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Cyber–physical systems (CPSs) are evolving from individual systems to
collectives of systems that collaborate to achieve highly complex goals,
realizing a cyber–physical system of systems (CPSoSs) approach. They are
heterogeneous systems comprising various autonomous CPSs, each with
unique performance capabilities, priorities, and pursued goals. In practice, there
are significant challenges in the applicability and usability of CPSoSs that need
to be addressed. The decentralization of CPSoSs assigns tasks to individual CPSs
within the systemof systems. All CPSs should harmonically pursue system-based
achievements and collaborate to make system-of-system-based decisions and
implement the CPSoS functionality. The automotive domain is transitioning
to the system of systems approach, aiming to provide a series of emergent
functionalities like traffic management, collaborative car fleet management, or
large-scale automotive adaptation to the physical environment, thus providing
significant environmental benefits and achieving significant societal impact.
Similarly, large infrastructure domains are evolving into global, highly integrated
cyber–physical systems of systems, covering all parts of the value chain. This
survey provides a comprehensive review of current best practices in connected
cyber–physical systems and investigates a dual-layer architecture entailing
perception and behavioral components. The presented perception layer entails
object detection, cooperative scene analysis, cooperative localization and path
planning, and human-centric perception. The behavioral layer focuses on
human-in-the-loop (HITL)-centric decision making and control, where the
output of the perception layer assists the human operator in making decisions
while monitoring the operator’s state. Finally, an extended overview of digital
twin (DT) paradigms is provided so as to simulate, realize, and optimize large-
scale CPSoS ecosystems.
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1 Introduction

In the past few years, there has been a significant investment
in cyber–physical systems of systems (CPSoSs) in various domains,
like automotive, industrial manufacturing, railways, aerospace,
smart buildings, logistics, energy, and industrial processes, all of
which have a significant impact on the economy and society.
The automotive domain is transitioning to the system of systems
approach, aiming to provide a series of emergent functionalities
like traffic management, collaborative car fleet management, or
large-scale automotive adaptation to the physical environment, thus
providing significant environmental benefits (e.g., air pollution
reduction) and achieving significant societal impact.

Similarly, large infrastructure domains, like industrial
manufacturing (Nota et al., 2020), are evolving into global, highly
integrated CPSoSs that go beyond pure production and cover
all parts of the value chain, including research, design, and
service provision. This novel approach can enable a high level of
flexibility, allowing for rapid adaptation to customer requirements,
a high degree of product customization, and improved industrial
sustainability. Furthermore, achieving collective behavior in CPSoS-
based solutions for large-scale control processes will help citizens
improve their quality of life through smart, safe, and secure cities,
energy-efficient buildings, and green infrastructures (i.e., lighting,
water, and waste management), as well as smart devices and services
for smart home functionality, home monitoring, health services,
and assisted living.

However, in practice, there are significant challenges in the
applicability and usability of CPSoSs that need to be addressed
to take full advantage of the CPSoS benefits and sustain/extend
their growth. The fact that even a small CPSoS (e.g., a connected
car) consists of several subsystems and executes thousands of
lines of code highlights the complexity of the system-of-systems
solution and the extremely elaborate CPSoS orchestration required,
highlighting the need for an approach beyond traditional control
andmanagement centers (Engell et al., 2015). Given this complexity,
having a centralized authority that handles all CPSoS processes,
subsystems, and control loops seems to be challenging to capture
and implement, thus pointing to the need for a different design,
control, and management approach. The decentralization of CPSoS
processes and overall functionality by assigning tasks to individual
cyber–physical systems (CPSs) within the system of systems can
be a reasonable solution. However, the collaborative mechanisms
between CPSs (that constitute the CPSoS behavior) remain a point
of research since appropriate tools and methodologies are needed to
ensure that the expected system-of-systems functional requirements
aremet (the CPSoS operates as it should be) and that non-functional
requirements are fulfilled (the CPSoS remains resilient, safe,
and efficient). Another critical challenge in effectively developing
CPSoSs is the need for integrating social and human factors into the
design process of CPSs so that the cyber, physical, and human layers
can be efficiently coordinated and operated (Zhou et al., 2020).
Compared with traditional CPSs, cyber–physical–social systems
(CPSSs) regard humans as an important factor of the system
and, therefore, incorporate human-in-the-loop (HITL)mechanisms
into system operations so as to increase the trustworthiness of
the overall CPSoS. To be more concise, creating an intelligent
CPSoS environment relies on both modern technology and the

natural resources provided by its inhabitants. Specifically, both
“things” (objects and devices) and “humans” are essential formaking
smart environments even smarter. People benefit from smart
services made possible by today’s technology while simultaneously
contributing to the enhancement of business intelligence. In this
context, CPSS, as the human-in-the-loop counterpart of CPSs, can
be used to gather information from humans and provide services
with user awareness, creating a more responsive and personalized
intelligent environment.

To address the complex challenges in CPSoSs, researchers have
proposed a two-layer architecture consisting of a perception layer
and a behavioral layer. This approach serves as a foundation for
advancing CPSoS research and development across multiple critical
areas. The proposed architecture aims to enhance functionality,
reliability, adaptability, and the overall situational awareness (Chen
and Barnes, 2014) of CPSoSs in various domains, from automotive
and industrial manufacturing to smart cities and healthcare.
Situational awareness refers to the collective understanding of an
environment shared among multiple agents or entities—whether
human or machine—who work together to achieve a common
goal. More specifically, this concept of collective understanding
emphasizes that situational awareness is not confined to individual
knowledge but is distributed across team members. By cooperating,
participants can better understand complex environments, adapt
to dynamic changes, and respond more efficiently to evolving
situations. As such, by focusing on these two interconnected
layers, researchers can tackle the intricate issues of system
integration, human–machine interaction, and real-time decision-
making that are essential for the next generation of CPSoSs.
The perception layer focuses on enhancing situational awareness
through sophisticated algorithms for object detection, cooperative
scene analysis, cooperative localization, and path planning. Research
in this layer aims to develop effective perception mechanisms
that are foundational for achieving higher levels of autonomy
and reliability in CPSoSs. These advancements will enable
CPSoSs to interact more intelligently with their environment and
make informed decisions based on comprehensive situational
awareness. Additionally, the behavioral layer focuses on integrating
human operators into CPSoSs, recognizing the crucial role of
human knowledge, senses, and expertise in ensuring operational
excellence. This layer introduces the HITL approach, which
allows continuous interaction between humans and CPSoS control
loops. It addresses applications in which humans directly control
CPSoS functionality, systems passively monitor human actions and
biometrics, and hybrid combinations of both. The behavioral layer
explores advanced Human-Machine Interfaces (HMI), including
speech recognition, gesture recognition, and extended reality
technologies, to enhance situational awareness and enable seamless
human–system interaction. Furthermore, it investigates the
prediction of operator intentions to improve collaboration between
humans and CPSoSs, particularly in industrial scenarios where
safety and efficiency are paramount. By integrating human expertise
and intuition alongside automated processes, this layer aims to
create a true human–machine symbiosis, vital for maintaining
system flexibility and responsiveness in dynamic environments and
unforeseen events. Key research directions within this two-layer
framework include decentralized control and management, human-
in-the-loop integration, data analytics and cognitive computing,
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real-time processing and decision making, and collaborative
mechanisms between individual CPSs. These areas of study aim
to develop more intelligent, responsive, and human-centric systems
that can adapt to the complex demands of our interconnected world.

In addition to these approaches, digital twins (DTs) are an
emerging technology that assists in addressing the challenges
within CPSoSs (Mylonas et al., 2021). DTs create accurate virtual
replicas of physical systems, allowing for continuous observation
of system performance, real-time data integration, and predictive
maintenance, thus improving the reliability and efficiency of CPSoSs
(Tao et al., 2019). DTs facilitate better decision-making by providing
a comprehensive view of the entire system and enabling the
simulation of various scenarios for proactive planning and response
(Wang et al., 2023b). Furthermore, the integration of multiple
CPSoSs through DTs can significantly enhance task performance.
By enabling seamless communication and coordination among
different CPSoSs, DTs ensure that each subsystem can efficiently
share data and resources, leading to improved overall system
performance. For example, in smart city environments, integrating
transportation systems, energy grids, and public safety networks
through DTs can optimize urban operations, reduce response
times in emergencies, and enhance the overall quality of life for
residents (Jafari et al., 2023). By integrating DTs into the CPSoS
framework, systems can achieve higher efficiency, reliability, and
adaptability.This synergy betweenDTs andCPSoSs leads to smarter,
more resilient, and more efficient systems across various domains,
providing robust solutions to complex challenges and contributing
to the overall improvement of system performance and human
wellbeing.

The remainder of this survey is organized as follows. In
Section 2, we present the related work and outline the contributions
of this study. Section 3 describes the conceptual architecture of
CPSs. Section 4 delves into the perception layer, summarizing
relevant works and providing detailed insights. Section 5 focuses
on the behavioral layer, offering a comprehensive summary of
pertinent research. Section 6 discusses the role of digital twins
in optimizing the CPSoS ecosystem. Section 7 identifies open
research questions, while Section 8 highlights key lessons learned.
In Section 9, we provide a detailed discussion of various aspects of
the study. Finally, Section 10 concludes the survey.

2 Related work and contribution

Many of the recent review papers discuss how the CPSs are
utilized in emerging applications. Chen (2017) conducted an
extensive literature review on CPS applications. Sadiku et al. (2017)
provided a brief introduction to CPSs, their applications, and
challenges. Yilma et al. (2021) presented the SoA perspectives on
CPSs regarding definitions, underlining principles, and application
areas. Other survey papers focus more on very specific areas.
Haque et al. (2014) presented a survey of CPS in healthcare
applications, characterizing and classifying different components
and methods that are required for the application of CPS in
healthcare, while Oliveira et al. (2021) presented the use of CPSs
in the chemical industry. On the other hand, architecture and
CPS characteristics are also common issues that are discussed
in many survey papers. Hu et al. (2012) reviewed previous

works of CPS architecture and introduced the main challenges,
which are real-time control, security assurance, and integration
mechanisms. CPS characteristics (like generic architecture, design
principles, modeling, dependability, and implementation) and
their application domains are also presented by Liu and Wang
(2020). Lozano and Vijayan (2020) presented the current state-
of-the-art, intrinsic features (like autonomy, stability, robustness,
efficiency, scalability, safe trustworthiness, reliable consistency, and
accurate high precision), design methodologies, applications, and
challenges for CPS. Liu et al. (2017b) discussed the development
of CPS from the perspectives of the system model, information
processing technology, and software design. Oliveira et al. (2021)
discussed the use of artificial intelligence to confer cognition to
the system. Topics such as control and optimization architectures
and digital twins are presented as components of the CPSs. Al-
Mhiqani et al. (2018) investigated the current threats on CPSs (e.g.,
the type of attack, impact, intention, and incident categories).
Leitão et al. (2022) provided an analysis of the main aspects,
challenges, and research opportunities to be considered for
implementing collective intelligence in industrial CPSs. Estrada-
Jimenez et al. (2023) explored the concept of smart manufacturing,
focusing on self-organization and its potential to manage the
complexity and dynamism of manufacturing environments. It
presents a systematic literature review to summarize current
technologies, implementation strategies, and future research
directions in the field. Pulikottil et al. (2023) explored the
integration of multi-agent systems in cyber–physical production
systems for smart manufacturing, offering a thorough review
and SWOT analysis validated by industry experts to assess
their potential benefits and challenges. Hamzah et al. (2023)
provided a comprehensive overview of CPSs across 14 critical
domains, including transportation, healthcare, and manufacturing,
highlighting their integration into modern society and their role
in advancing the fourth industrial revolution. Additionally, DT-
based survey works focus on realizing automotive CPS (Xie et al.,
2022a), achieving high adaptability with a short development
cycle, low complexity, and high scalability, which meet various
design requirements during the development process, how the
interconnection between different components in CPSs and DTs
affect the smart manufacturing domain (Tao et al., 2019), as well as
presenting the potential of DTs as a means to reinforce and secure
CPSs and Industry 4.0 in general (Lampropoulos and Siakas, 2023).

In this survey, we focus on the CPS architecture and its modules
that are used to increase the situational awareness of the CPSoS
users. Considering the importance of human integration in CPSs,
we include the HITL component and human–machine interaction
to realize the CPSS paradigm. Additionally, we emphasize the
critical role of DTs in optimizing CPSoS ecosystems. The main
contributions of this paper can be summarized as follows:

• Comprehensive review of current best practices in
connected CPSs.
• Investigation of a dual-layer architecture encompassing a

perception layer and a behavioral layer, where the perception
layer focuses on enhancing situational awareness and the
behavioral layer integrates human operators through HITL
mechanisms and advanced HMI technologies.
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• Presentation of different datasets and sources of data available
to the research community. Perception algorithms related
to scene understanding (object detection and tracking, pose
estimation), localization mapping, and path planning are
thoroughly investigated. The behavioral part focuses on
decision making and human-in-the-loop control.
• Discussion on the integration ofDTs into CPSoSs, highlighting

their applications in smart cities, intelligent transportation
systems, and aerial traffic monitoring.

3 Conceptual architecture

3.1 CPSoSs are heterogeneous systems

They consist of various autonomous CPSs, each with unique
performance capabilities, criticality levels, priorities, and pursued
goals. CPSs, in general, are self-organized and, on several occasions,
may have conflicting goals, thus competing to get access to common
resources. However, from a CPSoS perspective, all CPSs must also
harmonically pursue system-based achievements and collaborate to
make system-of-system-based decisions and implement the CPSoS
behavior. Considering that CPSoSs consists of many CPSs, finding
the methodology to achieve such an equilibrium in a decentralized
way is not an easy task. The above issue becomes more complex
when we also consider the amount of data to be exchanged between
CPSs and the processing of those data. The collection of data and
the data analytics need to be refined in such a way that only the
important information is extracted and forwarded to other CPSs
and the overall system. Furthermore, mechanisms to handle large
amounts of data in a distributed way are needed to extract cognitive
patterns and detect abnormalities. Thus, local data classification,
labeling, and refinement mechanisms should be implemented in
each CPS to offload the complexity and communication overhead
at the system-of-systems level (Atat et al., 2018).

In the above-described setup, we cannot overlook the fact
that CPSoSs depend on humans since humans are part of the
CPSoS functionality and services, interact with the CPSs, and
contribute to the CPSoS behavior. Operators and managers play
a key role in the operation of CPSoSs and make many important
decisions, while in several cases, human CPS users are the key
players in the CPSoS main role (thus forming cyber–physical
human systems). Thus, we need to structure a close symbiosis
between computer-based systems and human operators/users
and constantly enhance human situational awareness as well as
devise a collaborative mechanism for handling CPSoS decisions,
forcing the CPSoSs to comply with human guidelines and
reactions. Novel approaches to human–machine interfaces that
employ eXtended Reality (XR) principles need to be devised to
help humans gain fast and easy-to-grasp insights into CPSoS
processes while also enabling their seamless integration into CPSoS
operations.

