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Heterogeneous foraging swarms
can be better

Gal A. Kaminka* and Yinon Douchan

Department of Computer Science, Gonda Brain Research Center, and Nanotechnology Center, Bar
Ilan University, Ramat Gan, Israel

Introduction: Inspired by natural phenomena, generations of researchers have
been investigating how a swarm of robots can act coherently and purposefully,
when individual robots can only sense and communicate with nearby peers,
with no means of global communications and coordination. In this paper,
we will show that swarms can perform better, when they self-adapt to admit
heterogeneous behavior roles.

Methods: We model a foraging swarm task as an extensive-form fully-
cooperative game, in which the swarm reward is an additive function of
individual contributions (the sum of collected items). To maximize the swarm
reward, previous work proposed using distributed reinforcement learning,
where each robot adapts its own collision-avoidance decisions based on the
Effectiveness Index reward (EI). EI uses information about the time between
their own collisions (information readily available even to simple physical robots).
While promising, the use of EI is brittle (as we show), since robots that selfishly
seek to optimize their own EI (minimizing time spent on collisions) can actually
cause swarm-wide performance to degrade.

Results: To address this, we derive a reward function from a game-theoretic
view of swarm foraging as a fully-cooperative, unknown horizon repeating
game. We demonstrate analytically that the total coordination overhead of
the swarm (total time spent on collision-avoidance, rather than foraging per-
se) is directly tied to the total utility of the swarm: less overhead, more items
collected. Treating every collision as a stage in the repeating game, the overhead
is bounded by the total EI of all robots. We then use a marginal-contribution
(difference-reward) formulation to derive individual rewards from the total EI.
The resulting Aligned Effective Index (AEI) reward has the property that each
individual can estimate the impact of its decisions on the swarm: individual
improvements translate to swarm improvements. We show that AEI provably
generalizes previous work, adding a component that computes the effect of
counterfactual robot absence. Different assumptions on this counterfactual lead
to bounds on AEI from above and below.

Discussion: While the theoretical analysis clarifies both assumptions and gaps
with respect to the reality of robots, experiments with real and simulated
robots empirically demonstrate the efficacy of the approach in practice, and the
importance of behavioral (decision-making) diversity in optimizing swarm goals.

KEYWORDS

multi-agent reinforcement learning, foraging, swarm robotics, heterogeneous robots,
robot diversity, difference reward, marginal contribution, game theory
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1 Introduction

Distributed multi-robot systems comprise multiple robots,
each under its own control (Farinelli et al., 2004; Parker, 2008).
Typically, the robots are deployed to carry out tasks toward a
global goal. Examples include coverage (Agmon et al., 2008a;
Hazon and Kaminka, 2008; Yehoshua et al., 2016; Giuggioli et al.,
2016; Rekleitis et al., 2008); patrolling (Sempe and Drogoul, 2003;
Elmaliach et al., 2007; Elmaliach et al., 2008; Agmon et al., 2008b;
Elmaliach et al., 2009; Basilico et al., 2009; Marino et al., 2009;
Jensen et al., 2011; Portugal and Rocha, 2013; Yan and Zhang, 2016);
formation maintenance (Kaminka and Glick, 2006; Kaminka et al.,
2008; Michaud et al., 2002; Fredslund and Mataric, 2002; Desai,
2002; Desai et al., 1998; Kaminka et al., 2013; 2016; Balch and Arkin,
1998; Lemay et al., 2004; Michael et al., 2008); multi-agent path
planning (Yu and Lavalle, 2015; Sharon et al., 2015; Stern et al.,
2019) or navigation (Fox et al., 1997; van den Berg et al., 2011;
Snape et al., 2011; van den Berg et al., 2008; Guy et al., 2010;
Bouraine et al., 2014); order picking (Wurman et al., 2008; Hazard
and Wurman, 2006); sustainable agricultural foraging (Song and
Vaughan, 2013); and more (Kaminka et al., 2010).

Necessarily, the robots share resources (at the very least, the
space of their work area), and thus, a fundamental challenge is
the challenge of multi-robot coordination. As robots cannot act
completely independent of others, they must coordinate their
actions with other robots in order to avoid and resolve conflicts
over resource use. Such coordination necessarily introduces some
overhead into the workings of the robots, either by design or by ad
hoc necessity.

