the robot, the
resultant motion blur leads to poorly defined optical flow estimates,
resulting in high Ψ values. This effect is akin to the functionality of
event cameras, where dynamic obstacles become prominently visible
due to the generation of many events, a phenomenon replicated by
elevated Ψ levels.

The method introduced in this study adopts a progressive
baby-steps strategy by implementing a generalized uncertainty
formulation. This approach allows for innovative solutions to
typical robotics challenges. This methodology is expected to
broaden the scope of robotic autonomy, facilitating breakthroughs
in applications previously considered too challenging or size-
constrained. Ψ is anticipated to enable more efficient and
streamlined solutions in achieving these goals.

3.2 Infering depth via minimal sensing

In this section, we explore the functionality of our TinyDepth
and TinyDepth-S (the smaller variant) models, testing them on
out-of-domain samples and in real-world robotics experiments.
We compare our models’ performance against industrial and
research-grade benchmarks such as the Intel Realsense D435i
and Intel MiDaS (Ranftl et al., 2022). We significantly save
power, weight, size, and cost while maintaining competitive
performance. We test our depth estimation method 2.2 on
two hardware platforms–one aerial and one ground. The
aerial bee drone weighs 278 g and measures 92× 92× 84mm,
whereas the tiny car weighs only 128 g and measures 70× 58×
32 mm.

Our autonomous vehicle operates in an unstructured and
unknown environment as depicted in Figure 7C. This experiment
aims to navigate towards a specified goal direction represented by
the vector vg, which acts as a global guidance vector. Additionally,
a local vector vl is determined by segmenting the depth map into
depth-based binary classifications of safe and unsafe regions. We
focus solely on the top half of the image, as the bottom half
is typically obscured by the ground or floor. The vector vl is
defined as the geometric center of the segmented mask’s largest
safe region.

Combining the global and local vectors, the desired direction
vd is calculated as a weighted sum of the two as expressed in
Equation 7:

vd = γvl + (1− γ)vg (7)

This approach is designed to allow vl to influence vd more
significantly when obstacles are nearby. The weight γ is determined
by the proximity of the nearest obstacle Zmin in the depth map,
formulated as Equation 8:

γ = 1

1+ e−
1

Zmin

;γ ∈ [0,1] (8)

A Proportional-Integral-Derivative (PID) controller navigates
this complex scene, ensuring precise and adaptive movement
control. The car follows the control policy until it successfully
reaches its destination. We showcase the effectiveness of our
autonomous driving control policy in an unfamiliar obstacle course,
achieving a success rate of 90% in navigating the course without any
collisions across 50 trials.

For the drone experiments, we follow similar policies but in
three dimensions, along with an attention mechanism. In this setup,
the drone is equipped with our TinyDepth sensor suite in all four
directions. It activates its obstacle avoidance policy in the direction
closest to the drone.

3.3 Navigating with coded apertures

Integrating predicted metric depth from our CodedVO
(Shah et al., 2024b) model, which utilizes a coded aperture,
into existing RGB-D VO frameworks has demonstrated notable
improvements in odometry. We assessed our odometry results
using the standard indoor ICL-NUIM dataset (13) and our
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FIGURE 6
Navigation via uncertainty estimation: (A) Dodging dynamic obstacles, (B) Navigation through the indoor forest, and (C) Flying through unknown gaps.
In each image, the left image shows a third-person view, the top right inset shows the image seen by the drone, and the bottom right inset shows the
uncertainty output. Here, uncertainty ranges from 0 to 1 (black to white).

own UMD-CodedVO dataset, which includes challenging
scenes like DiningRoom and Corridor characterized by
low texture surfaces. These testing sequences were excluded
from our training dataset to maintain an unbiased evaluation.
As our foundational odometry framework, we selected
ORB-SLAM2 with the loop closure feature disabled. The
Absolute Trajectory Error (ATE) is the odometry accuracy
evaluation metric.

We compare our approach against existingmethods, categorized
into those using (a) traditional RGB sensors and (b) RGB-D
sensors, such as the IntelD435i. For evaluations involving traditional
RGB sensors, ATE is computed after scale recovery, except in

the case of ORBSLAM2-Zoe. ORBSLAM2-Zoe utilizes an RGB-
D variant of ORBSLAM2 (Mur-Artal and Tardós, 2017) that
incorporates RGB and metric depth from ZoeDepth (Bhat et al.,
2023) as inputs. Figure 8 compares visual odometry trajectories
derived from a monocular RGB sensor. It is important to highlight
that our qualitative evaluation focuses exclusively on ORBSLAM2-
Zoe, as the top-performing method provides camera trajectories
with a known scale. By utilizing the L loss and incorporating
optical constraints from phase mask coded optics, we attain
state-of-the-art monocular visual odometry with a known scale,
significantly reducing the size, area, weight, and power requirements
of typical of robotic systems.We achieved a notable averageAbsolute
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FIGURE 7
Real-world robot experiments included: (A) Drone navigation in an unstructured indoor forest scene, (B) flying through unknown gaps, and (C)
navigating a tiny car through an obstacle course. In the lower-left corner of each image section, insets display the input RGB image, ground truth data,
and depth prediction, arranged from left to right. Note: A gradient line from yellow to red indicates the robots’ path over time, with red denoting a later
temporal stage.

FIGURE 8
Trajectory comparison is conducted (from left to right) on the ICL-NUIM dataset (13) (specifically the of-krt2 and lr-krt2 sequences) and the
UMD-CodedVO dataset (Dining and Corridor sequences). We evaluate the performance of ORBSLAM2 when using both ZoeDepth and our Coded
Depth (L) as depth inputs for the ORB-SLAM2 algorithm.