As shown in Figure 1, it is assumed that a CPSoS consists
of interconnected CPSs, each acting independently while also
collectively functioning as part of the CPSoS. We also assume
that each individual CPS is composed of a perception module and
a behavioral or decision-making module while bearing actuation
capacities represented by the physical layer; this configuration

facilitates the coordination with the other connected CPSs toward
the collective implementation of a common goal or mission.
A key aspect of the proposed architecture is the integration
of various sensors, including redundant, complimentary, and
cooperative sensors across nodes. More specifically, incorporating
redundant sensors in interconnected CPSs is necessary to improve
reliability, fault tolerance, and system safety. Redundant sensors
provide backup in the event of failure of primary sensors,
ensuring continued operation without disruption and maintaining
the integrity and reliability of CPS (Bhattacharya et al., 2023).
Additionally, the use of complementary sensors in heterogeneous
systems allows for cross-verification of data, better coverage of
sensor limitations, and improved decision-making in dynamic
environments (Alsamhi et al., 2024). For example, combining
visuals with depth sensors in autonomous vehicles helps enhance
object detection, environmental mapping, and path planning. The
diverse data from complementary sensors can be fused to produce
more accurate and comprehensive situational awareness. Finally,
cooperative sensors on individual CPSs work together to improve
the accuracy and robustness ofmeasurements and operations.These
sensors share information and collaborate to address limitations
inherent in individual sensors. For instance, in robotics, multiple
sensors like cameras, inertial measurement units (IMUs), and
proximity sensors can cooperate to provide accurate localization and
object detection (Zhang and Singh, 2015).

The aggregation of the individual perception modules
formulates the perception layer of the CPSoS, while the
sensor, behavioral, and physical layers represent the summation
of sensing, decision making, and actuation capabilities of
the CPSoS. The perception layer can also be envisioned
as a cognitive engine that employs appropriate algorithmic
approaches for effective scene understanding, a task predominately
accomplished today by deep neural network architectures. To
this end, data collection and annotation are crucial for the
training of AI models to undertake such tasks. This review
paper sheds light upon all of the aforementioned aspects of
interconnected CPSs.

4 Perception layer

4.1 Cooperative scene analysis

4.1.1 Background on object detection from 2D
and 3D data

Object detection has evolved considerably since the appearance
of deep convolutional neural networks (Zhao et al., 2019b).
Nowadays, there are two main branches of proposed techniques,
namely, two-stage and single-stage detectors.

In the first one, the object detectors, using two stages, generate
region proposals, which are subsequently classified into the
categories that are determined by the application at hand (e.g.,
vehicles, cyclists and pedestrians, in the case of autonomous
driving). Some important, representative, high-performance
examples of this first branch are R-CNN (Girshick et al., 2014),
Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2016),
spatial pyramid pooling net (He et al., 2015), region-based
fully convolutional network (R-FCN) (Dai et al., 2016), feature
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FIGURE 1
Cognitive cyber–physical system of system architecture with human-in-the-loop control.

pyramid network (FPN) (Lin et al., 2017), and mask R-CNN
(He et al., 2017). In the second branch, object detection is cast
to a single-stage, regression-like task with the aim to provide
directly both the locations and the categories of the detected
objects. Notable examples, here, are Single Shot MultiBox Detector
(SSD) (Liu et al., 2016), SqueezeDet (Wu et al., 2017),YOLO
(Redmon et al., 2016), YOLOv3 (Redmon and Farhadi, 2018)
and EfficientDet (Tan et al., 2020). A recent review on object
detection using deep learning (Zhao et al., 2019b) provides
inquisitive insight into the aforementioned approaches to object
detection.

Object detection in LiDAR point clouds is a three-dimensional
problem where the sampled points are not uniformly distributed
over the objects in the scene and do not directly correspond to a
Cartesian grid. Three-dimensional object detection is dominantly
performed using 3D convolutional networks due to the irregularity
and lack of apparent structure in the point cloud. Several
transformations take place to match the point cloud to feature maps
that are forwarded into deep networks. Commendable detection
outcomes have appeared in the literature as early as 2016. Li et al.
(2016a) projected the 3D points onto a 2D map and employed 2D
fully convolutional networks to successfully detect cars in a LiDAR
point cloud, reaching an accuracy of 71.0% for car detection of
moderate difficulty. A follow-up paper by Li (2017) proposed 3D
fully convolutional networks, reporting an accuracy of 75.3% for
car detection of moderate difficulty. However, since dense 3D fully
convolutional networks demonstrate high execution times, Yan et al.

(2018) investigated an improved sparse convolutionmethod for such
networks, which significantly increases the speed of both training
and inference. According to KITTI benchmarks, the reported
accuracy reaches 78.6% for car detection of moderate difficulty.
To revisit 2D convolutions in 3D object detection, Lang et al.
(2019) proposed a novel encoder called PointPillars that utilizes
PointNets to learn a representation of point clouds organized in
vertical columns (pillars) and subsequently employs a series of
2D convolutions. PointPillars reported an accuracy of 77.28% in
the same category. Shi et al. (2019) proposed PointRCNN for 3D
object detection from raw point clouds. They devised a two-stage
approach where the first stage generates bottom-up 3D proposals
and the second stage refines these proposals in the canonical
coordinates to obtain the final detection results, reporting an
accuracy of 78.70%. An extended variation of PointRCNN is the
part-aware and aggregation neural network (Part-A2 Net). The part-
aware stage, for the first time, fully utilizes free-of-charge part
supervisions derived from 3D ground-truth boxes to simultaneously
predict high-quality 3D proposals and accurate intra-object part
locations.Then, the part-aggregation stage learns to re-score the box
and refines the box location by exploring the spatial relationship
of the pooled intra-object part locations. The reported accuracy
reaches 79.40%. Yang et al. (2020b) introduced the 3D single-stage
detection (3DSSD) framework, which employed a unique fusion
sampling strategy that included farthest point sampling in both
feature and Euclidean spaces. PointGNN (Shi and Rajkumar, 2020)
extended the application of graph neural networks to 3D object
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detection. PV-RCNN (Shi et al., 2020) and its subsequent research
(Shi et al., 2023) derived point-wise features from voxel abstraction
networks to refine proposals generated by the 3D voxel backbone.
Additionally, HVPR (Noh et al., 2021), a single-stage 3D detector,
implemented an efficient memory module to enhance point-
based features, achieving a better compromise between accuracy
and efficiency. Qian et al. (2022) developed a lightweight region
aggregation refine network (BANet) through local neighborhood
graph construction, which resulted in more precise box boundary
predictions.

4.1.2 Cooperative object detection and fusion
Object detection from a single point of view of a single

agent is definitely vulnerable to a series of sensor limitations
that can significantly affect the outcome. These limitations entail
occlusion, limited field-of-view, and low-point density at distant
regions. The transition from isolated CPSs to CPSoSs, enabling the
collaboration among various agents, offers the opportunity to tackle
such problems. Chen et al. (2019b) proposed a cooperative sensing
scheme where each CPS combines its sensing data with those of
other connected vehicles to help enhance perception. Furthermore,
to tackle the increased amount of data, the authors propose a sparse
point-cloud object detection method. It is important to highlight
that the agents share on-board V2V information and fuse these
data locally. Feature-level fusion is examined in a follow-up work
by Chen et al. (2019a). The authors propose F-Cooper framework, a
method that improves the autonomous vehicle’s detection precision
without introducingmuch computational overhead.This framework
aims to utilize the capacity of feature maps, especially for 3D
LiDAR data generated by autonomous vehicles as the feature maps
are used for object detection only by single vehicles. F-Cooper
is an end-to-end 3D object detection system with feature-level
fusion supporting voxel feature fusion and spatial feature fusion.
Voxel feature fusion achieves almost the same detection precision
improvement compared to the raw-data level fusion solution, which
offers the ability to dynamically adjust the size of feature maps to
be transmitted. A unique characteristic of F-Cooper is that it can
be deployed and executed on in-vehicle and roadside edge systems.
Hurl et al. (2020) proposed TruPercept to tackle malicious attacks
against cooperative perception systems. In their trust scheme, each
agent reevaluates the detections originating from its neighboring
agents using data from its position and perspective. Arnold et al.
(2020) proposed a central system that fuses data from multiple
infrastructure sensors, facilitating the management of both sensor
and processing costs through shared resources while addressing
evaluations of pose sensor configurations, the number of sensors,
and the sensor field-of-view. The authors deploy VoxelNet (Zhou
and Tuzel, 2018) and claim to have reached an average precision
score of AP3D = 98% for the early fusion strategy and AP3D = 81%
for the late fusion strategy in a T-Junction. In a more recent study,
Guo et al. (2021) proposed cooperative spatial feature fusion (CoFF)
to address F-Cooper limitations. F-Cooper’s Chen et al. (2019a)
maxout function treats feature maps from different sources and
conditions similarly, leading to misclassifications. CoFF calculates
and assigns importance weights to the received feature maps based
on the data available to the ego vehicle. The authors claim to reach
a 90% improvement in average precision for far object cases with
respect to F-Cooper.

4.2 Cooperative localization, cooperative
path planning, and SLAM

Unmanned vehicles, either ground (UGV), aerial (UAV), or
underwater (UUV), are prominent CPSoSs. Typical examples
include autonomous vehicles and robots, operating for a variety
of different civilian and military challenging tasks. At the same
time, the prototyping of 5G and V2X (e.g., V2V and V2I) related
communication protocols enables the close collaboration of vehicles
to address their main individual or collective goals. Autonomous
vehicles with inter-communication and network abilities are known
as connected and automated vehicles (CAVs), being part of the
more general concept of connected CPSoSs. The main focus
of CAV’s related technologies is to increase and improve the
safety, security, and energy consumption of (cooperative or not)
autonomous driving by the strict control of the vehicle’s position
and motion (Montanaro et al., 2018). At a higher level, CAV have
the potential for a further enhancement of the transportation sector’s
overall performance.

Perception and scene analysis ability are fundamental for a
vehicle’s reliable operation. Computer vision-based object detection
and tracking should be seen as a first (though necessary) pre-
processing step, feeding more sophisticated operational modules
of vehicles (Eskandarian et al., 2021).The latter is imperative to have
accurate knowledge of both its own and its neighbors’ (vehicles,
pedestrians, or static landmarks) position in order to design
efficiently the future motion actions, i.e., to determine the best
possible velocity, acceleration, yaw rate, etc. These motion actions
primarily focus on, e.g., keeping safe inter-vehicular distances, eco-
friendly driving by reducing gas emissions, etc.The above challenges
can be addressed in the context of localization, SLAM, and Path
planning, which are discussed below.

4.2.1 Cooperative localization
The localization module is responsible for providing absolute

position information to the vehicles. Global Navigation Satellite
Systems (GNSSs), like GPS, Beidou, Glonass, etc., are usually
exploited for that purpose. The GPS sensor is currently employed as
themost common commercial device. It is straightforward to couple
or fuse GPS information with IMU readings (Noureldin et al., 2013)
to design a complete inertial navigation system (INS) providing
positioning, velocity, and timing (PVT) solutions. The IMU sensor
consists of gyroscopes and accelerometers for measuring the yaw
rate and acceleration (in x,y,z directions) of vehicles. Additionally,
odometers and wheel sensors (Skog and Handel, 2009) can also
be utilized. However, even highly reliable IMU sensors suffer from
accumulative or drift error, significantly reducing their consistency
as the vehicle is moving. Another limitation of stand-alone GPS
localization is directly related to GPS itself. Its accuracy is highly
degraded in dense urban canyons or tunnels (Kuutti et al., 2018),
even exceeding 10m errors. The main sources of GPS signal
degradation are due to Noureldin et al. (2013) satellite clock error,
receiver clock error, ionosphere delay, tropospheric delay, multi-
path, etc. Moreover, it is vulnerable to cyber-attacks (Ren et al.,
2020), like spoofing or jamming. The former causes an intentionally
“wrong” position, even kilometers away from the expected GPS
measurement. The latter poses a rather more severe threat since
it totally blocks the GPS signal. Several alternative approaches
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relying on ground base stations have been developed for enhancing
localization accuracies, such as assisted GPS (AGPS) or differential
GPS (DGPS). However, they are also susceptible to multi-path
effects and signal blockage (Alam and Dempster, 2013). The desired
localization error, as it has been reported in the literature, should
be lower than 1m (where in-lane accuracy) (Neto et al., 2020)
to meet the standards of autonomous driving. For example, if
a vehicle is localized on the curb instead of the road, it may
lead to a serious accident with pedestrians or other vehicles.
Therefore, it is quite clear that for obtaining the desired positioning
solutions, other types of advanced sensors, like LiDAR, cameras,
and RADAR, must be additionally taken into account. Moreover,
the emergence of V2V communications in the context of the
Internet of Things (IoT) facilitates the exploitation of both onboard
and off-board information in order to design a more robust
localization system. This collaborating multi-modal fusion of
heterogeneous measurements is known as cooperative localization
(CL), a rather recent and very promising technique that can
tackle the limitations and drawbacks of GPS/IMU localization.
Each vehicle can now receive external information (like absolute
position, relative distance, velocity, and acceleration) from nearby
vehicles, infrastructure, or pedestrians, effectively assisting its
localization system.

There aremany existingworks (Kuutti et al., 2018; Buehrer et al.,
2018; Wymeersch et al., 2009; Safavi et al., 2018; Gao, 2019) that
survey-related aspects, challenges, and algorithms of CL. For
example, Kuutti et al. (2018) provided an overview of current
trends and future applications of localization (not only CL) in
autonomous vehicle environments. The discussed techniques are
mainly distinguished on the basis of the utilized sensor. Ranging
measurements like relative distance and angle can also be extracted
through the V2V abilities of CL. Common ranging techniques
include time of arrival (TOA), angle of arrival (AoA), time difference
of arrival (TDOA), and received signal strength (RSS). The works
of Buehrer et al. (2018), Wymeersch et al. (2009) delve into detailed
mathematical modeling of CL tasks. More specifically, Buehrer et al.
(2018) exploit various criteria to categorize related algorithms:

• Measurement type: The sensor or ranging technique being
used for localization. V2V communications enable different
ranging methods to be used (as mentioned above).
• Centralized vs. distributed: Centralized algorithms require

nodes/vehicles of the network to broadcast theirmeasurements
to a fusion center (e.g., cloud or some leader-vehicle),
responsible for all the computations. Although higher accuracy
can be achieved, limitations like communication overhead,
computational power, network size, and fusion center
malfunctioning must be taken into account. On the contrary,
with distributed processing architecture, the computations
are assigned to each vehicle, which interacts only with close
neighbors.
• One-shot vs. tracking: One-shot refers to methods that do

not exploit any past information. On the other hand, tracking
has to do with algorithms that, apart from measurements,
employ kinematic models in order to approximate the actual
movement of vehicles. Tracking methods exploit Bayesian
estimators, as mentioned below.

• Fusion estimator: Multi-modal fusion is vital for increased
location estimation accuracy. Fusion can be effectively
performed using well-known estimators like least squares
(LS), maximum likelihood (ML), minimum mean square
error (MMSE), and maximum a posteriori (MAP). The one-
shot ML estimator coincides with (weighted by measurement
noise variance) LS when the measurements are corrupted
by Gaussian noise. MMSE and MAP are common Bayesian
estimators that treat the unknown vehicle’s position as a
random variable instead of a deterministic value as one-
shot do. Kalman, extended Kalman, and unscented Kalman
Filters (KF, EKF, and UKF) are prominent examples of MMSE
estimators. Belief propagation and factor graph optimization
are also important MAP tools.