Multi-robot coordination, therefore, both supports and competes
with the achievement of the goals of the robots. Managing the
coordination is a necessary component of multi-robot systems and
can be done in a variety of ways. Distributed approaches that rely on
joint decision-making by the robots [e.g., Gage, 1992; Parker, 1998;
Kaminka and Frenkel, 2005; Xu et al., 2005; Zlot and Stentz, 2006;
Vig and Adams, 2006; Kaminka and Frenkel, 2007; Kaminka et al.,
2007; Dias and Stentz, 2000; Dias et al., 2004; Gerkey and Mataric,
2002; Gerkey andMatarić, 2004; Goldberg et al., 2003; Farinelli et al.,
2006; Parker and Tang, 2006; Tang and Parker, 2007; Liemhetcharat
and Veloso, 2013; Sung et al., 2013] require high communication
availability and the capability of robots to assess not just their
own state but also those of others. When such high-bandwidth
communications are possible, these approaches can be very effective.

Under settings in which communications are limited in
bandwidth and range (e.g., as the number of robots in a group
increases), swarm robotics methods offer a promising approach to
manage the coordination between robots. Here, robots necessarily
coordinate ad hoc and locally, with little or no communications
(Hamann, 2018; Hénard et al., 2023). Swarm robotics approaches
have been applied various tasks, some similar to those discussed
above: coverage (Batalin and Sukhatme, 2002; Osherovich et al.,
2007); foraging (Goldberg and Matarić, 1997; Rybski et al., 1998;
Balch, 1999; Vaughan et al., 2000; Zuluaga and Vaughan, 2005;
Rosenfeld et al., 2008; Kaminka et al., 2010; Douchan and Kaminka,
2016; Douchan et al., 2019); and flocking, formation maintenance,
and collective motion (Balch and Hybinette, 2000; Mataric, 1994;
Moshtagh et al., 2009; Bastien and Romanczuk, 2020).

With few exceptions (see Section 2 for a discussion), swarm
robotics research has investigated settings in which swarms are
homogeneous; every robot has the same capabilities as others.
Ignoring stochastic elements in perception, actuation, and decision-
making components, different robots would respond in an identical
manner, given the same local state in which they find themselves.

In this paper, we show how swarms can perform better when
they self-adapt and specialize so that their behavioral roles become
heterogeneous: given the same settings, different robots in the
swarm learn to respond differently.

We focus on spatial coordination in swarm foraging. This
is a canonical task for swarm robotics researchers, with many
practical applications (see Section 2). We may model this task
as an extensive-form fully cooperative game, in which the
swarm goal is an additive function of individual contributions
(collected items) (Kaminka et al., 2010). As robots cannot share the
same spot at the same time and must avoid and resolve collisions,
they must coordinate spatially, acting so as to not collide and
continue their task normally if a collision occurs. Theoretically, if
robots could predict future collisions and their effects, they could
use such a model to make optimal collision-avoidance decisions.
In practice, individual robots cannot coordinate or communicate
globally and, thus, cannot select actions that are optimal for the
swarm as a whole.

To compensate for missing global information, Kaminka et al.
(2010) presented a multi-agent independent-learner reinforcement
learning approach, where a reward function, called the effectiveness
index (EI), uses only local information: the time between collisions,
which is easily measured by each robot independently. Robots can
individually and independently use EI to adapt their collision-
avoidance strategies, dynamically diversifying their behavioral
responses.

Unfortunately, although the use of EI proved effective in some
cases, its effectiveness is brittle (as we show). All too often, robots
learned policies that minimize their individual time spent on
collisions (improving their own EI rewards) but at the expense of
others. This degraded the performance of the swarm as a whole.
In such cases, the individual and collective utilities are said to be
mis-aligned.

To address this, we re-examine how swarm-wide (global) utility
is related to individual actions. First, we show that the total
coordination overhead of the swarm (total time spent on collision
avoidance, rather than foraging per se) is directly related to the
total utility of the swarm: the less collective overhead, the more
items collected. Then, we transform the extensive-form game to a
fully cooperative repeated game with an unknown horizon. Treating
every collision as a stage in the repeating game, we show that
this collective overhead is bounded by the total EI of all robots
over all stages. These two results are conjectured, but unproven, in
previous work.

We then derive an aligned individual reward function, called
the aligned effective index (AEI). This derivation is done from first
principles: given the total EI (a global measure), we derive for
each robot its marginal (individual) contribution to this value. This
is done by having each robot estimate the swarm utility when it
is a member of the swarm and when—hypothetically—it is not
(a counterfactual). This derivation step follows difference-reward
formulations (Tumer et al., 2002; Tumer et al., 2008) but differs from
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them in the assumptions required for estimating the counterfactuals
for physical robots that only measure time. The resulting individual
reward—AEI—has the property that each individual can estimate
the impact of its decisions on the swarm: individual improvements
translate to swarm improvements. Although AEI is derived anew,
it provably generalizes EI as introduced in earlier work, adding to
it a component that computes the effect of counterfactual robot
absence. Different assumptions on this computation lead to bounds
on AEI from above and below, which we present. Although the
theoretical analysis clarifies assumptions and principled results,
experiments with real and simulated robots highlight gaps with
respect to the reality of robots. We explore several experimental
settings (simulated and real robots), using various approximations of
AEI and using both discrete-time and continuous-time Q-Learning
algorithms.The experiments empirically demonstrate the efficacy of
the approach in practice.