FIGURE 9
Comparsion of our system with RGB cameras and standard event
cameras in both low-level and high-level vision tasks. We chose
corner detection and tracking as the low-level task and high-framerate
human detection and pose estimation as the high-level task.

Trajectory Error (ATE) of 0.08 m on the standard ICL-NUIM
odometry dataset.

We showcase the efficacy of optical constraints using a 1-
inch monocular RGB sensor equipped with a coded aperture for
visual odometry. This research is intended to be a foundational
step in harnessing optical and defocus constraints, opening up new
possibilities for compact and resource-limited robotic systems.More
details can be found here (Shah et al., 2024b) https://prg.cs.umd.
edu/CodedVO.

3.4 Microsaccades-inspired neuromorphic
camera

In this experiment, we outline the design of our AMI-EV
system (section. 2.3.2 and highlight its benefits, particularly its
ability to maintain stable and high-quality informational output. To
showcase the system’s potential in advancing robotics perception
research, we conducted evaluations using various leading-edge
event-based algorithms across multiple standard applications. The
findings confirm that our proposed system significantly enhances
performance in all tested scenarios. For more experimental details,
please refer to (He et al., 2024).

We tested our method on low-level and high-level tasks (see
Figure 9). For low-level tasks, we perform corner detection and
tracking in high-luminosity conditions. The upper row of Figure 9
shows that corner detection fails in the case of RGB cameras due
to weak feature corners in such adverse conditions. The texture
stability in the standard event camera (S-EV) was compromised
due to varying motion, leading to incomplete corner detection and
inconsistent tracking.Despite this, our systemandS-EVdemonstrated
superior performance to standard cameras under challenging lighting
conditions, benefiting from the event sensor’s high dynamic range.
Furthermore,our systemmaintained tracking fora significantly longer
duration than S-EV. This accuracy discrepancy primarily stems from
numerical errors and imperfect clock synchronization during AMI
compensation, making it independent of camera movement.
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For high-level tasks, we perform human pose estimation. For
standard RGB cameras, images are restricted to 25fps due to large
motion blur in RGB images that eventually leads to failure in human
pose estimation. In S-EV, we see low-quality reconstruction using
events even at 250 fps. This is due to bad texture stability in the
S-EV. Our AMI-EV method outperforms standard RGB and event
cameras in framerate and human pose estimation accuracy. We
achieve significantly better accuracy even at 1500 fps.

We have developed and tested a texture-enhancing event vision
system that emulates the biological microsaccade mechanism,
enabling high-quality data association. Our system, which
includes a rotating wedge filter placed before an event camera,
successfully maintains a stable texture appearance and delivers high
informational output. A comprehensive development can be found
in this technical report (He et al., 2024).

4 Discussion

Mobile robots are becoming vital in many industries,
enhancing safety and efficiency and allowing for new uses in
agriculture and disaster response. Perception is at the heart of
these robots’ success—the ability to understand and interact
with their surroundings. This includes collecting and processing
data to navigate and identify objects, enabling robots to work
independently in various environments, including dangerous
or remote ones. This capability makes robots more adaptable
and useful in more complex situations. To achieve scalability,
sustainability, and distributability in these robots, small palm-
sized robots must be built capable of performing tasks like
pollination or inspecting tight spaces like bridges or thermonuclear
plants. Due to their size limitations, these small robots face
challenges due to limited computing power and sensor capabilities.
Inspired by living beings like honeybees, jumping spiders,
and hummingbirds, we have developed a Minimal Perception
framework at the heart of building the next-generation of palm-sized
autonomous robots.

Balancing efficiency and efficacy is crucial and often task-
specific. The goal is to optimize hardware and software setups to
acquire essential information while minimizing redundant data.
For instance, a coded aperture may cause images to appear blurry
and perform poorly in texture-less environments. However, for
tasks such as general navigation in texture-rich environments,
the coded aperture can be both efficient and effective because
depth estimation is essential. At the same time, sharp images are
redundant, and the lack of texture is not an issue. Conversely, for
tasks requiring indoor navigation through long corridors combined
with object recognition, the advantages of a coded aperture may
diminish. In such cases, to maintain a balance between efficiency
and efficacy, incorporating an additional RGB or ToF sensor might
be the best approach. Furthermore, utilizing only uncertainty in
optical flow hinders drone navigation performance, where the
metric information is the key. Without metric information, the
drone cannot depict if it has successfully traversed through the
unknown shaped gaps (Sanket et al., 2018; Sanket et al., 2023). All
in all, it becomes a task-specific user choice to design a robot
for various applications. We hope that this article serves as a
blueprint for designing such robots.

This framework aims to simplify and streamline the design and
functionality of tiny robots, allowing them to operate autonomously
within severe size and resource limitations. Emphasizing a task-
centric and selective approach to perception, this framework seeks
to maximize efficiency and functionality by adopting strategies
observed in nature. This enabled autonomous behaviors in
palm-sized robots as small as 70 mm - showcasing navigation
abilities, estimation depth in all four directions, and avoidance of
dynamic obstacles in the surroundings. This approach promises to
enhance tiny autonomous robots’ capabilities and supports broader
applications in sustainable practices, like robotic pollination, to
address ecological challenges and contribute to global food security.
Minimal perception is the key to building intelligent palm-sized
robots and giving us a new perspective in robot autonomy for
resource-constrained robotics.
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