Wymeersch et al. (2009) formulated a distributed gradient
descent (GD) algorithm as an LS solution and the Bayesian
factor graph approach of the sum–product algorithm over wireless
networks (SPAWNs). In general, distributed and tracking/Bayesian
algorithms are more attractive to perform CL. An overview
of distributed localization algorithms in IoT is also given by
Safavi et al. (2018). Additionally, the authors discuss the proposed
distributed geometric framework of DILOC, as well as the extended
versions of DLRE and DILAND, which facilitate the design
of a linear localization algorithm. These methods require the
vehicle to be inside the convex full formed by three neighboring
anchors (nodes with known and fully accurate positions) and to
compute its barycentric coordinates with respect to neighbors.
However, major challenges are related to mobile scenarios due
to varying topologies, as well as how feasible the presence of
anchors will be in automotive applications. An interesting approach
is discussed by Meyer et al. (2016), where mobile agents, in
general, try to cooperatively estimate their position and track non-
cooperative objects. The authors developed a distributed particle
filter-based belief propagation approach with message passing
although they consider the presence of anchor nodes. Furthermore,
the computational and communication overhead may be a serious
limitation toward real-time implementation. Soatti et al. (2018)
proposed a novel distributed technique to improve the stand-alone
GNSS accuracy of vehicles. Once again, non-cooperative objects
or features (e.g., trees and pedestrians) are exploited in order to
improve location accuracy. Features are cooperatively detected by
vehicles using their onboard sensors (e.g., LiDAR), where a perfect
association is assumed. These vehicle-to-feature measurements are
fused with GNSS in the context of a Bayesian message-passing
approach and KF. Experimental evaluation was assessed using the
SUMO simulator; however, the number of detected features, as well
as communication overhead, should be taken into serious account.
Thework of Brambilla et al. (2020) extends that of Soatti et al. (2018)
by proposing a distributed data association framework for features
and vehicles. Data association was based on belief propagation.
Validation was performed in realistic urban traffic conditions.
The main aspect of Brambilla et al. (2020) and Soatti et al. (2018)
is that vehicles must reach a consensus about feature states in
order to improve their location. Graph Laplacian CL has been
introduced in Piperigkos et al. (2020b) and Piperigkos et al. (2020a).
Centralized or distributed Laplacian localization formulates an
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LS optimization problem, which fuses the heterogeneous inter-
vehicular measurements along with the V2V connectivity topology
through the linear Laplacian operator. EKF- and KF-based solutions
have been proposed for addressing CL in tunnels (Elazab et al.,
2017; Yang et al., 2020a) when the GPS signal may be blocked. A
distributed robust cubature KF enhanced by Huber M-estimation
is presented by Liu et al. (2017a). The method is used to tackle the
challenges of data fusion in the presence of outliers. Pseudo-range
measurements from satellites are also considered during the fusion
process. Zhao et al. (2020) developed a distributed Bayesian CL
method for localizing vehicles in the presence of non-line-of-sight
range measurements and spoofed vehicles. They focused primarily
on ego vehicle location estimation and abnormal vehicle detection
rates. Potential applications of localization in various domains
like wireless sensor networks (WSNs), intelligent transportation
systems (ITS), and robotics are demonstrated in Figure 2. Table 1
summarizes the above mentioned works.

4.2.2 SLAM
Simultaneous localization and mapping (SLAM) is also a

relevant task of localization. It refers to the problem of mapping
an environment using measurements from sensors (e.g., a camera
or LiDAR) onboard the vehicle or robot while at the same time
estimating the position of that sensor relative to the map. Although
when stated in this way, SLAM can appear to be quite an abstract
problem robust, and efficient solutions to the SLAM problem are
critical to enabling the next wave of intelligent mobile devices.
SLAM, in its general, form tries to estimate over a time period the
poses of the vehicle/sensor and the landmarks’ position of the map,
given control input measurements provided by odometry sensors
onboard the vehicle and measurements with respect to landmarks.
Therefore, we have mainly two subsystems: the front-end, which
detects the landmarks of themap and correlates themwith the poses,
and the back-end, which casts an optimization problem in order to
estimate the pose and the location of landmarks. SLAM techniques
can be distinguished to either visual or LiDAR based odometry (VO
and LO) solutions, reflecting camera or LiDAR as the main sensor
to be exploited:

• To compute the local position and motion of a camera,
VO algorithms must estimate the transformation that the
camera undergoes between the current frame and a reference
frame. The reference frame can be defined by the previous
frame in the input sequence, some key frame in the recent
past, or a collection of frames from the recent past. In each
case, the task is to estimate the transformation that takes
information in the camera’s current frame into the frame of
reference of the past frame(s). This task can be seen as an
optimization problem where the cost is given by the residual
between the information measured in the current frame and
the corresponding information derived and reprojected from
the reference frames. The vast majority of VO algorithms use
feature-based approaches (Klein andMurray, 2007).The image
is decomposed into a sparse set of interesting points, with
each interest point’s location described by a feature vector
that remains invariant to camera transformations. The feature
vectors are associated with the input frame and reference
to form a set of geometric constraints from which we can

derive the camera motion and scene structure. In this case,
the cost function is formulated by the difference between
the measured reprojection locations of these interest points
between frames, referred to as the reprojection error. However,
some known limitations of feature-based methods include i)
extraction of interesting points and feature vectors may be
expensive (using well-known algorithms like SHIFT or SURF),
ii) they are prone to errors in areas where there is a low
number of interesting points, etc. On the contrary, dense or
direct VO approaches (Steinbrücker et al., 2011; Whelan et al.,
2013) focus on minimizing the (geometric) reprojection
error, aiming to directly minimize the photometric error
between pixels in the optimization problem. State-of-the-
art VO algorithms include Direct Sparse Odometry (DSO)
(Engel et al., 2018), ORB-SLAM (Mur-Artal et al., 2015), and
ORB-SLAM2 (Mur-Artal and Tardos, 2017).
• The LiDAR sensor provides dense 3D point clouds of the

vehicle’s surroundings. The goal of LO is to estimate the
pose of the vehicle by accumulating the transformation
between consecutive frames of 3D point clouds. The existing
LO solutions can be divided into two groups: point-wise
and feature-wise methods. Point-wise methods estimate the
relative transformation directly using the raw 3D points,
while feature-wise methods try to utilize more sophisticated
characteristics of the point cloud such as the edge and planar
feature points. The most well-known pointwise LO method
is the iterative close point (ICP) (Besl and McKay, 1992).
ICP operates at a point-wise level and directly matches two
frames of the point cloud by finding the correspondences.
One of the major drawbacks of the ICP is that when the
frames include large quantities of points, ICP may suffer
from a high computational load arising from the point cloud
registration. Many variants of ICP have been proposed to
improve its efficiency and accuracy, such as the trimmed
ICP (Makihara et al., 2002) and normal ICP (Serafin and
Grisetti, 2015). To avoid the high computational load resulting
from using the entire set of raw points, the feature-based
LO methods extract a set of representative features from
the raw points. The fast point feature histogram (FPFH)
was proposed by Rusu et al. (2009) to extract and describe
important features. The FPFH enables the exploration of
the local geometry and the transformation is optimized
by matching the one-by-one FPFH-based correspondence.
Another well-known feature-based LO method is LOAM
(Zhang and Singh, 2014). Theoretically, LOAM integrates the
properties of both the point- and feature-wise methods. On
the one hand, to decrease the computational load of typical
ICP, LOAM proposed to extract two types of feature points,
the edge and planar, respectively. The extraction of the feature
is simply based on the smoothness of a small region near a
given feature point. Different from the FPFH which provides
multiple categories of features based on its descriptors, LOAM
involves only two feature groups. Another popular variant of
LOAM is Lego-LOAM (Shan and Englot, 2018).

Cooperative SLAM approaches are, in general, more immature
with respect to CL since they are usually applied in indoor
experimental environments with small-scale robots. A thorough
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FIGURE 2
Key components of the perception layer in CPSoSs.

overview of multiple-robot SLAM methods is provided by
Saeedi et al. (2016), focusing mainly on agents equipped with
cameras or 2D LiDARs (Mourikis and Roumeliotis, 2006;
Zhou and Roumeliotis, 2008; Estrada et al., 2005). In addition,

cooperative SLAM approaches using 3D LiDAR sensors are
discussed by Kurazume et al. (2017), Michael et al. (2012), and
Nagatani et al. (2011). Table 2 summarizes the above mentioned
SLAM-based methods.
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TABLE 1 Cooperative localization methods.

Fusion
algorithm(s)

Survey Centralized
solution

Distributed
solution

Benefits Limitations Reference

LS, GD, and SPAWN — — ✓ Two state-of-the art
algorithms

Large number of
iterations and
information
exchange are
required to reach
good solutions

Wymeersch et al.
(2009)

Particle filter-based
belief propagation

— — ✓ Distributed tracking
of mobile nodes and
non-cooperative
objects

Nodes have to reach
a consensus on
objects’ position

Meyer et al. (2016)

EKF — — ✓ Overall location
estimation under
harsh conditions
and realistic network
simulation

Lacks evaluation for
the individual
vehicle

Elazab et al. (2017)

Cubature KF and
Huber M-estimation

— — ✓ Robust location
estimation in the
presence of
measurement
outliers

Not considering the
impact of dynamic
VANET’s topology

Liu et al. (2017a)

— ✓ — — Complete survey of
different fusion
algorithms and
technologies for CL

— Buehrer et al. (2018)

— ✓ — — Complete survey of
different fusion
algorithms and
technologies for CL,
including SLAM
methods

— Kuutti et al. (2018)

Geometric
algorithms

✓ — ✓ Linear and
distributed approach
based on
sophisticated
selection of
neighbors

Developed mainly
for static scenarios

Safavi et al. (2018)

Gaussian message
passing and KF

— ✓ ✓ Distributed CL
method relying on
the cooperative
detection of features

Vehicles have to
reach a consensus on
features’ position

Soatti et al. (2018)

— ✓ — ✓ Detailed book about
the current and
potential status of
CL methods

— Gao (2019)

Particle filter-based
belief propagation

— — ✓ Distributed data
association approach

Vehicles have to
reach a consensus on
features’ position

Brambilla et al.
(2020)

Graph Laplacian
processing

— ✓ — Fusion of three
measurement
modalities via linear
LS

No motion model is
concerned

Piperigkos et al.
(2020b)

(Continued on the following page)
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TABLE 1 (Continued) Cooperative localization methods.

Fusion
algorithm(s)

Survey Centralized
solution

Distributed
solution

Benefits Limitations Reference

Graph Laplacian
processing

— ✓ ✓ Fusion of three
measurement
modalities via linear
LS

No motion model is
concerned

Piperigkos et al.
(2020a)

KF and ML — — ✓ Effective and simple
implementation of
cooperative
awareness

Measurement model
is rather abstract,
not discussing in
detail how it can be
formulated

Yang et al. (2020a)

Bayesian approach — — ✓ Accurate location
estimation under
harsh conditions

Only ego vehicle
location is assessed

Zhao et al. (2020)

TABLE 2 SLAMmethods based on VO and LO solutions.

Camera LiDAR Benefits Limitations Reference

✓ Fundamental work High computational load ICP (Besl and McKay, 1992)

— ✓ Variant of ICP Improves the computational complexity of
ICP

TICP (Makihara et al., 2002)

✓ — Fundamental feature-based approach Challenging the extraction of feature points Klein and Murray (2007)

— ✓ Exploits a set of representative features from
the raw point cloud

Lacks evaluation under different weather
and lighting conditions

FPFH (Rusu et al., 2009)

✓ — Directly minimize the photometric error
between pixels

Sensitive to image noise Steinbrücker et al. (2011)

✓ — Directly minimize the photometric error
between pixels

Sensitive to image noise Whelan et al. (2013)

— ✓ State-of-the-art LO solution Lacks evaluation under different weather
and lighting conditions

LOAM (Zhang and Singh, 2014)

✓ — State-of-the-art VO solution Lacks evaluation under different weather
and lighting conditions

ORB-SLAM (Mur-Artal et al., 2015)

— ✓ Variant of ICP Improves the computational complexity of
ICP

NICP (Serafin and Grisetti, 2015)

✓ — State-of-the-art VO solution Lacks evaluation under different weather
and lighting conditions

ORB-SLAM2 (Mur-Artal and Tardos, 2017)

✓ — State-of-the-art VO solution Lacks evaluation under different weather
and lighting conditions

DSO (Engel et al., 2018)

— ✓ State-of-the-art LO solution Lacks evaluation under different weather
and lighting conditions

LeGO-LOAM (Shan and Englot, 2018)

4.2.3 Cooperative path planning
Connected advanced driver assistance systems (ADASs) help

reduce road fatalities and have received considerable attention in
research and industrial societies (Uhlemann, 2016). Recently, there
has been a shift of focus from individual drive-assist technologies
like power steering, anti-lock braking systems (ABS), electronic

stability control (ESC), and adaptive cruise control (ACC) to features
with a higher level of autonomy like collision avoidance, crash
mitigation, autonomous drive, and platooning. More importantly,
grouping vehicles into platoons (Halder et al., 2020; Wang et al.,
2019a) has received considerable interest since it seems to be
a promising strategy for efficient traffic management and road
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transportation, offering several benefits in highway and urban
driving scenarios related to road safety, highway utility, and
fuel economy.

To maintain the cooperative motion of vehicles in a platoon,
the vehicles exchange their information with the neighbors
using V2V and V2I (Hobert et al., 2015). The advances in V2X
communication technology (Hobert et al., 2015;Wang et al., 2019b)
enable multiple automated vehicles to communicate with one
another, exchanging sensor data, vehicle control parameters, and
visually detected objects facilitating the so-called 4D cooperative
awareness (e.g., identification/detection of occluded pedestrians,
cyclists, or vehicles).

Several works have been proposed for tackling the problems
of cooperative path planning. Many of them focus on providing
spacing policy schemes using both centralized and decentralized
model predictive controllers. However, very few take into account
the effect of network delays, which are inevitable and can
significantly deteriorate the performance of distributed controllers.

Viana et al. (2019) presented a unified approach to cooperative
path-planning using nonlinear model predictive control with soft
constraints at the planning layer. The framework additionally
accounts for the planned trajectories of other cooperating vehicles,
ensuring collision avoidance requirements. Similarly, a multi-
vehicle cooperative control system is proposed by Bai et al. (2023)
and Kuriki and Namerikawa (2015) with a decentralized control
structure, allowing each automated vehicle to conduct path planning
and motion control separately. Halder et al. (2020) presented a
robust decentralized state-feedback controller in the discrete-
time domain for vehicle platoons, considering identical vehicle
dynamics with undirected topologies. An extensive study of their
performance under random packet drop scenarios is also provided,
highlighting their robustness in such conditions. Viana and Aouf
(2018) extended decentralized MPC schemes to incorporate the
predicted trajectories of human-driving vehicles. Such solutions are
expected to enable the co-existence of vehicles supporting various
levels of autonomy, ranging from L0 (manual operation) to L5 (fully
autonomous operation) (Taeihagh and Lim, 2019). Furthermore,
a distributed motion planning approach based on the artificial
potential field is proposed by Xie et al. (2022b), where its innovation
is related to developing an effective mechanism for safe autonomous
overtaking when the platoon consists of autonomous and human-
operated vehicles.