The results show that in the general case, the swarm as a whole
achieves maximal results when its members become specialized
through learning, i.e., they become behaviorally diverse: their
responses to potential collisions differ, and it is that diversity
that achieves maximal results. This conclusion complements
those of others, investigating mechanical diversity or capability
diversity in swarms (Dorigo et al., 2012; Kaminka et al., 2017;
Berumen et al., 2023; Adams et al., 2023).

This paper is organized as follows: Section 2 provides
background and motivation for the foraging the task, as well as
a review of related work; Section 3 details the theoretical model;
Section 4 discusses its approximation in the reality of robotics in
practice; Section 5 presents the results from extensive simulation
and real robot experiments; and Section 6 concludes with a
discussion on the implications and scope of the work.

2 Motivation and background

We discuss the background and context for this study. First, we
motivate the focus on multi-robot swarm foraging and commercial
variants in Section 2.1. We then present a view of swarm foraging
from the perspective of the single swarm member (Section 2.2).
This allows us to place previous and existing work in context and
also to present the opportunity for using learning for improving
foraging. Section 2.3 focuses on investigations of this opportunity
and their relation to the techniques reported here.

2.1 Swarm foraging: an exemplary swarm
task

The motivation for our work arises from the scientific study of
a canonical multi-robot task: foraging (Balch, 1999; Winfield, 2009;
Zedadra et al., 2017; Lu et al., 2020). This is a task where a group of
robots is deployed to repeatedly search for objects of interest (items)
and, when found, for transporting them to one or more collection
points (homes). Foraging is a canonicalmulti-robot problembecause
it raises challenges in multiple aspects of multi-robot systems:

• Management of communications between robots, e.g., with
respect to where items may be found. Communications are

often non-existent or limited in range and bandwidth; theymay
be stigmergic, as in the case of ant trail pheromones.

• Effects of population changes (robot death/birth) and various
types of individual failures.

• Scalability of methods as groups grow in size
• Collision handling and avoidance as robots inevitably crowd
around home locations and sometimes in areas with high
item density.

We cannot do justice to a full survey of multi-robot
coordination, even if we limit ourselves to foraging. Some surveys
of interest on swarms in general (Hamann, 2018; Dorigo et al., 2021;
Hénard et al., 2023) and foraging in particular (Winfield, 2009;
Zedadra et al., 2017; Lu et al., 2020) may be found elsewhere. We
discuss the most closely related work below.

Our focus is on a swarm version of foraging, where robots
do not rely on communications for coordination and have little
knowledge of the state of others other than their bearing within
some limited local range. In other words, we assume that robots
can find items, transport them, and repeat the process. They can
sense the bearing (angle) to others within a limited range so that
they may attempt to avoid collisions or resolve them if they occur.
Other than this sensing capability, we only assume they have their
own internal clocks (which are not globally synchronized), so they
may, for instance, measure the time from a previous collision.

The robots have mass and cannot pass through each other, in
contrast to theoretical investigations of so-called “particle agents”
(Löffler et al., 2023). We make no assumption as to the self-mobility
of the items themselves, although in our experiments, the itemswere
static [see the studies by Rosenfeld et al., 2008; Hahn et al., 2020 for
examples of foraging while needing to track targets].

Foraging has largely been investigated in settings where
transporting an item requires a single robot, and we maintain this
assumption here. However, other investigations have broken away
from this assumption (and others noted above). Adhikari (2021)
and Lee et al. (2022) discussed dynamic robot chains (“bucket
brigades”), in which robots pass items from one to the other to
avoid congestion, utilizing multiple robots even for a single item.
Pitonakova et al. (2014), Ordaz-Rivas et al. (2021), and Ordaz-Rivas
and Torres-Treviño (2022) addressed collective transport tasks in
foraging, where multiple robots are required in order to move a
single object. From this perspective, AVERT (Amanatiadis et al.,
2015) is also a related system. It is a four-robot system designed to
transport wheeled vehicles by having each robot attaches itself to a
wheel, lifting the vehicle and carrying it together.

Almost all investigations of foraging swarms, including ours
reported here, are of fully cooperative systems, where robots are
assumed to be cooperative, and coordination is a challenge that
arises out of their limited capabilities. This assumption stands
at the basis of many applications of foraging for physically
searching areas (Schloesser et al., 2021; Aljalaud and Kurdi, 2021),
search-and-rescue operations (Francisco et al., 2018; Suarez and
Murphy, 2011; Pham and Nguyen, 2020), and humanitarian mine
clearance (McGuigan et al., 2022). Albiero et al. (2022) surveyed
a few dozen investigations of agricultural applications of swarm
robotics, of which a large number discuss foraging variants or
highly related technologies. Dorigo et al. (2021) examined new
application areas for swarms in general, foraging in particular.These
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include future applications in precision agriculture (e.g., harvesting),
industrial monitoring and inspection, civil protection and response
to natural disasters, and molecular robotics for medicinal and
clinical intervention.

Recent studies break away from the assumption of fully
cooperative swarms. They are motivated by future applications
of foraging, where robots are self-interested (e.g., manufactured
or deployed by different organizations). In such cases, the robots
have to be incentivized to cooperate (Van Calck et al., 2023)
and coordinate under conditions requiring privacy protection
(Ferrer et al., 2021) and proof-of-work (Pacheco et al., 2022).

One specific application of foraging, order picking, is of
particular interest here. It is a highly successful commercially
significant variant of foraging, where robots collect items in a logistic
warehouse, in order to fulfill customer orders (e.g., arriving via the
web) (Wurman et al., 2008; Hazard andWurman, 2006). Automated
robotic order picking is one of the key technologies developed by
Amazon Robotics, after it was acquired by Amazon in its takeover
of Kiva Systems (for 775 million dollars; at the time, Amazon’s
second-largest acquisition). This system was built to replace most
human labor in a logistics warehouses1. In such settings, robotsmust
engage in spatial coordination, e.g., whilemoving in the passageways
along shelves, or when arriving at the packing stations with the
collected items.

Order picking is a complex task and is interesting from a
number of different technological perspectives. From a pure swarm
perspective, it may be looked at as a form of foraging: robots
individually look for items of interest, pick them up, and bring
them to a target area. From a centralized control perspective, order
picking can be viewed as a particularly challenging continual N-
robot motion planning task, where a central server computes non-
colliding paths for the robots.

From a scientific point of view, both perspectives raise
interesting challenges worthy of investigation. Centralized
algorithms for planning multi-robot paths can guarantee
optimal paths free from collisions. However, such planning
is computationally intractable (Yu and Lavalle, 2015;
Sharon et al., 2015; Stern et al., 2019). In contrast, swarm methods
are simple to deploy and robust to population changes, although
typically sacrificing the ability to prevent all collisions. This raises
the need for online collision-handling methods, which, in swarm
settings, are often myopic and far from optimal. Necessarily, they
respond to a collision with little or no ability to consider future
collisions and inevitable crowding (e.g., around the target areas).

We observe that regardless of the scientific lens through which
we examine order picking, we find that on-board, fully autonomous
collision avoidance is a strictly necessary component. There are two
reasons for this (Wurman et al., 2008):

• First, human workers may move about the warehouse—neither
do they follow trajectories planned for robots (Thrun et al.,
2000) nor can they be relied on to avoid collisions
in a manner compatible with the robots’ choices.

1 Human workers used to walk 20 km a day to pick ordered items in shelves

in such warehouses, and labor was in short supply.

Moreover, human involvement may be needed in other
applications as well (Schloesser et al., 2021).

• Second, even under the assumption that a planning
algorithm generates perfect trajectories for the robots, and
no humans are about, the possibility of electro–mechanical and
communication failures (even non-catastrophic failures, such
as simply slowing down as battery levels decrease) requires the
robots to have on-board collision-avoidance and re-planning
capabilities (Simmons et al., 1997).

In reality, therefore, robots deployed for order picking essentially
carry out swarm foraging, albeit perhapsmore guided in their search
for items and when moving toward home. In the early version of the
Kiva system, as captured by the alphabet soup simulator published by
Kiva engineers, each robotwas responsible for its ownpath-planning
and collision-avoidance responses.

2.2 Improving foraging by improving
collision avoidance

Figure 1 shows a perspective [also described by
Kaminka et al. (2010); Douchan et al. (2019), although using
somewhat different terminology] on the execution timeline from the
perspective of a single robot engaged in foraging. The robot begins
by executing its foraging activity, stopping when a spatial conflict
occurs (e.g., a collision is imminent). It then selects a collision-
handling method, which executes for a time. When the collision is
averted, the robot can switch back to carrying out its foraging until
another collision is imminent. This repeats until the robot task is
externally terminated (e.g., by the need to recharge). Each interval
between collisions is split into two, termed the avoidance time (spent
by the robot actively coordinating—shown in gray) and the program
time (no need to coordinate; the robot focuses on its task).