In additional to the cooperative path planning mechanisms,
spacing policies and controllers have also received increased interest
in ensuring collision avoidance by regulating the speeds of the
vehicles forming a platoon. Two different types of spacing policies
can be found in the literature, i.e., the constant-spacing policy
(Liu et al., 2017; Shen et al., 2022) and the constant-time-headway
spacing policy (e.g., focusing on maintaining a time gap between
vehicles in a platoon resulting in spaces that increase with velocity)
(Wang et al., 2023a). In both categories, most works use a one-
direction control strategy. At this point, it should be mentioned
that in a one-directional strategy, the vehicle controller processes
the measurements that are received from leading vehicles. Similarly,
a bidirectional platoon control scheme takes into consideration
the state of vehicles in front and behind (see Ghasemi et al.,
2013). In most of the cooperative platooning approaches, the
vehicle platoons are formulated as double-integrator systems that

TABLE 3 Path planning methods.

Cooperative
path

planning

Spacing
controller
mechanism

Year Reference

— ✓ 2013 Ghasemi et al. (2013)

✓ — 2015 Kuriki and Namerikawa
(2015)

— ✓ 2017 Liu et al. (2017)

✓ — 2018 Viana and Aouf (2018)

✓ — 2019 Viana et al. (2019)

✓ — 2019 Taeihagh and Lim
(2019)

✓ — 2022 Xie et al. (2022b)

— ✓ 2022 Shen et al. (2022)

✓ — 2023 Bai et al. (2023)

— ✓ 2023 Wang et al. (2023a)

deploy decentralized bidirectional control strategies similar to
mass–spring–damper systems. This model is widely deployed since
it is capable of characterizing the interaction of the vehicles with
uncertain environments and, thus, is more efficient in stabilizing
the vehicle platoon system in the presence of modeling errors and
measurement noise. However, it should be noted that the effect of
network delays on the performance of such systems has not been
extensively studied. Time delays, including sensor detective delay,
braking delay, and fuel delay, not only seem to be inevitable but
are also expected to deteriorate significantly the performance of the
distributed controllers. Table 3 summarizes the above mentioned
Path planning-based methods.

4.3 Human centric perception

Humans, as a part of a CPSoS, play an important role in the
functionality of the system. The humans’ role in such complicated
systems (e.g., CPSoSs) is vital since they react and collaborate
with the machines, providing them with useful feedback and
affecting the way that these systems work. Humans can provide
valuable input both in an active (on purpose) or a passive (without
consideration) way (Figure 3). For example, an input such as a
gesture or voice can be used as an order or command to control
the operation of a system via an HMI. On the other hand, pose
estimation or biometrics, like heart rate, could be taken into account
by a decision component, resulting in a corresponding change in the
system’s functionality for security reasons (e.g., when a user’s fatigue
has been detected).

The following sections present some human-related inputs (e.g.,
behavior and characteristics) that can be beneficially used in CPSoSs
according to the literature.
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FIGURE 3
Human biometrics and applications in CPSoSs.

• Biometrics and biometric recognition.Themost well-known
and most frequently used biometrics related to humans are
face, fingerprint, iris, EEG, EGG, respiratory, and heart rate.
Some of them are unique for each person, so they can be
used for human identification, while others can be used for
monitoring the humans’ state or the special cognitive situation
of a specific time period. The use of biometrics covers a large
variety of tasks and applications in CPSoSs.

Regarding the face of a human as a biometric, the related
tasks can be face detection (Claudi et al., 2013; Isern et al.,
2020; Chen et al., 2016; Galbally et al., 2019), face alignment
(Kaburlasos et al., 2020a; Kaburlasos et al., 2020b), face recognition
(Makovetskii et al., 2020), face tracking (Li et al., 2016b;
Pereira Passarinho et al., 2015), face classification/verification
(Arvanitis et al., 2016), and face landmarks extraction (Jeong et al.,
2018; Eskimez et al., 2020; Lee et al., 2020). Fingerprint (Okpara
and Bekaroo, 2017; Valdes-Ramirez et al., 2019; Preciozzi et al.,
2020), palmprint (Wang et al., 2006), and iris/gaze (Vicente et al.,
2015; Lai et al., 2015) are mainly used for user’s identification tasks
due to their uniqueness for each person. EEG (Laghari et al., 2018;
Pandey et al., 2020; Lou et al., 2017), EGG, respiratory (Jiang et al.,
2020; Saatci and Saatci, 2021; Meng et al., 2020), and heart rate
(Rao et al., 2012; Prado et al., 2018; Majumder et al., 2019) are used
for the user’s state monitoring. In addition to the fact that they
can provide valuable information, their usage in real applications
is difficult to apply due to the special wearable devices that it is
required for the capturing.

The choice of which specific biometric to utilize depends on
the use case scenario, including factors such as the availability and
feasibility of using a sensor (e.g., whether it will be placed in a
stationary location or worn constantly during the operation), the
special power consumption needs of each sensor, the accuracy, and
the latency. One other important issue that needs to be taken under
serious consideration before the use of a biometric in real systems
is the privacy and security of these sensitive data since they must be
protected via encoding in order to be anonymously stored or used.

• Person identification. Person identification is a common
image retrieval problem, where the objective is the recognition
of a person’s identity using only a single image captured
by a camera.

Generally, the person identification task is a more complicated
and challenging problem in comparison to the face identification
since face identification is applied in a more controlled environment
(e.g., use of a smaller captured frame, the user has to remove glasses,
hats, and other accessories to be identified). On the other hand,
person identification has to deal with more complex issues like
the different points of view, light and weather conditions, different
resolutions of the camera, types of clothes, and a large variety of
background contexts. Person identification has shown great usability
in applications related to CPSoSs, mostly for security purposes.
Its utility has been marked specifically when it is applied “in the
wild” and in uncontrolled environments where other biometrics
are not feasible to be used due to technical constraints. Nowadays,
approaches usually use deep networks to perform reliable and
accurate results.

Li et al. (2020a) proposed an additive distance constraint
approach with similar label loss to learn highly discriminative
features for person re-identification. Ye and Yuen (2020) proposed
a deep model (PurifyNet) to address the issue of the person re-
identification task with label noise, which has limited annotated
samples for each identity. Li et al. (2020b) used an unsupervised
re-identification deep learning approach capable of incrementally
discovering discriminative information from automatically
generated person tracklet data. Table 4 and Table 5 summarize
relevant datasets for the face recognition, detection, and facial
landmark extraction problems.

•Human pose estimation and action recognition.

Human pose estimation and action recognition have been
proved to be particularly valuable tasks in modern video-captured
applications related to CPSoSs. They can be utilized in a variety
of fields such as ergonomics assessment, safe training of new
operators, fatigue and drowsiness detection of the user, HMIs, and
the prediction of an operator’s next action for avoiding accidents
by changing the operation of a machine. They are also useful for
monitoring dangerous movements in insecure workspace areas.

A restriction that can negatively affect and obstruct the quality
of the results of these tasks is the limited coverage area of the camera.
Nevertheless, this limitation can be overcome using new types of
sensors and tools like IMUs and whole-body tracking systems (e.g.,
SmartsuitPro and Xsens) (Hu et al., 2017).
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TABLE 4 Datasets for face recognition, detection, and facial landmark extraction tasks.

Dataset Short description Link of the dataset Paper name

Helen Helen dataset consists of 2,330 images
(400 × 400 pixels) with labeled facial
components, which are manually
annotated, containing contours near the
eyes, eyebrows, nose, lips, and jawline

http://www.ifp.illinois.edu/∼vuongle2/helen/ Interactive Facial Feature Localization (Le et al.,
2012)

AFW AFW (Annotated Faces in the Wild) is a
face detection dataset consisting of 205
images with 468 faces. Each face image is
labeled with at most 6 landmarks with
visibility labels, as well as a bounding box

https://www.ics.uci.edu/∼xzhu/face/ Face detection, pose estimation, and landmark
localization in the wild (Zhu and Ramanan,
2012)

300W The 300-W dataset consists of 300 indoor
and 300 outdoor “in the wild” images,
covering a large variety of identities,
expressions, illumination conditions,
poses, occlusion, and face sizes

https://ibug.doc.ic.ac.uk/resources/300-W/ 300 Faces in-the-Wild Challenge: The First
Facial Landmark Localization Challenge
(Sagonas et al., 2013)

LFPW The Labeled Face Parts in the Wild
(LFPW) consists of 1,432 faces from
images which are downloaded from the
web (e.g., google.com, flickr.com, and
yahoo.com)

https://neerajkumar.org/databases/lfpw/ Localizing parts of faces using a consensus of
exemplars (Belhumeur et al., 2011)

AFLW The Annotated Facial Landmarks in the
Wild (AFLW) consists of 25,000 faces that
are annotated with up to 21 landmarks per
image. The images have been gathered
from Flickr, covering a large variety of
poses, expressions, ethnicities, ages,
genders, and environmental conditions

https://www.tugraz.
at/institute/icg/research/team-
bischof/lrs/downloads/aflw/

Annotated Facial Landmarks in the Wild: A
large-scale, real-world database for facial
landmark localization (Köstinger et al., 2011)

AFLW 2000-3D AFLW 2000-3D dataset consists of 2,000
images that have been annotated using 68
points representing 3D facial landmarks.
This dataset is usually used for the
evaluation of 3D facial landmark detection
models

http://www.cbsr.ia.ac.
cn/users/xiangyuzhu/projects/3DDFA/main.
htm

Face Alignment Across Large Poses: A 3D
Solution (Zhu et al., 2016)

300-VW 300 Videos in the Wild (300-VW) is a
dataset for evaluating facial landmark
tracking algorithms in the wild. Each
video of this dataset is almost 1 min in
duration (at 25–30 fps). Each frame of all
videos has been annotated in the same way
as the 300-W dataset

https://ibug.doc.ic.ac.uk/resources/300-VW/ Offline Deformable Face Tracking in Arbitrary
Videos (Chrysos et al., 2015)

COCO-WholeBody This dataset is an extension of COCO
dataset, covering a whole-body annotation
(i.e., face, hand, and feet)

https://github.com/jin-s13/COCO-WholeBody Whole-Body Human Pose Estimation in the
Wild (Jin et al., 2020)

MALF MALF consists of 5,250 images with
11,931 faces in total. This dataset is the
first face detection dataset that supports
fine-gained evaluation

http://www.cbsr.ia.ac.cn/faceevaluation/ Fine-grained Evaluation on Face Detection in
the Wild (Yang et al., 2015)

FDDB FDDB dataset consists of 2,845 images
with 5,171 annotated faces

http://vis-www.cs.umass.edu/fddb/index.html FDDB: A Benchmark for Face Detection in
Unconstrained Settings (Jain and
Learned-Miller, 2010)

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2024.1430740
http://www.ifp.illinois.edu/%7Evuongle2/helen/
https://www.ics.uci.edu/%7Exzhu/face/
https://ibug.doc.ic.ac.uk/resources/300-W/
http://google.com
http://flickr.com
http://yahoo.com
https://neerajkumar.org/databases/lfpw/
https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/aflw/
https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/aflw/
https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/aflw/
http://www.cbsr.ia.ac.cn/users/xiangyuzhu/projects/3DDFA/main.htm
http://www.cbsr.ia.ac.cn/users/xiangyuzhu/projects/3DDFA/main.htm
http://www.cbsr.ia.ac.cn/users/xiangyuzhu/projects/3DDFA/main.htm
https://ibug.doc.ic.ac.uk/resources/300-VW/
https://github.com/jin-s13/COCO-WholeBody
http://www.cbsr.ia.ac.cn/faceevaluation/
http://vis-www.cs.umass.edu/fddb/index.html
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Piperigkos et al. 10.3389/frobt.2024.1430740

TABLE 5 Datasets of images with the iris.

Dataset Short description Link of the dataset Paper name

UBIRIS.v2 The UBIRIS.v2 dataset consists of 11,102
images of the iris that were captured from
261 subjects, with 10 images for each
subject. The images were acquired using a
variety of different conditions like
distance, motion, and different visible
wavelengths. They have also been affected
by real noise

http://iris.di.ubi.pt/ubiris2.html The UBIRIS.v2: A Database of Visible Wavelength Iris Images
Captured On-the-Move and At-a-Distance (Proenca et al., 2010)

OpenEDS Open Eye Dataset (OpenEDS) consists of
images with eyes captured using a
virtual-reality head display. This dataset
was collected from 152 individual
participants and is divided into four
subsets

https://research.fb.com/programs/ OpenEDS: Open Eye Dataset (Garbin et al., 2019)

Islam et al. (2019) presented an approach that exploits visual
cues from human pose to solve industrial scenarios for safety
applications in CPSs. El-Ghaish et al. (2018) integrated three
modalities (i.e., 3D skeletons, body part images, and motion
history images) into a hybrid deep learning architecture for human
action recognition. Nikolov et al. (2018) proposed a skeleton-based
approach utilizing spatio-temporal information and CNNs for the
classification of human activities. Deniz et al. (2020) presented
an indoor monitoring reconfigurable CPS that uses embedded
local nodes (Nvidia Jetson TX2), proposing learning architectures
to address human action recognition. Table 6 and Table 7
summarize relevant datasets for the pose estimation and action
recognition problem.

•Hand gesture recognition.

Hand gesture recognition tasks can be a very useful tool for
interactions with machines or subsystems in CPSoSs (Horváth and
Erdős, 2017), particularly in applications where the user is not
allowed to have physical hand contact with a machine due to
security reasons. This task mainly consists of three sequential steps,
which are hand detection, hand tracking, and gesture recognition.
Gesture recognition can occur either by a single image (i.e., static
gesture recognition) or a sequence of images (i.e., dynamic gesture
recognition). The first strategy looks more like a retrieval problem
where the gesture of the image has tomatchwith a knownpredefined
gesture from a dataset of gestures. The second is a more complicated
problem, but it is more useful since it can cover the requirements
of a wider variety of real-life use cases (Choi and Kim, 2017).
Gesture recognition is a very common task in human–computer
interaction. Nonetheless, the recognition of complex patterns
demands accurate sensors and sufficient computational power
(Grützmacher et al., 2016). Additionally, we have to refer to the
fact that visual computing plays an important role in CPSoSs,
especially in these applications where the visual gesture recognition
system relies on multi-sensor measurements (Posada et al., 2015;
Aviles-Arriaga et al., 2006).

Horváth and Erdős (2017) presented a control interface for
cyber–physical systems that interprets and executes commands

in a human-robot shared workspace using a gesture recognition
approach. Lou et al. (2016) tried to address the problem of
personalized gesture recognition for cyber–physical environments,
proposing an event-driven service-oriented framework. However,
in other gesture recognition applications, a body-worn setup was
proposed, which supplements the omnipresent 3 DoF motion
sensors with a set of ultrasound transceivers (Putz et al., 2020).
Table 8 summarizes relevant datasets for the hand and gesture
recognition problems.

• Speech and speaker recognition.

Speech recognition is a sub-category of a more generic research
area related to the domain of natural language processing (NLP).The
main objective of speech recognition is to automatically translate
the content of the entire speech (or the most significant part of it)
into text or other recognizable forms from the computers. Assuming
that the recording and processing of speech do not require a special
sensor, but just a simple audio recorder, we can understand how
easy to use this information is. Additionally, speech can be applied
without any physical contact interaction, making it an ideal signal
for HMI applications.