This view of the robot’s timeline allows us to position our
work with respect to others. First, many foraging methods focus
on improving the productivity of the program phase, where the
search (for items or home) takes place. This can be done by
having robots (i) plan their paths better (Duncan et al., 2022;
Cheraghi et al., 2020; Nuzhin et al., 2021; Jin et al., 2020), assuming
some localization capabilities, or (ii) communicate information
relevant to improving the search (Hoff et al., 2010; Sung et al., 2013;
Pitonakova et al., 2014; Alers et al., 2014; McGuigan et al., 2022;
Adams et al., 2023; Salman et al., 2024).

A second set of investigations focus on attempting to optimize
an entire cycle (avoidance and program), by restricting the behavior
of the robot during both program and avoidance such that collisions
are minimized, and their resolution is relatively fast. For instance,
Schneider-Fontan andMatarić (1998) reported on an algorithm that
pre-allocates robots to different territories. Each robot operates in its
territory but has the ability to pass objects to another, thus creating a
bucket brigade-like structure. They also discussed re-allocating the
territories once a robot fails. Goldberg andMataric (1997) compared
several different approaches to this task, measuring the amount of
interference between the robots, as a tool for choosing an appropriate
approach (see more on interference below).
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FIGURE 1
Single robot’s timeline.

A third independent direction attempt to shorten the time spent
on avoidance so as to free up time for program. The most direct
approach here is to improve the collision avoidance algorithm.

Not all collision-avoidance algorithms are a good fit for swarm
foraging. For example, algorithms in the reciprocal velocity obstacle
(RVO) class of navigation methods (Snape et al., 2011; Guy et al.,
2010; van den Berg et al., 2008) plan ahead based on the space of
admissible relative velocities to nearby obstacles and robots. They
therefore assume knowledge of others’ velocities and shapes—a
challenging task in many cases (e.g., when using vision only).
To guarantee collision-free paths (within a specific horizon),
the optimal reciprocal collision avoidance (ORCA) algorithm
(van den Berg et al., 2011) also requires that all agents use ORCA,
which fails when humans are involved. In contrast, the passively
safe partial motion planning (PassPMP) algorithm (Bouraine et al.,
2014) provides some guarantees on collision safety, without making
such assumptions. This comes at a cost of non-trivial computation
of predicted trajectories.

A related approach, presented by Danassis and Faltings (2018),
is called CA3NONY and intended for domains where an optimal
behavior will be to anti-coordinate2, i.e., that each agent must
choose an action that differs from other agents’ actions in order
for the outcome to be optimal. Here, agents are being courteous:
If an agent collides with another agent, i.e., chooses the same
resource at the same context, it backs off from this choice with a
constant probability. In addition to this social convention, the agents
maintain a distributed bookkeeping scheme that prevents them
from monopolizing resources, causing each agent to choose only
one resource for one context. Although this algorithm guarantees

2 The definition of coordination in Danassis and Faltings (2018) differs from

the definition of coordination in our work. We define coordination as the

need to take an action due to an interaction between agents. They define

coordination as a consensus: where agents need to choose the same

action in order to achieve optimal results.

optimal behavior, it assumes that the reward is shared between all
agents, an assumption that breaks with no communications between
the agents.

Other algorithms appear to work relatively well in swarm robots,
in practice. However, these offer no guarantees at all. These are
essentially reactive algorithms that respond to a collision, with no
or very little planning with respect to the task goal of the robot or
the group, i.e., these are necessarilymyopic algorithms. On the other
hand, such algorithms are extremely simple to implement and use
(both in practice and from a computational perspective) and are
generally task-independent (because they do not use information
about the goals of the task).

We use several such myopic algorithms in this research. The
dynamic window algorithm (Fox et al., 1997) is a coordination
method that uses limited planning in the space of admissible
velocities. This method is capable of making decisions based
not only on external constraints like obstacles and other robots
but also on internal constraints like maximal velocity and
acceleration. We use a dynamic window variant as one of the
algorithms in the experiments. One reactive algorithm is the
noise algorithm presented by Balch and Arkin (1998). Given a
collision, the robot repels itself away from the collision, with some
directional noise. Rosenfeld et al. (2008) described the repelmethod.
As the name suggests, once a robot collides with another robot, it
repels itself backward for an arbitrary time interval or distance.

More sophisticated algorithms introduce stochasticity into
the decision-making. A reactive algorithm named aggression was
described by Vaughan et al. (2000) and improved by Zuluaga and
Vaughan (2005). When robots use this coordination method, the
robot with the highest “aggression factor” gets the right of way, while
the other backs off.

It is now understood that while each method is effective in
some settings, no method is always effective (Rybski et al., 1998;
Rosenfeld et al., 2008; Erusalimchik and Kaminka, 2008; Douchan
and Kaminka, 2016). The results in foraging show that the
swarm-wide utility—the number of collected items of a specific
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coordination method—depends on the density of the system. For
all methods, the system-wide utility declines once some density is
reached. However, the density in which this occurs differs from one
method to the next. Certainly, some methods do better than others,
but none are superior to others in all densities.

The performance of the swarm as the group grows in sizemimics
the law of marginal returns in economics: adding more robots does
not necessarily increase productivity. Goldberg and Mataric (1997)
attempted to capture the cause for this, by defining interference,
a global signal which varies in the working space of the system
denoting how much robots interfere with each other, e.g., due to
lack of coordination. Later, Lerman and Galstyan (2002) drew a
theoretical connection between interference and task performance.
This suggests that if robots act based on the global interference
signal, they might improve productivity. The problem is that in
practice, this signal cannot be individually computed (as it involves
internal measurements from each robot) or made public without
communications.

2.3 Learning to coordinate in handling
collisions

Inspired by the study of interference and attempting to find
a way to use it despite not having access to the global (group-
wide) information required, Rosenfeld et al. (2008) showed that in
foraging with a fixed group size, areas of high density of robots
correlate negatively with group performance. In addition, the higher
the cost robots invest on coordination methods the less the group
performance will be. They defined the likelihood of collision around
a robot as the ratio between the area of a circle of fixed radius around
it and the total area robots take inside this circle. They represented
the cost of coordination by the combined coordination cost (CCC), a
weighted average of all coordination costs of a robot like time and
fuel. They showed a strong negative correlation between the CCC
and group performance for a fixed group size.

Rosenfeld et al. (2008) then proposed an offline adaptive
algorithm for the problem of multi-robot coordination, based on
their CCC measure. This algorithm arbitrates between a set of
coordination methods by using methods with larger CCC when the
likelihood of collision is high and methods with lower CCC when
the likelihood of collision is low. It does so by sorting the set of
coordination methods from the one with lowest to the one with
highest CCC and sets thresholds based on the likelihood of collision
to determine what method to choose. The adaptation was done
by tuning the aforementioned threshold. They used two separate
variants for this adaptation: hill climbing and gradient learning; each
one of them tunes the thresholds differently based on the group
performance. The CCC measure was not developed theoretically,
despite the empirical success of using it as the basis for learning
(offline).

More generally, there is much work on utilizing learning
to improve multi-robot (and multi-agent) coordination, mostly
focusing on multi-agent reinforcement learning, which is often used
in the context of planning and decision-making. Indeed, this is
the approach we take in this paper: to improve coordination by
using learning to adjust which reactive coordination method is to
be used in each conflict. We only describe it here in brief and refer

the reader to previous studies (Kapetanakis and Kudenko, 2002;
Hernandez-Leal et al., 2019; Kober et al., 2013; Zhang et al., 2021;
Kuckling, 2023; Fatima et al., 2024) for a deeper explanation. There
are several investigations that are closely related to this approach,
which we describe below in detail.

Claus and Boutilier (1998) showed different variations of RL
techniques in multi-agent domains and the difficulties that arise
when using them. They divide learners into two different types:
independent learners (IL) and joint-action learners (JAL). ILs learn
actions with no knowledge about the actions of other agents, while
JALs learn with knowledge about the actions of all other agents.
To ground RL use in multi-agent systems, Claus and Boutilier
discussed learning in the context of game theory models. They
showed that even simple RL algorithms lead to non-intuitive results,
depending on the settings of the game. In particular, they examined
both IL and JAL agents in several identical-interest matrix games
(where, in every action profile, every agent gets the same utility).
For both ILs and JALs, they showed that the agents converge to a
Nash equilibrium, which is sub-optimal in terms of welfare. They
also show that different learning parameters such as the learning
rate or exploration rate can make the system converge to different
equilibrium points. As we are interested in maximizing the global
utility (the group goal), this is a serious challenge, which has been
undertaken in many investigations.

Kaminka et al. (2010) attempted to utilize an online adaptation
mechanism for the same purpose. They introduced the first version
of the reward function we discuss in this paper, the EI. This basic
version measured the ratio between the resources (including time)
spent in collision avoidance (avoidance time, in Figure 1) and the
total resources spent in a single interval between collisions (sum of
the avoidance and program time in the interval). Using a stateless
Q-learning variant (Claus and Boutilier, 1998) with this basic EI as
a reward and using a large learning rate so as to adapt quickly to
changing conditions, they demonstrated successful foraging inmany
different settings. Their experiments revealed that while the robots
did not converge to a specific policy (individually, i.e., robots often
changed their selected action), their choices are heterogeneous and
often lead to improved results (e.g., compared homogeneous policies
or random mixed choices).