Speech recognition tasks can be utilized in the smart
input system (Wang, 2020; Han et al., 2016), automatic
transcription system (Chaloupka et al., 2012; Chaloupka et al.,
2015), smart voice assistant (Subhash et al., 2020), computer-
assisted speech (Tejedor-García et al., 2020), rehabilitation
(Aishwarya et al., 2018; Mariya Celin et al., 2019), and
language teaching.

Similar to the face recognition task that focuses on the
recognition of an individual human using facial information,
the speaker recognition task tries to achieve the same goal
using the vocal tone information of the subject. Speaker
recognition is one of the most basic components for human
identification, which has various applications in many CPSoSs.
Additionally, fusion schemes can be used combining both speaker
recognition and face recognition for more secure integrations
(Zhang and Tao, 2020).
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TABLE 6 Datasets for pose estimation.

Dataset Short description Link of the dataset Paper name

COCO The Microsoft Common Objects in Context
(MS COCO) consists of 328,000 images. This
dataset is a general-proposed, large-scale object
detection, segmentation, key-point detection,
and captioning dataset containing labeled
human’s poses

https://cocodataset.org/ Microsoft COCO: Common Objects in
Context (Lin et al., 2014)

MPII The MPII Human Pose Dataset consist of
25,000 images, of which 15,000 images are
training samples, 3,000 images are validation
samples, and the remaining 7,000 images are
testing samples. The single-person poses are
manually annotated with up to 16 body joints.
The images are taken from YouTube videos,
covering 410 different human activities

http://human-pose.mpi-inf.mpg.de/ 2D Human Pose Estimation: New Benchmark
and State of the Art Analysis (Andriluka et al.,
2014)

DensePose DensePose-COCO is a large-scale
ground-truth dataset with image-to-surface
correspondences, which are manually
annotated from 50,000 images of the COCO
dataset and train DensePose-RCNN, to densely
regress part-specific UV coordinates within
every human region at multiple frames per
second

http://densepose.org/ DensePose: Dense Human Pose Estimation in
the Wild (Güler et al., 2018)

LSP The Leeds Sports Pose (LSP) dataset consists of
2,000 images of sportspersons in total gathered
from Flickr, 1,000 for training and 1,000 for
testing. This dataset is used for human pose
estimation, and each image is annotated with
14 joint locations

https://dbcollection.readthedocs.
io/en/latest/datasets/leeds_sports_pose_
extended.html

Clustered Pose and Nonlinear Appearance
Models for Human Pose Estimation (Johnson
and Everingham, 2010)

JHMDB JHMDB is a recognition dataset that consists of
960 video sequences belonging to 21 actions.
This dataset is a subset of the larger HMDB51
dataset, which has been collected from
digitized movies and YouTube videos

http://jhmdb.is.tue.mpg.de/ Towards Understanding Action Recognition
(Jhuang et al., 2013)

Unite the People Unite The People dataset is mainly used for 3D
body estimation. The images come from an
extended version of the LSP dataset, as well as
the single person-tagged people from the MPII
Human Pose Dataset. The images are labeled
with different types of annotations such as
segmentation labels, poses, or 3D
representation

https://files.is.tuebingen.mpg.de/classner/up/ Unite the People: Closing the Loop Between
3D and 2D Human Representations
(Lassner et al., 2017)

A speaker recognition system consists of three separate parts,
namely, the speech acquisition module, the feature extraction and
selectionmodule, and finally the patternmatching and classification
module. In CPSoSs, the implementation of an automatic speech
recognition system relies on a voice user interface so that
humans can interact with robots or other CPS components.
Nevertheless, this type of interface cannot replace the classical
GUIs, but it can intensify them by providing, in some cases, a
more efficient way of interaction.

Kozhirbayev et al. (2018) developed a technique to
train a neural network (NN) on the extracted mel-
frequency cepstral coefficient (MFCC) features from audio
samples to increase the recognition accuracy of the
short utterance speaker recognition system. Wang et al.
(2020) tried to improve the robustness of speaker
identification using a stacked sparse denoising auto-
encoder. Table 9 summarizes relevant datasets for the speech
recognition problem.
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TABLE 7 Datasets of action recognition.

Dataset Short description Link of the dataset Paper name

UCF101 This dataset consists of 13,320 video
clips (∼ 27 h) from Youtube, classified
into 101 categories and into 5 types
(i.e., body motion, human–human
interactions, human–object
interactions, playing musical
instruments, and sports)

https://www.crcv.ucf.edu/data/UCF101.php UCF101: A Dataset of 101 Human Actions
Classes From Videos in The Wild
(Soomro et al., 2012)

Kinetics It is a high-quality dataset of videos
used for human action recognition.
The dataset consists of approximately
500,000 labeled video clips of 10 s,
covering 600 human action classes
with at least 600 video clips for each
action class

https://deepmind.com/research/open-
source/kinetics

The Kinetics Human Action Video Dataset
(Kay et al., 2017)

HMDB51 The HMDB51 is a dataset consisting of
6,849 video clips from 51 action
categories (such as “jump,” “kiss,” and
“laugh”). Each category containing at
least 101 clips

https://serre-lab.clps.brown.
edu/resource/hmdb-a-large-human-motion-
database/

HMDB: A large video database for human
motion recognition (Kuehne et al., 2011)

ActivityNet The ActivityNet contains 200 different
types of activities and a total of 849 h
of videos collected from YouTube. It is
one of the largest datasets based on the
number of activity categories and
videos

http://activity-net.org/ ActivityNet: A Large-Scale Video Benchmark
for Human Activity Understanding
(Heilbron et al., 2015)

NTU RGB + D NTU RGB + D consists of 56,880 video
clips of 60 action classes collected from
40 subjects. The actions can be
generally divided into 3 categories: 40
daily actions (e.g., drinking, eating,
and reading), 9 health-related actions
(e.g., sneezing, staggering, and falling
down), and 11 mutual actions (e.g.,
punching, kicking, and hugging)

http://rose1.ntu.edu.
sg/datasets/actionrecognition.asp

NTU RGB + D: A Large Scale Dataset for 3D
Human Activity Analysis (Shahroudy et al.,
2016)

KTH The KTH dataset contains six actions:
walk, jog, run, box, hand-wave, and
hand clap by 25 different individuals in
different environments: outdoor (s1),
outdoor with scale variation (s2),
outdoor with different clothes (s3), and
indoor (s4)

https://www.csc.kth.se/cvap/actions/ Recognizing Human Actions: A Local SVM
Approach (Schuldt et al., 2004)

Composable activity dataset This dataset consists of 693 annotated
videos of activities in 16 classes
performed by 14 individuals

https://ialillo.sitios.ing.uc.
cl/ActionsCVPR2014/

Discriminative Hierarchical Modeling of
Spatio-Temporally Composable Human
Activities (Lillo et al., 2014)

HACS HACS dataset contains 504 K videos
(shorter than 4 min) collected from
YouTube, categorized in 200 action
classes. It is used in human action
recognition

http://hacs.csail.mit.edu/ HACS: Human Action Clips and Segments
Dataset for Recognition and Temporal
Localization (Zhao et al., 2019a)

5 Behavioral layer

In each CPSoS, human knowledge, senses, and expertise
constitute important informative values that can be taken into
account for the assurance of its operational excellence. However,
a substantial concern that needs to be addressed at an early
age of CPSoS evolution is determining how these abstract

human features can be made accessible and understandable to
the system.

A way to integrate the human as a separate component
into a CPSoS is by introducing an anthropocentric mechanism,
which is known in the literature as the HITL approach
(Gaham et al., 2015; Hadorn et al., 2016). This mechanism allows
a direct way for humans to continuously interact with the CPSoSs’
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TABLE 8 Datasets for hand and gesture recognition.

Dataset Short description Link of the dataset Paper name

HandNet The HandNet dataset contains the depth
images of 10 participants’ hands
non-rigidly deforming in front of a
RealSense RGB-D camera. The
annotations were generated using a
magnetic annotation technique. 6D pose is
available for the center of the hand and the
five fingertips (i.e., position and
orientation of each)

http://www.cs.technion.ac.il/∼twerd/HandNet/ Rule of thumb: Deep derotation for improved
fingertip detection (Wetzler et al., 2015)

EgoGesture The EgoGesture dataset consists of 2,081
RGB-D videos, 24,161 gesture samples,
and 2,953,224 frames from 50 distinct
subjects

http://www.nlpr.ia.ac.
cn/iva/yfzhang/datasets/egogesture.html

EgoGesture: A New Dataset and Benchmark for
Egocentric Hand Gesture Recognition
(Zhang et al., 2018)

NVGesture The NVGesture dataset consists of 1,532
dynamic gestures categorized into 25
classes. The dataset is separated into 1,050
samples for training and 482 for testing.
The application in which it can be used is
for touchless driver controlling

https://ieeexplore.ieee.org/document/7780825 Online Detection and Classification of Dynamic
Hand Gestures With Recurrent 3D Convolutional
Neural Network (Molchanov et al., 2016)

IPN Hand The IPN Hand is a dataset consisting of
videos with sufficient size, variation, and
real-world elements capable to be used by
deep neural networks for training and
evaluation. The application on which this
dataset focuses is dynamic hand gesture
recognition

https://github.com/GibranBenitez/IPN-hand Real-time Hand Gesture Detection and
Classification Using Convolutional Neural
Networks (Köpüklü et al., 2019)

MLGEST-URE MlGesture consists of more than 1,300
hand gesture videos from 24 participants
and features 9 different hand gesture
symbols. The dataset has been recorded in
a car with five different sensor types at two
different viewpoints, and it can be used for
hand gesture recognition tasks

https://iiw.kuleuven.
be/onderzoek/eavise/mlgesture/home

Low-latency hand gesture recognition with a low
resolution thermal imager (Vandersteegen et al.,
2020)

control loops in both directions of the system (i.e., taking and
giving inputs).

Although commonCPSoSs are human-centered systems (where
human constitutes an essential part of the system), unfortunately,
in many real cases, these systems still consider humans as external
and unpredictable elements without taking their importance into
deeper consideration. The central vision of the researchers and
engineers is to create a human–machine symbiosis, integrating
humans as holistic beings within CPSoSs. In this way, CPSoSs
have to support a tight bond with the human element through
HITL controls, taking into account human features like intentions,
psychological and cognitive states, emotions, and actions, all of
which can be deduced through sensor data and signal processing
approaches.

HITL systems integrate human feedback into the control loop
of a system, allowing humans to interact with and influence
automated processes in real-time. In self-driving vehicles, haptic
teleoperation enables remote operators to control the vehicle with
the sensation of touch. For instance, when the vehicle encounters
an abnormal situation, a human operator can take over using HMI

haptic feedback to feel the road conditions and obstacles, ensuring
safe navigation and improving response times and overall safety
(Kuru, 2021). Additionally, HITL telemanipulation of unmanned
aerial vehicles (UAVs) allows operators to control drones remotely
while receiving haptic feedback about the drone’s interactions with
its environment. For instance, an operator uses a haptic interface
to control the UAV. The haptic feedback provides sensations of
wind resistance, surface textures, and physical interactions with
obstacles (Zhang et al., 2021). Integrating haptic feedback into
HITL operations enhances human perception by providing a
multisensory experience. This integration improves the realism of
virtual environments and the accuracy and efficiency of tasks,
requiring fine motor skills and precise control. Haptic feedback
bridges the gap between the virtual and physical worlds, allowing
users to interact with digital systems more naturally and intuitively.
Thus, the concept of human–machine symbiosis refers to the
synergistic relationship between humans and machines, where both
entities work together to achieve common goals. This cooperation
ensures that the unique strengths of humans (such as intuition,
creativity, and decision-making) complement the capabilities of
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TABLE 9 Datasets for speech recognition.

Dataset Short description Link of the dataset Paper name

LibriSpeech This dataset consist of approximately
1,000 h of audiobooks

http://www.openslr.org/12 LibriSpeech: An ASR corpus based on
public domain audio books
(Panayotov et al., 2015)

Speech Commands Speech Commands consists of 65,000 of
30 short words ∼, one second long. It is
a collection of spoken words by
thousands of different people, designed
for the training and evaluation of
keyword spotting systems

https://ai.googleblog.
com/2017/08/launching-speech-
commands-dataset.html

Speech Commands: A Dataset for
Limited-Vocabulary Speech
Recognition (Warden, 2018)

MuST-C MuST-C currently represents the largest
publicly available multilingual corpus
for speech translation from English into
several languages. It covers eight
languages. It consists of hundred hours
of audio recordings from English TED
Talks

https://ict.fbk.eu/must-c/ MuST-C: A multilingual corpus for
end-to-end speech translation
(Cattoni et al., 2021)

Common Voice Common Voice is a dataset of 9,283
recorded hours that consists of audio
files and corresponding text files
including demographic metadata like
age, sex, and accent

https://commonvoice.mozilla.
org/en/datasets

Common Voice: A
Massively-Multilingual Speech Corpus
(Ardila et al., 2019)

Libri-Light Libri-Light is a collection of over 60 K
hours of spoken English suitable for
training speech recognition systems
under limited or no supervision

https://github.
com/facebookresearch/libri-light

Libri-Light: A Benchmark for ASR with
Limited or No Supervision (Kahn et al.,
2020)

THCHS-30 THCHS-30 is a free Chinese speech
database that can be used for speech
recognition systems

http://166.111.134.19:
7777/data/thchs30/README.html

THCHS-30: A Free Chinese Speech
Corpus (Wang and Zhang, 2015)

VOICES This dataset consists of speech recorded
by far-field microphones in noisy room
conditions for using in speech and
signal processing approaches

https://registry.opendata.aws/lab41-sri-
voices/

Voices Obscured in Complex
Environmental Settings (VOICES)
corpus (Richey et al., 2018)

LibriCSS LibriCSS is a real recorded dataset that
simulates conversations that are
captured by far-field microphones

https://github.
com/chenzhuo1011/libri_css

Continuous speech separation: dataset
and analysis (Chen et al., 2020)

SPEECH-COCO SPEECH-COCO contains 616,767
audios generated using text-to-speech
(TTS) synthesis. The audio files are
paired with images

https://zenodo.org/record/4282267 PEECH-COCO: 600k Visually
Grounded Spoken Captions Aligned to
MSCOCO Data Set (Havard et al.,
2017)

machines (such as speed, accuracy, and endurance). By creating
environments where humans and machines work together, the
overall system performance can be enhanced. This human–machine
symbiosis ensures that both parties contribute to the task, leading
to increased productivity and innovation. The key components of
behavioral layer are summarized in Figure 4.

System designers, who design and develop new generations of
CPSoSs, have to understand and realize which features differentiate
them from the traditional CPSs. One of these features is the HITL
mechanism that allows CPSoSs to take advantage of some unique
human characteristics, making them superior to the machines. The
technological assessments are not mature yet to integrate these
human-oriented characteristics into machines and robots. As a

result, the HITL approach is essential to serve the initial goals
of a CPSoS. These characteristics, as have been proposed by the
literature (Sowe et al., 2016), are presented below:

• Cognition. Humans have a different way of observing
a situation than computers do. First, they understand
a problem and then make final decisions, even with
missing data. Human cognition is the combined result of
knowledge, experience, inspiration, and intuition, areas where
no current machine can overcome or even approach in
some way.
• Predictability. Humans are not preordained to perform the

same task in the same way every time that they try. This would
be a problem in some cases, especially when they have to follow
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FIGURE 4
Key components of the behavioral layer in CPSoSs.

precise instructions.This featuremightmake them less reliable
than a simple computer. However, this unpredictable behavior
could be beneficial in a critical situation that has not been
distinctly defined in the script of the instructions. The ability
of humans to easily adapt to unknown situations makes them
a perfect component to provide out-of-the-box solutions in
hazardous circumstances.
• Motivation. Humans, by their nature, usually require

incentives and becomemore productivewhen they are assured.
Motivation can guide a human to perform more effort on
a task than is required. On the other hand, computers and
machines follow a particular pipeline of work, and they
cannot change the way they perform a task to enhance their
productivity.