Despite the empirical success of the EI measurement using
reinforcement learning, it comes with no guarantees. Indeed, our
research work began by applying the framework to the pick ordering
domain, which turned out to be not at all trivial or necessarily
successful (Douchan and Kaminka, 2016). We therefore sought to
ground theEI in theory and, along theway, developed amore general
EI reward function; the EI introduced by Kaminka et al. (2010)
is strictly a special case. The general EI introduced in this paper
provides guarantees up to explicit assumptions, as well as a thorough
discussion of approximation methods that can be used in practice
and are motivated by the theory. It adds a component by which
the individual agent estimates its effect on the swarm, allowing the
general EI reward to align the individual and swarm utilities.

Godoy et al. (2015) described a method using reinforcement
learning techniques with ORCA (van den Berg et al., 2011). It
improves on either using only ORCA or only reinforcement
learning. They presented the ALAN framework that uses a
reinforcement signal composed of two factors: a goal-oriented and
politeness factor. The goal-oriented factor is based on the direction
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cosine of the velocity vector of the robot and the displacement
vector of the goal from the robot. The politeness factor is based
on the vector cosine between the preferred velocity vector, and the
vector ORCA will output in the current robot’s situation. The final
reinforcement signal for the ALAN framework is a weighted sum
of the goal-oriented factor and politeness factor. This work has both
similarities and dissimilarities to our work. In a similar manner to
our work, this work uses reinforcement learning in order to choose
the best action in any given time. However, ALAN can only choose
between alternatives within ORCA and does not provide guarantees
on performance, as we do here.

Wolpert and Tumer (1999) described the COIN framework,
which models multi-agent systems where agents work to maximize
global utility but with little or no communications between them.
They show that if agents can estimate thewonderful life utility—how
the agent’s actions (or lack thereof) impact global utility—then
it is possible to use reinforcement learning to improve global
utility in a guaranteed manner, in various multi-agent domains
(Tumer et al., 2002; Agogino and Tumer, 2008; Wolpert et al., 1999).
However, this relies on knowing the global utility and/or the value
(payoff) of others’ actions. In practice, this is often not possible, so
approximations are made (Tumer et al., 2008; Devlin et al., 2014). In
an earlier version of the work reported here (Douchan et al., 2019),
we built on the COIN work by showing how to approximate the
wonderful life utility in practice, in multi-robot swarm settings. We
also briefly discussed a connection to game theory. Here, we extend
these results and focus on the heterogeneous nature of the resulting
optimal swarms. In addition, necessarily, because we work with
physical robots, and given the focus on using timing information,
the approximations we take here are different from those made
elsewhere; they are discussed in context in the next sections.

3 Swarming in (game) theory

We begin in Section 3.1 by introducing an abstract game-
theoretic model of multi-robot tasks carried out by a swarm of
robots. We then make incremental modifications to this abstract
model, to bring it closer to the reality of physical interacting
robots, when the robots cannot communicate (Sections 3.2, 3.3).
Finally, in Section 3.4, we address the challenge of learning optimal
actions according to the game-theoretic model we introduced.
For the benefit of the reader, we include a nomenclature of the
symbols in Appendix A.

3.1 Swarm tasks as extensive-form fully
cooperative games

When considering the task multiple robots (each engaging in
its own coordination method arbitration), we follow Kaminka et al.
(2010) in representing the task as an extensive form game between n
robots. The extensive form game represents every possible outcome
as a function of the sequence of parallel coordination actions taken
by all robots in every collision during the run. In this context, the
outcome is the utility of each of the robots in the allotted time.

The root node of the game tree represents the first collision.
Given that there are n robots, the first n layers of the game tree will

each represent a robot and its possible actions in the first collision.
This is because we focus on non-communicating coordination
methods, and thus, we treat each collision as having no information
about the actions and utilities selected and gained by other robots.

The actions independently taken by players are coordination
methods. The gains (payoffs) from taking them and the costs that
they entail differ between robots and between collisions but are
theoretically accounted for. Each action takes time.

The next m layers represent the second collision in the
same manner, and the pattern repeats until a terminal node is
reached—when the time for the task is done. A terminal node
represents the end of the game (task) and holds the sum of the
utility of each player. Since different actions can yield different time
intervals between collisions, terminal nodes can each be of different
depths depending on the sequence of collisions (and associated joint
actions chosen) during the game. Each such sequence is represented
as a path in the game tree.

Each terminal node will hold a vector of numerical values
representing the utilities of each robot in the system. As this is a
cooperative task, we are interested in the sum of these utilities—in
foraging this would translate to the number of items collected by all
swarm members, together.

A two-player two-action example of such an extensive-form
game is shown in Figure 2. It shows several paths from the root node
to the terminal nodes.