The HITL applications can be separated into three main
categories with respect to the type of input that humans
provide:

1. Applications in which the human plays a leading role
and directly controls the functionality of the CPSoS as
an operator (Figure 5A).

2. Applications where the system passively (Figure 5B) monitors
humans (e.g., biometrics, pose) and then makes decisions for
appropriate actions.

3. Hybrid combination of the two types mentioned above
(Figure 5C).

5.1 Direct human control of a CPSoS

The applications in this category can be separated into two
different sub-categories related to CPS autonomy. In the first sub-
category, operators manage a process close to an autonomous
task. The system has complete control of its action, and the user
is responsible for adjusting some parameters that may affect the
functionality of the system when required for external reasons.
An example that can describe a scenario like this is when an
operator sets new values to specific parameters on a machine in the
industry for changing the operation of the assembly line (e.g., for a
new product).

In the second sub-category, the operator plays a more active role
in the process by directly controlling several tasks and setting explicit
commands for the operation of the machines or robots. An example
of this scenario is when an expert operator has to remotely take
complete control of a robotic arm for repair purposes.

5.2 Human monitoring applications

The applications of this category are represented by systems that
passively monitor humans’ actions, behavior, and biometrics. The
acquired data can be used to make appropriate decisions. Based on
the type of the system reaction, the applications can be separated
into two types, namely, open-loop and closed-loop systems.
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FIGURE 5
HITL applications with respect to the type of input that humans provide. (A)applications in which human plays a leading role of the CPSoS,
(B)Applications where the system passively monitors humans and then makes decisions for appropriate actions. and (C)Hybrid combination of the two
types mentioned above.
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Open-loop systems continuously monitor humans and visualize
(e.g., smart glasses) or send a report with relevant results, which
may be helpful or interesting for the operator. The system does
not take any further action in this case. The presented results
can cover (i) the first level of information, (ii) the second level
of information, and (iii) KPIs. First-level information includes
measurements that usually are directly received by the sensors (e.g.,
heart rate, respiratory, and blinking of eyes). After the appropriate
process of the first level of information, the second level corresponds
to a higher contextual meaning (e.g., drowsiness, awareness, and
anxiety level).

Closed-loop systems use the received information from the
sensors and the processing results to take action. For example, in
an automotive use case, if critical drowsiness of a driver is detected,
the car could take complete control of the vehicle or appropriately
inform the driver of his/her condition.

5.3 Hybrid systems
Inmanufacturing, for example, a systemmonitors the operators’

actions while collaborating with a robot, and it can provide
appropriate guided instructions. However, the level of detail of the
guided assistant can be modified by the personalized preferences of
the user (which may be related to the level of his/her experience, for
instance). Hybrid systems take human-centric sensing information
as feedback to perform an open or closed-loop action, but
additionally, they also take into account the direct human inputs and
preferences.

Humans play an essential role in CPSoSs.Their contribution can
be summarized into three categories: (i) for data acquisition, (ii)
for inference related to their state, and (iii) for the actuation of an
action to complete a task of their own or to collaborate with other
components of the system (Nunes et al., 2015).

1. Data acquisition:
• Human as an informer. Humans provide the system

with information through wearable sensors or other
devices/sensors that monitor them.
• Human as a communicator to transfer condensed

knowledge. Humans have the special ability to easily
understand complicated information, draw conclusions,
and transfer filtered, useful, and deductive information to
the system.

2. State inference:
• Human as an insider component. Training algorithms and

machine learning approaches can be used to recognize
the human’s state (e.g., cognitive, physical, emotional, and
physiological), which may affect the excellent functionality
of a CPSoS or put the user’s safety at risk. When a critical
user state is identified, the system can change the typical
operation to protect the user or notify them with an
appropriate message or warning.
• Human as a feedback component. Based on the state

of the users, the system may provide suggestions or
recommendations to them. The acceptance of these
suggestions by the users can further be utilized by the
system as useful feedback, providing more personalized
solutions in future similar situations.

3. Actuation:

• Human as actuators. The actions of a human, as a part of
a CPSoS, are (i) to set the values of some parameters, (ii)
to execute specific tasks, or (iii) to take total control of the
system, if required.

HMI is referred to as the medium that is utilized for direct
communication between humans and machines, facilitating their
physical interaction (Ajoudani et al., 2018). In the literature, when
there are multi-human users or systems of machines instead of
a separate individual machine, HMIs have also been mentioned
as cooperative or collaborative HMIs (CHMIs). Nevertheless, for
simplicity, they will be referred to as HMIs since the way they
function and their primary features remain the same regardless of
the number of humans or machines.

Typically, the classical HMI system comprises some standard
hardware components, like a screen and keyboard, along with
software featuring specialized functionalities, effectively performing
as a graphical user interface (GUI). All sensors and wearable devices
connected with humans or other components of the CPSoS are
also part of an HMI. The HMI has pervasive usage in CPSoSs,
allowing each part of the CPSoS to directly interact with a
human and vice versa, creating a synergy loop between CPSs
and humans. In the future, HMIs will also have social cohesion
between humans and machines. Gorecky et al. (2014) suggested
that the primary representatives of HMI tools in CPSoSs, which
are mainly used for the communication between humans and
machines, are automatic speech recognition, gesture recognition,
and extended reality, which can be represented by augmented
or virtual reality. In such implementations, a touch screen can
allow human operators to pass messages to machines. Singh and
Mahmoud (2017) presented a framework that is capable of visually
acquiring information from HMIs in order to detect and prevent
HITL errors in the control rooms of nuclear power plants. The
intelligent and adaptable CPSoSs expect the automation systems to
be decentralized and support “Plug-and-Produce” features. In this
way, the HMIs have to dynamically update and adapt display screens
and support elements to facilitate the work of the operators, like
IO fields and buttons (Shakil and Zoitl, 2020). Wang et al. (2019a)
proposed a graphical HMI mechanism for intelligent and connected
in-vehicle systems in order to offer a better experience to automotive
users. However, Pedersen et al. (2017) presented away of connecting
an HMI with a software model of an embedded control system and
thermodynamic models in a hybrid co-simulation.

Naujoks et al. (2017) presented an HMI for cooperative
automated driving. The cooperative perception extends the
capabilities of the automated vehicles by performing tactics and
strategic maneuvers independently of any driver’s intervention
(e.g., avoiding obstacles). The goal of the papers presented by
Kharchenko et al. (2014), Orekhov et al. (2016a), and Orekhov et al.
(2016b) is to increase the drivers’ awareness through the
development and implementation of cooperative HMIs for ITSs
based on cloud computing, providing measurements of vehicle and
driver’s state in real-time. Johannsen (1997) dealt with HMIs for
cooperative supervision and control by different human users (e.g.,
in control rooms or group meetings). The application in various
domains (i.e., cement industry and chemical and power plants) has
shown that several persons from different classes (e.g., operators,
maintenance personnel, and engineers) need to cooperate.
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By integrating haptic technologies intoHMIs, humanperception
and interaction can be significantly enhanced, leading to more
effective and efficient HITL operations. Haptic teleoperation allows
operators to control remote or virtual systems with the sensation
of touch, providing real-time tactile feedback from the remote
environment. This feedback increases the operator’s situational
awareness and precision by mimicking the sense of touch, thereby
enhancing the user’s understanding and control (Cheng et al.,
2022). In automotive applications, for instance, haptic feedback
in steering wheels or pedals can alert drivers to hazards or
guide them through automated driving tasks, thus improving
response times and safety (Quintal and Lima, 2021). Additionally,
techniques like haptic physical coupling can create a physical
connection between the user and the system, enabling more
intuitive and direct manipulation of virtual objects or remote
devices. This can simulate the weight, texture, and resistance of
objects in virtual environments, which is particularly beneficial in
training simulations and remotemanipulations, where direct human
intervention is risky or impossible. For instance, it can be used in
simulations for hazardous environments, such as nuclear plants or
space missions. Operators can train with realistic tactile feedback,
preparing them for real-world scenarios without the associated
risks (Laffan et al., 2020). Incorporating haptic feedback into HITL
operations can also improve human perception by providing a
multisensory experience. This integration not only enhances the
realism of virtual environments but also improves the accuracy and
efficiency of tasks that require fine motor skills and precise control
(Sagaya Aurelia, 2019).

Cooperative HMIs can be used as standalone GUI in aircraft
guidance applications, allowing data and other types of graphical
information (e.g., routes, route attributes, airspaces, and flight
plan tracks). This real-time information enables collaborative
decision-making between all associates, such as the crew (the
pilot and the copilot), who have to cooperate continuously
or interact with air traffic controllers. HMIs can facilitate
the users in operational services, such as air traffic flow and
capacity management, flight planning, and airspace management.
Kraft et al. (2020) and Kraft et al. (2019) investigated the type
of information that should be provided to drivers via HMIs in
merging or turning left situations to support cooperative driving,
facilitating each other’s goal achievement. Cooperation between
road users utilizing V2X communication has the potential to
make road traffic safer and more efficient (Fank et al., 2021). The
exchange of information enables the cooperative orchestration
of crucial traffic conditions, like truck overtaking maneuvers
on freeways.

In addition to cooperative decision-making facilitated by HMIs,
the integration of predictive capabilities and situational awareness
is paramount in enhancing the functionality and safety of CPSoSs.
Prediction of operator’s intentions and situation awareness
are critical aspects of integrating human capabilities within
CPSoSs. By understanding and anticipating human actions and
maintaining a high level of awareness, these systems can significantly
enhance operational safety, efficiency, and resilience.These concepts
further solidify the human–machine symbiosis, ensuring that
CPSoSs can effectively adapt to dynamic and unpredictable
environments.

Prediction of operator’s intentions is a task that can improve
the effectiveness of collaboration between CPSoSs and humans.
An accurate prediction can be essential, especially in industrial
scenarios where the resilience and safety of all CPSoS components
mainly depend on the mutual understanding between humans and
CPSoSs. So, it seems necessary to design and develop reliable,
robust, and accurate human behavior modeling techniques capable
of predicting human actions or behavior.

On the one hand, operators are mainly responsible for their
safety when they are in the same working environment with
a cobot, performing collaborative tasks. However, on the other
hand, CPSoSs must have intelligent components that can identify,
understand, and even predict operators’ intentions with the primary
goal of protecting them from severe injury. A continuous video-
capturing component can be used by the prediction system to
detect, track, and recognize human gestures or postures, and an
artificial intelligence component can be used to predict human
intentions. The system can anticipate when unexpected human
operations have been detected, or specific human activity patterns
have been predicted (Zanchettin et al., 2019). Meanwhile, the cobot
can perform other tasks (Garcia et al., 2019). In the literature, a lot
of different approaches have been presented to solve the problem
of the prediction operator’s intentions, such as a framework for the
prediction of human intentions from RGBD data (Casalino et al.,
2018). A sparse Bayesian learning-based human intention predictor
is used to predict the future human desired position (Li et al.,
2019). A temporal CNN with a convolution operator is applied for
human trajectory prediction (Zhao and Oh, 2021). A system that
detects human intentions through a recursive Bayesian classifier is
used, exploiting head and hand tracking data (Casalino et al., 2018).
Another human intention inference system that uses an expectation-
maximization algorithm with online model learning is employed
(Ravichandar and Dani, 2017).

Awareness: Situational awareness in HMIs is used to describe
the level of awareness that operators/drivers/users have of the
situation in order to perform tasks successfully (Endsley, 1995).
Based on the definition provided by Vidulich et al. (1994),
situational awareness needs to include four specific requirements:

1. to easily receive information from the environment.
2. to integrate this information with relevant internal knowledge,

creating a mental model of the current situation.
3. to use this model to direct further perceptual exploration in a

continual perceptual cycle.
4. to anticipate future events.

Taking these four requirements into account, situational
awareness is defined as the continuous extraction of environmental
information, integrating this information with previous knowledge
to form a coherent mental picture and using that picture in directing
perception and anticipating future events. The system will be able to
monitor and understand the user’s state (e.g., fatigue and cognitive
level) to produce personalized alarms, warnings, information, and
suggestions to the users. A situational awareness application could
also provide

• Information streams regarding the task underway,
improving focus.
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• Personalized reminders regarding other parallel or scheduled
tasks significantly improve response time.
• Notifications and visual aids regarding imminent dangers or

accident-related factors.
• Environmental values and real-time measurements of sensors.
• KPIs visualizing the effectiveness of the CPSoS functionality.

Situation awareness is essential in cases where a user must
intervene in operations and co-operations with highly automated
systems in order to correct failed autonomous decisions in CPSoSs
(Horváth, 2020). It is also an effectivemethod to keep themechanical
parts of a system and its operators secure and safe; it can be classified
into two groups, human and computer awareness (Yang et al., 2018).
Moreover, situational awareness for security reasons is critical since
it can be used to inform the user about a cyber-attack that takes place
in real time (Joo et al., 2018).

6 Role of digital twins in optimizing
CPSoS ecosystems

Building upon the previously described perception and
behavioral layers of the CPSoS general architecture, DTs emerge
as a crucial technology that realizes and optimizes this framework.
The perception layer’s role in enhancing situational awareness
through object detection, cooperative scene analysis, and effective
path planning and the behavioral layer’s focus on integrating
human operators and supporting HITL interactions are both
significantly augmented by the capabilities of DTs. DTs provide
a dynamic and real-time simulation of physical systems, creating
accurate virtual replicas that enable continuous monitoring and
data integration across both layers. More specifically, DTs in the
perception layer offer a comprehensive view of the environment by
synchronizing data from various sensors and subsystems, ensuring
more precise and reliable situational awareness. This integration
allows for improved responsiveness to environmental changes and
anomalies, enhancing the autonomy and reliability of CPSoSs.
In the behavioral layer, DTs facilitate seamless human-machine
interfaces by delivering real-time feedback and predictive insights.
This supports the HITL approach by allowing human operators
to interact with the system using real-time simulations and up-
to-date information. Advanced HMIs such as gesture recognition
and eXtended Reality technologies are further empowered by DTs,
making interactions more intuitive and efficient. Moreover, the
predictive capabilities of DTs help anticipate operator intentions,
improving the collaborative efforts between humans and the
system, especially in critical scenarios where safety and efficiency
are paramount.

As such, by integrating DT frameworks into the proposed two-
layered architecture, the CPSoS ecosystem is not only optimized
but also becomes more resilient and adaptive to the complex
demands of various domains, including automotive, industrial
manufacturing, and smart cities. This synergy between DTs and
the CPSoS architecture leads to smarter, more efficient systems
capable of addressing modern challenges with greater efficiency. In
the following sections, we will present how DTs can be employed to
realize indicative large-scale CPSoSs like smart cities, transportation
systems, and aerial traffic monitoring.

6.1 Digital twins in prominent examples of
CPSoSs

DTs will play a pivotal role in optimizing large CPSoSs
by creating virtual replicas of physical systems, allowing for
real-time monitoring, simulation, and predictive maintenance.
This capability is particularly important for large CPSoSs,
where the integration of numerous interconnected subsystems
demands precise coordination and management. DTs enhance the
functionality and efficiency of these complex systems by providing
a unified platform for data integration, analysis, and visualization.
By enabling continuous feedback loops between the physical and
digital realms, DTs improve decision-making processes, enhance
system reliability, and optimize operational performance across
diverse domains, including but not limited to smart cities, intelligent
transportation systems, and aerial trafficmonitoring (Mylonas et al.,
2021; Kušić et al., 2023; Wang et al., 2021).

6.1.1 DTs and smart cities
The management and development of smart cities can be

revolutionized by DTs as they provide detailed digital replicas of
urban environments. These digital models integrate various data
sources to deliver real-time insights and simulations, enhancing
urban planning, infrastructure maintenance, and environmental
monitoring. More specifically, DTs enable city planners to test
different scenarios and make data-driven decisions, optimizing
the layout and functionality of urban spaces. By modeling traffic
flows, optimizing traffic light timings, and reducing congestion,
DTs improve urban mobility and air quality. For example, DTs
can analyze data from traffic cameras, sensors, and GPS to
provide real-time traffic management solutions, facilitating efficient
and sustainable urban traffic control (Schwarz and Wang, 2022).
Furthermore, DTs allow for the detailed simulation of urban
infrastructure, helping planners optimize the layout and design of
utilities such as water, electricity, and waste management systems.
By providing a virtual model of the city’s infrastructure, DTs
enable predictive maintenance and efficient resource allocation,
reducing operational costs and improving service delivery (Broo and
Schooling, 2023). Additionally, DTs play a crucial role in enhancing
public safety and emergency response (Aluvalu et al., 2023). By
integrating data from surveillance systems, emergency services, and
environmental sensors, DTs provide real-time situational awareness,
enabling faster and more coordinated responses to emergencies. For
instance, DTs can simulate natural disaster scenarios and help plan
effective response strategies, thereby improving the efficiency and
effectiveness of emergency management. Another important aspect
is that DTs support smart building management by monitoring
energy consumption, predicting maintenance needs, and improving
overall building efficiency. By providing a virtualmodel of buildings,
DTs help optimize heating, ventilation, and air conditioning
(HVAC) systems, lighting, and other building services, contributing
to energy savings and improved occupant comfort (Eneyew et al.,
2022). Finally, DTsmay be utilized for environmental monitoring by
integrating data from air quality sensors, weather stations, and other
environmental monitoring tools (Purcell et al., 2023). They provide
real-time insights into environmental conditions, helping cities
monitor pollution levels, manage natural resources, and implement
sustainability initiatives. For instance, DTs can help track and
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manage water quality in urban water systems, ensuring safe and
clean water for residents. Overall, DTs enhance the functionality
and efficiency of smart cities by providing a unified platform for
data integration, analysis, and visualization.This technology enables
cities to become more resilient, sustainable, and responsive to the
needs of their residents.

6.1.2 DTs and intelligent transportation systems
The complexity of modern transportation systems necessitates

sustainable technological innovations. DT technology, as an
innovative architecture, is well-suited to examine the lifecycle
of various systems in a digital format. DTs support numerous
aspects of transportation infrastructure, including transport system
monitoring, energy management, traffic forecasting, EV energy
consumption forecasting, subway regenerative braking energy
forecasting, parking lot management, driver behavior analysis,
pedestrian behavior investigation, health system control, and
cyber–physical attack detection (Jafari et al., 2023). By enhancing
traffic forecasting accuracy through real-time data collection
and high-quality models, DTs improve traffic planning and
management. This enhancement results in time and cost savings,
reduced energy consumption, improved driver wellbeing, and
overall better performance. By organizing data and algorithms,
DTs can support sustainable urban traffic formation and efficient
control (Jiang et al., 2022). For example, they optimize traffic
light timings and provide accurate traffic information, facilitating
optimal traffic management and extensive EV traffic planning
(Kušić et al., 2023; Chomiak-Orsa et al., 2023). Furthermore,
DTs are instrumental in predicting and optimizing the energy
consumption and production patterns of electrical transportation
systems. They enhance the management and optimization of energy
consumption, thus improving the operation and performance
of these systems (Ketzler et al., 2020; Bhatti et al., 2021). DTs
are crucial for the development and operation of autonomous
vehicles (Almeaibed et al., 2021). They simulate vehicle behavior
under various conditions, allowing for extensive testing and
optimization without the risks associated with real-world testing.
DTs help in refining algorithms for navigation, obstacle detection,
and collision avoidance, making autonomous vehicles safer and
more reliable. By providing a comprehensive digital environment,
DTs enable the testing of autonomous vehicles in a wide range
of scenarios, including adverse weather conditions, complex
urban environments, and interactions with other vehicles and
pedestrians. This capability is essential for improving the robustness
and safety of autonomous driving systems (Bhatti et al., 2021).
Another notable application of DT technology is in analyzing
and investigating real-time driver and pedestrian behavior,
enhancing security and environmental sustainability. By assembling
real-time data from drivers and vehicles, DTs transfer crucial
information to the physical world, addressing security concerns
and promoting sustainability (Yan et al., 2022). Furthermore,
DTs play a vital role in detecting cyber and physical attacks
in transportation systems, increasingly targeted by hackers
due to the integration of wireless and IoT technologies. This
capability ensures a secure and reliable environment for all
transportation agents (Liu et al., 2020; Damjanovic-Behrendt,
2018). As transportation systems evolvewith advanced technologies,
they become more vulnerable to cyber and physical attacks. DTs

enable the dynamic analysis of transportation systems, providing
real-time detection of such attacks. This functionality helps
construct a secure and reliable environment for transportation
systems, ensuring the safety of all users, including pedestrians
(Almeaibed et al., 2021).

6.1.3 DTs and aerial traffic monitoring
DTs are increasingly recognized for their transformative

potential in managing aerial traffic, particularly for UAVs and
drones. DTs provide a real-time digital replica of physical assets,
enabling precise navigation, real-time monitoring, and effective
management of aerial operations. This technology is crucial for
ensuring the safety, efficiency, and reliability of aerial traffic,
especially in urban environments where the density of aerial
traffic is high (Wang et al., 2021). In more detail, DTs can
enable real-time monitoring of UAVs and drones by providing
a comprehensive digital model that mirrors the physical asset.
This model integrates data from various sensors, including GPS,
cameras, and environmental sensors, to offer a holistic view of
the status and environment of UAVs. These real-time data allow
for precise navigation, collision avoidance, and efficient route
planning, ensuring safe operations even in complex and dynamic
environments (Glaessgen and Stargel, 2012; Soliman et al., 2023).
DTs also play a critical role in airspace management by providing
a comprehensive and integrated view of all aerial activities within
a given area. They can simulate different flight scenarios, optimize
airspace usage, and manage the traffic flow to prevent collisions
(He et al., 2019). DTs support the coordination of multiple UAVs,
ensuring that flight paths are optimized and comply with airspace
regulations. This capability is particularly important in urban areas
where multiple UAVs may be operating simultaneously (Tang et al.,
2023; Lv et al., 2021). In emergency response scenarios, DTs are
invaluable for enhancing situational awareness and coordination
among various entities. For instance, during a natural disaster, DTs
can be used to deploy UAVs for search and rescue operations, assess
damage, and deliver essential supplies. The real-time data provided
by DTs help emergency responders make informed decisions
quickly, thereby improving the efficiency and effectiveness of the
response (Piperigkos et al., 2023;Wen et al., 2024;Ariyachandra and
Wedawatta, 2023).

6.2 Digital twins-based integration of
smaller CPSoSs into larger CPSoSs

In the previous examples, DTs have been exploited not only
to model and optimize the performance of individual CPSoSs
like autonomous ground and aerial vehicles but also to integrate
these smaller CPSoSs into larger CPSoS ecosystems, like smart city
environments. This integration features great potential for creating
a synergistic ecosystem where various systems work together
seamlessly to enhance overall functionality, efficiency, and resilience.
For example, the integration of autonomous ground vehicles into
the infrastructure of smart cities exemplifies the convergence of
smaller CPSoSs into larger CPSoSs. Autonomous vehicles operate as
part of a larger network, interacting with smart traffic management
systems, connected infrastructure, and other smart devices to
optimize urban mobility. Autonomous vehicles communicate with
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traffic lights, road sensors, and central management systems to
navigate efficiently, reduce traffic congestion, and enhance road
safety. This level of integration allows for real-time data sharing
and coordinated decision-making, significantly improving the
performance of urban transportation systems (Piperigkos et al.,
2023; Huang et al., 2024; Hu et al, 2024). Furthermore, a key
advantage of integrating smaller CPSoSs (e.g., autonomous vehicles)
into larger CPSoSs (e.g., smart cities) is the seamless data
integration and management it facilitates. Data from various
sources, such as vehicles, smart buildings, environmental sensors,
and public transportation systems, can be collected, analyzed,
and utilized in a unified platform. This integrated data ecosystem
enables better decision-making and proactive management of
urban systems. For example, data from autonomous vehicles
can be combined with environmental data to monitor and
manage urban air quality more effectively (Kopelias et al., 2020;
Bayat et al., 2017). In general, the urban ecosystem can be enhanced
by enabling real-time data sharing and collaborative decision-
making across various systems. This interconnected network of
CPSoSs facilitates efficient resource management, improves public
services, and increases resilience against disruptions. Integrating
transportation systems, energy grids, and public safety networks
through DTs allows for optimized urban operations, reduced
response times in emergencies, and an overall enhancement in
the quality of life for residents (Lv et al., 2022). In the context of
urban transportation, multiple CPSoSs can collaboratively work to
streamline traffic flow, reduce congestion, and lower emissions by
sharing real-time data and predictive analytics (Liu et al., 2023).
This synergy allows for dynamic adjustment of traffic signals,
real-time rerouting of vehicles, and efficient public transport
scheduling. Energy grids can interact with transportation systems
to manage the charging of electric vehicles, ensuring that the energy
supply meets demand without overloading the grid (Bhatti et al.,
2021). This holistic integration supports disaster management,
improves emergency response times, and enhances overall urban
resilience.

7 Challenges and open research issues

The advancement of CPSoSs involves overcoming technical
and integration challenges in areas such as cooperative object
detection and fusion, cooperative localization and path planning,
cooperative SLAM, and HITL integration. These areas are crucial
for enhancing the functionality, reliability, and efficiency of CPSoSs.
Cooperative object detection and fusion integrate data from various
sensors, improving situational awareness in the perception layer.
Cooperative localization and path planning optimize navigation
and traffic management, aligning with the perception layer’s goals.
Cooperative SLAM enables accurate environmental mapping. HITL
integration enhances decision-making, linking to the behavioral
layer’s focus on human interaction and control. Addressing
these challenges is essential for improving performance, safety,
and adaptability in diverse and dynamic environments, driving
significant advancements in the development and deployment of
CPSoSs across various sectors.

7.1 Cooperative object detection and
fusion

Integrating data from heterogeneous sensors, such as cameras,
LiDAR, and radar, remains complex due to differences in
data formats, resolutions, and sampling rates, necessitating
the development of robust fusion algorithms. Furthermore,
developing methods for multi-modal object representation
that reconcile discrepancies in perception across sensors is
crucial for cohesive and accurate environmental understanding
(Arnold et al., 2020; Guo et al., 2021). Managing uncertainties
in sensor measurements and fusion processes is vital to
enhance the reliability of object detection. Establishing
standardized benchmarks and metrics for evaluation is
necessary to effectively assess and compare the performance of
cooperative object detection systems. Optimizing computational
efficiency and energy consumption of algorithms while
maintaining high accuracy poses additional challenges. Lastly,
understanding human interactions with autonomous systems
equipped with cooperative object detection capabilities is
essential for ensuring safe integration into mixed-traffic
environments.

7.2 Cooperative localization and path
planning

Cooperative localization for connected CPSs is advancing,
but several key research challenges remain. Algorithms need
to maintain accurate positioning even when communication is
disrupted or networks are patchy. Integrating data from GPS,
LiDAR, and cameras is crucial for precise localization. Algorithms
must also work well in GPS-unavailable areas. Efficiently processing
large data on limited computing power is essential for inter-
vehicle communication. Urban areas present signal issues that need
advanced processing techniques. Finally, creating realistic tests and
benchmarks is vital for ensuring system reliability.

Cooperative path planning involves multiple agents working
together to navigate from their respective starting points
to designated endpoints. Despite significant advancements,
several open issues remain in this domain. For application to
real conditions, scalability and efficient coordination require
algorithms capable of managing large fleets of CPSs (Halder et al.,
2020; Wang et al., 2019b) without compromising performance
opting for real-time decision-making for a swift response to
dynamic environments (Viana and Aouf, 2018), such as sudden
obstacles (Viana et al., 2019). Robust algorithms are needed to
maintain path planning when inter-vehicle communication is
unreliable. Effectively integrating heterogeneous sensor data from
LiDAR, cameras, and GPS can improve decision-making accuracy,
but it also requires conflict resolution mechanisms. Furthermore,
adapting path planning algorithms to diverse conditions and
regulatory environments requires the definition and introduction
of constraints. Real-world testing and validation are essential to
validate algorithms under diverse conditions, ensuring they meet
the stringent requirements of safe and efficient behavior of CPSoSs.
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7.3 Cooperative SLAM

As mentioned by Saeedi et al. (2016), cooperative SLAM has to
face quite some challenges in order to fully exploit the potential of
collaboration.

7.3.1 Data distribution
Further investigation is needed to determine which processing

architecture, either centralized or distributed, is more efficient for
the cooperative fusion of different SLAM solutions. The optimal
choice is closely related to the three other major challenges.

7.3.2 Relative poses of robots
Themap provided by each robot in its own reference coordinates

is called the local map. Each robot aims to integrate all individual
local maps to generate a global map of the environment. However,
this difficult task requires a priori unknown transformation
matrices, which relate these maps to one another. The problem of
the relative pose of the robot is coupled with the multiple-robot
data association problem. Knowledge of one makes the other a
simple problem.

7.3.3 Updating maps and poses
Once the relative transformation is determined, the fusion of

local maps is necessary. The resulting map should integrate all the
information contained within local maps. As a result of updating
the maps, the poses of the robots should also be updated. This
requires considering the current full trajectory of the robots and new
information received from other maps.

7.3.4 Communication requirements
The availability of a medium for data sharing among robots is

an important requirement in multiple-robot SLAM. Information
between robots can be exchanged via communication channels. The
quality of the communication channels is dependent on the (harsh
or not) environment. Additionally, the amount of data that needs
to be exchanged may have a significant impact on the efficiency of
communication. For instance, a local map of thousands of 3D points
that needs to be transmitted to a group of robots is not a trivial task.
Therefore, rich communication resources are also needed in order
to realize cooperative SLAM.

7.4 Human in the loop in CPSoSs

In CPSoSs, integrating human feedback into the control loop of
a system allows humans to interact with and influence automated
processes in real time. However, a series of challenges appear with
respect to this component that CPSoSs have to address.

7.4.1 Processing in real time
The complexity of CPSoSs, consisting of a variety of different

components, leads to the instantaneous production of a huge
amount of data.The processing of these data and real-time decision-
making are challenging tasks, considering that human safety is the
most important issue. The processing of data in batches could be a
solution to this challenge. However, this approach is not reliable in
critical situations within CPSoSs, where vital and accurate decisions

have to be made quickly to protect human life and security. In
other words, the real-time data processing framework requires the
system to handle large amounts of data with very low latency while
maintaining relatively high performance.

7.4.2 Online streaming of data
CPSoSs are systems of systems that are interconnected,

collaborating, and transferring in real-time helpful information and
data. Online streaming also requires real-time data processing. In
the case of online streaming, the challenge originates from data
transfer in an ordered sequence of instances that can usually be
accessed once or a few times due to limited computing and storage
capabilities. The tremendous growth of data demands switching
from traditional data processing solutions to systems that can
process a continuous stream of real-time data.

7.4.3 High-dimensional data
High-dimensional data are becoming a prevalent issue

in many real-world applications of CPSoSs. The processing
of high-dimensional data acquired by different sensors and
devices presents a fundamental challenge, leading to more
sophisticated methods being developed. High-frequency data
refer to data that usually appear as time series, with their values
updating very rapidly (i.e., new observations take place every
milliseconds-second). The appropriate management of high-
frequency data is essential for contemporary CPSoSs. Processing
these data introduces new challenges to decision-making tasks,
especially when a human takes part in the CPSoS as a HITL
component.

7.4.4 Unsupervised learning in data of CPSoSs
Unsupervised learning is a type of learning that tries to discover

hidden patterns in untagged data autonomously. This can be
beneficially used in real-time applications where the observed data
possess a large variety of classes compared to those in a restricted
dataset. However, applying this in CPSoSs is a very challenging task
as they require accurate and precise results, and usually, there are
no “ground truth” data for the evaluation of the method’s accuracy
(Ma et al., 2018).

8 Lessons learned

In the connected CPSoS, each node perceives the environment
and generates data streams shared among all connected nodes,
facilitating collaborative perception, localization, and path
planning. This interconnectedness allows each node to access
a wealth of information about the common environment that
would otherwise be unavailable. In practice, the sensing range
of each individual CPS is extended according to the sensing
capabilities of the other interconnected CPSs (Piperigkos et al.,
2021), thus leading to complementary data fusion. The integration
of cooperative perception, localization, SLAM, path planning,
and HITL forms the foundation of distributed intelligence
in CPSoSs. The integration of various sensors across nodes
significantly enhances cooperative situational awareness, and the
benefits of that type of collaboration have been quantified both
theoretically and algorithmically. For example, Fisher information
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matrix-based analysis (Buehrer et al., 2018) provides indicative
insights about the fundamental nature of collaboration and the
scaling with network size, anchor placement, neighbor selection,
etc., demonstrating how the integration of sensors facilitates
swarm navigation in Mars exploration missions (Zhang et al.,
2020). Therefore, this interconnected data sharing results in
a more comprehensive understanding of the environment,
leading to improved decision-making capabilities. For instance,
in autonomous driving, shared data from multiple vehicles can
provide a clearer picture of road conditions and traffic patterns,
enhancing safety and efficiency (Arvanitis et al., 2023). Cooperative
localization enables precise positioning even in challenging
environments where traditional GPS signals may be unreliable
(Piperigkos et al., 2023).

By sharing location data among nodes, CPSoSs can achieve
more accurate and reliable navigation.This is crucial for applications
such as autonomous vehicles and drones, which rely on precise
localization for safe operation. Cooperative SLAM extends the
capabilities of individual systems by allowing multiple nodes to
collaboratively map their environment; as stated by Saeedi et al.
(2016), continuously updating and sharing maps among nodes
enhances the overall system’s adaptability to dynamic environments.
However, this fact also emphasizes the need for more accurate and
up-to-date maps, which are essential for navigation and obstacle
avoidance. In the same context, incorporating human feedback into
CPSoS operations could potentially enhance system performance
in dynamic situations where algorithms might lack situational
awareness or adaptability (Alsamhi et al., 2024). This is particularly
important in scenarios where automated systems face uncertain
or complex situations. HITL systems ensure that human operators
can intervene when necessary, providing a safety net for critical
operations.

It is expected that the collective intelligence of connected
CPSoS nodes will lead to more robust and resilient systems. By
distributing computational tasks and decision-making processes
across multiple nodes, CPSoSs will be able to handle larger and
more complex tasks with greater efficiency. In this distributed
type of approach, system scalability can also be enhanced,
making it easier to expand CPSoSs to accommodate more
nodes and diverse sensors. In the same context, DTs will play a
crucial role in optimizing CPSoS ecosystems by creating virtual
replicas of physical systems (i.e., smart cities, transportation,
etc.), enabling real-time monitoring, predictive maintenance, and
scenario simulation. In practice, DTs are expected to enhance
the interaction between smaller and larger CPSoSs, facilitating
efficient data sharing and collaborative decision-making across
various systems, with a direct impact on the quality of life (Lv et al.,
2022). Despite significant advancements, several challenges
remain, including managing high-dimensional data, ensuring
real-time processing, and developing robust algorithms for
data fusion and localization. Future research should focus on
addressing these challenges to further enhance the capabilities
of CPSoSs. Overall, the lessons learned from the development
and implementation of CPSoSs highlight the importance of
collaboration, data sharing, and human integration in creating
intelligent, adaptive, and efficient systems. These insights provide
a roadmap for future research and development, aiming to optimize

CPSoSs for various applications, from smart cities to autonomous
transportation.

9 Discussion

In this survey, we examine CPSoSs and their components that
improve situational awareness for users, an aspect not thoroughly
discussed in previous review papers. By focusing on human
integration into CPSs, we include the HITL element and HMI in
the CPSoS concept. We also emphasize the crucial role of DTs
in optimizing CPSoS ecosystems. The key contributions of this
paper consist of an extensive review of current leading practices in
connected CPSs and an analysis of a dual-layer architecture with
a perception layer for situational awareness and a behavioral layer
for incorporating human operators through HITL mechanisms and
sophisticated HMI technologies. Furthermore, we provide various
datasets and data sources accessible to the research community,
concentrating on perception algorithms for scene understanding,
localization, mapping, and path planning, along with decision-
making and HITL control. We also discuss the incorporation of DTs
intoCPSoSs, showcasing their applications in smart cities, intelligent
transportation systems, and aerial traffic monitoring.

In more detail, this survey offers a comprehensive exploration
of the architectural and operational intricacies of CPSoSs,
highlighting the dual-layer architecture comprising the perception
and behavioral layers. This approach distinguishes our study by
providing a detailed examination of how these layers enhance
situational awareness and integrate human elements within CPSoSs.
The perception layer is meticulously designed to focus on advanced
perception algorithms essential for object detection, scene analysis,
cooperative localization, and path planning. These capabilities are
critical for achieving higher autonomy and reliability in CPSoSs.
Unlike other studies that may address these components in
isolation, our research integrates these elements into a cohesive
framework, demonstrating how they collectively contribute to the
overall functionality and efficiency of CPSoSs. The behavioral
layer emphasizes the integration of human operators through
HITL mechanisms and advanced HMI technologies. This layer
underscores the importance of human cognition, adaptability,
and motivation, which are crucial for operational excellence
in CPSoSs. Our study uniquely addresses the challenges and
benefits of incorporating human feedback and interaction into
automated systems, promoting a human–machine symbiosis that
enhances decision-making and system flexibility. Additionally,
we delve into the role of DTs in optimizing CPSoS ecosystems.
Our research highlights the potential of DTs in smart cities,
intelligent transportation systems, and aerial traffic monitoring,
showcasing how they facilitate real-time data integration, predictive
maintenance, and improved decision-making. The discussion
extends to the integration of smaller CPSoS into larger systems,
emphasizing that seamless communication and coordination
among subsystems enhance overall system performance and urban
management.

Our research provides valuable insights into how evolving
CPSoSs can transform collaborative and collective decision-making
and significantly impact various industries and disciplines. The
integration of HITL mechanisms and HMIs enhances real-time
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TABLE 10 Summary of mature, current, and future challenges in CPSoS areas of interest.

Area of interest SOTA (Mature) Current challenges Future challenges

Cooperative object detection and fusion Data fusion from multiple sensors
improves situational awareness and
enhances decision-making capabilities

Fusion of heterogeneous data to address
discrepancies in data formats and
resolutions

Robust algorithms to ensure real-time,
multi-modal perception in dynamic
environments

Cooperative localization and path
planning

Cooperative localization improves
precision in GPS-denied environment

Ensuring accurate positioning and path
planning under network delay

Scalable algorithms for large CPS fleets
with minimal latency and error in
real-time localization and path palling

Cooperative SLAM Cooperative SLAM enables real-time
environment mapping

Managing data fusion for distributed
SLAM and ensuring up-to-date maps in
dynamic environments

Real-time, large-scale SLAM algorithms
that are robust to communication
latency and noise

HITL systems HITL ensures human intervention in
critical decision-making scenarios,
improving safety

Managing the balance between human
input and automation in fast-evolving
situations

Seamless AI-human interaction for
adaptive, safe, and autonomous
decision-making in diverse
environments

DTs DTs enable real-time monitoring and
predictive maintenance

Integrating smaller and larger CPSoS
with DTs to enhance data sharing and
decision-making

Full integration of DTs for autonomous,
real-time system optimization across
different sectors

Security and trust Basic security mechanisms embedded
in traditional CPSoS systems

Ensuring real-time breach detection
and secure communication in
interconnected environments

Developing security-by-design
frameworks for heterogeneous CPSoSs

HART Collaborative interactions between
humans and semi-autonomous systems
enhance productivity

Optimizing hybrid intelligence by
combining human intuition with
machine precision

Creating resilient environments for
seamless human–machine cooperation,
leveraging cognitive capabilities

interaction and feedback between humans and machines, leading
to more informed and effective decision-making processes. For
example, in industrial production, the ability to integrate human
expertise with automated processes can create more flexible and
adaptive manufacturing systems. Operators can provide real-time
input and adjustments, ensuring that production lines can quickly
respond to changes in demand or unforeseen issues, thus improving
efficiency and reducing downtime. In the context of smart cities,
CPSoSs can enhance urban mobility, energy management, and
public safety. For instance, the integration of autonomous ground
vehicles within smart city infrastructure allows for optimized traffic
flow and reduced congestion through real-time data sharing and
coordinated decision-making. This not only improves the efficiency
of transportation systems but also contributes to environmental
sustainability by reducing emissions. The research community can
greatly benefit from this manuscript by leveraging the frameworks
and methodologies presented to establish robust CPSoSs. Our
detailed discussion on perception and behavioral layers, as well
as the integration of DTs, offers a comprehensive guide for
developing and optimizing CPSoSs. By addressing both technical
and human-centric aspects, our study provides a holistic approach
to understanding and implementing CPSoSs. Researchers can build
on these insights to explore new opportunities, address current
challenges, and develop more resilient and adaptable systems
that meet the evolving demands of various industries. Overall,
this survey emphasizes the transformative potential of CPSoSs in
enhancing collaborative and collective decision-making, operational
efficiency, and quality of life across different sectors. The insights

gained from this study serve as a valuable resource for the research
community, guiding future innovations and advancements in the
field of CPSoSs.

9.1 Future directions

As CPSoSs continue to evolve, several key areas require further
attention and development to ensure their effective implementation
and optimization. One critical area is security and trust. Since
CPSoSs are tightly integrated with human elements and involve
diverse, interconnected systems, ensuring robust security measures
is paramount. Traditional security measures often fall short due
to the complexity, autonomy, and heterogeneity of CPSoSs, as
well as the presence of legacy components. Therefore, a new
security and trust mechanism tailored for CPSoSs is essential.
This mechanism must be embedded from the design phase and
continuously updated throughout the system’s lifecycle to adapt to
emerging cybersecurity threats. Implementing a security-by-design
principle ensures that security components can accommodate
varying security needs and performance capabilities across
different CPSs. Additionally, specialized security monitoring tools
should be integrated to detect, respond to, and mitigate security
breaches in real time, ensuring resilience even under unforeseen
conditions. Another promising direction is the development of
systems based on the human-agent–robot teamwork (HART)
framework (Demir et al., 2020). This framework emphasizes
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collaborative interactions between humans and fully or semi-
autonomous machines, aiming to harness hybrid intelligence—the
combined strengths of human intuition and machine precision.
Such synergy can significantly enhance productivity, innovation,
and overall system performance. Future research should focus
on creating environments that facilitate seamless co-working
between humans and machines, optimizing both human cognitive
abilities and machine efficiency. This cooperative model not only
enhances operational effectiveness but also promotes adaptability
in response to dynamic and complex environments, leading to
more resilient and innovative CPSoS (Verhagen et al., 2022).
By addressing these future directions, the field of CPSoSs
can advance toward more secure, efficient, and human-centric
systems, ensuring their relevance and effectiveness in various
domains.

Finally, Table 10 summarizes the main lessons learned about
the currently matured areas that we presented previously, as well as
the corresponding current and future challenges derived from the
previous
discussion.

10 Conclusion

This survey provides a comprehensive review of current best
practices in connected CPSoSs. We present a detailed CPSoS
architecture that facilitates collective intelligence through sensor
fusion, scene analysis, cooperative localization and mapping,
and user state monitoring. By examining all aspects of these
areas, we offer insights into HITL-oriented datasets, including
face analysis and landmark extraction, pose estimation, hand
and gesture recognition, action recognition, and speech analysis.
Through this survey, readers can gain a deep understanding of
the current status, advancements, and challenges in adopting
autonomous CPSs and CPSoSs within a continuously evolving
technological landscape. We highlight the importance of integrating
HITL mechanisms and HMIs to achieve a CPSS paradigm.
Additionally, we emphasize the critical role of DTs in optimizing
CPSoS ecosystems, demonstrating their applications in smart cities,
intelligent transportation systems, and aerial traffic monitoring. By
addressing the dual-layer architecture encompassing the perception
and behavioral layers, this survey underscores the necessity of

enhancing situational awareness and integrating human expertise
into automated processes.The insights provided herein are intended
to guide future research and development in creating more resilient,
efficient, and intelligent CPSoS, ultimately contributing to improved
urban ecosystems and industrial environments.
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Glossary

ADAS Advanced driver assistance system

AR Augmented reality

CAV Connected and automated vehicle

CL Cooperative localization

CNN Convolutional neural network

CPS Cyber–physical system

CPSoS Cyber–physical system of systems

CPSS Cyber–physical–social system

DT Digital Twin

FPFH Fast point feature histogram

GD Gradient descent

GNSS Global navigation satellite system

GPS Global Positioning System

HITL Human in the loop

HMI Human–machine interface

ICP Iterative closest point

IMU Inertial measurement unit

IoT Internet of Things

ITS Intelligent transportation system

KF Kalman filter

KPI Key performance indicator

LiDAR Light detection and ranging

LO LiDAR odometry

LOAM LiDAR odometry and mapping

LS Least squares

RSS Received signal strength

SLAM Simultaneous localization and mapping

SPAWN Sum–product algorithm over wireless networks

UAV Unmanned aerial vehicle

UGV Unmanned ground vehicle

UUV Unmanned underwater vehicle

V2I Vehicle-to-infrastructure

V2V Vehicle-to-vehicle

V2X Vehicle-to-everything

VANET Vehicular ad hoc network

VO Visual odometry

XR eXtended Reality

WSN Wireless sensor network
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