3.2 From extensive-form game to
normal-form games

Theextensive-formmodel of a task run represents every possible
outcome of the task run. This is only of theoretical value as
no robot—or their designers—can predict the outcome of future
collisions, or their timing, or their impact on global payoffs. In
reality, robots only know their history of previous collisions, and the
immediately imminent collision. Indeed, in swarm settings, robots
cannot know of the other robots’ choices (which theoretically affects
their own), and thus, even this information is hidden from them.

In order for robots to make decisions based only the history and
current collision, we must draw a connection between the global
final utility (payoff) theoretically reached using the extensive-form
game and the sequence of collisions in which the robots make
collision-resolution choices. Robotsmay then rely on signals that are
obtained during a joint collision.

To do this, we take an intermediate step and show how the
extensive-form game can be expressed as a sequence of normal-
form games, each representing a single joint collision. We define the
following symbols (see also nomenclature in Table A1):

• sji: robot i’s action at the jth collision. sj: joint action at collision
j.

• hji = (s
1
i , s

2
i ,…, s

j
i): robot i’s history of actions until the jth

collision inclusive. History of all robots’ actions until j inclusive:
hj.

• The cost incurred by robot i at the jth collision is denoted as cji.
• The gain by robot i at the jth collision is denoted as gji.
• uji = g

j
i − c

j
i: the utility of robot i at the jth collision.
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FIGURE 2
Two-player two-action task run represented as an extensive-form game for the action sets S1 = S2 = {L,R}. Not all terminal nodes have the same depth
as different joint actions taken by the players can lead to more or less collisions.

• U: the global utility of the entire robot swarm during
the whole run.

• C: the number of collisions during the whole run.

We start with the most general case where outcomes of a robot
at the jth collision may depend on the entire history of play of all the
robots up until collision j inclusive. This means that uji,g

j
i,c

j
i are all

functions of hj. U now depends on the entire history of play. Given
that the number of collisions for the whole task run is C, U will be
a function of hC and will be defined as the sum of utilities of every
robot and every collision during the task run (Equations 1, 2).

U(hC) := ∑
i∈N

C

∑
j=1

ui (h
j) = ∑

i∈N

C

∑
j=1
(gi (h

j) − ci (h
j)) . (1)

We can look at each joint collision as a normal-form (matrix)
game representing the outcomes of this collision only, rather than
thewhole task run. For the jth collision, the player set of thismatrix is
the set of robots performing the task, and the action set of each robot
is its set of available coordination methods for this collision. Given
the history of joint actions played up until collision j (inclusive), hj,
the payoffs of this matrix will be the sum of the utilities of the robots
obtained only for the jth collision ∑i∈Nui(h

j) as a function of the
history of play. We call this matrix the folded game matrix.

We define the ⊕ operator between a play history and a new joint
action to be the concatenation of the new joint action to the history.
For hj−1 = (s1,…, sj−1) and sj, hj = hj−1 ⊕ sj = (s1,…, sj−1, sj). Figure 3
provides an illustration.

3.3 Global utility and folded matrices

Robots in a system have limited sensing and communication
capabilities. They are unable to know the utilities of other robots,
even in the same joint action. Indeed, each robot does not even

FIGURE 3
Example of a two-player two-action folded game matrix for the action
set S1 = S2 = {L,R}.

know how its own action affects its own immediate utility. The only
information available to a robot is from its own sensors and internal
state memory.

In particular, the robot i can measure time. It can measure
the time—denoted Ai(s)—it has spent in collision avoidance
after having executed a collision avoidance procedure s. It
can also measure the time—denoted Pi(s)—spent making
progress on its task, undisturbed by others, once the collision is
resolved.

We formally tie the avoidance and program times of the collision
to the utility of the robot resulting from the collision. To do this,
we assume that individual gains in avoidance time are zero (since
a robot in avoidance time is handling a collision), and therefore,
gains occur only in program time: gi(h

j) = gi(Pi(h
j)). We will further

assume that the gains are proportional to the program time, given the
history of play hj: gi(h

j) = αPi(h
j), where α is a positive constant. We

also assume that costs are constant, ci(hj) = β(Ai(hj) + Pi(hj)), where
β is a positive constant.Therefore, by substituting g,c by their interval
proxies using α,β, the following holds:

By definition, Equation 1

U(hC) = ∑
i∈N

C

∑
j=1
(gi (h

j) − ci (hj)) ,
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= ∑
i∈N

C

∑
j=1
[αPi (hj) − β(Ai (hj) + Pi (hj))] . (2)

3.3.1 Global utility and coordination overhead
Rosenfeld et al. (2008) empirically demonstrated that there is a

strong negative correlation between coordination costs (the avoidance
time in our case) and swarmperformance.Themore a robot, or a group
of robots, spends time carrying out the task (program time) and less
on coordination (avoidance time), the higher is and the higher their
performance. Equation 2 formally shows this relationship.

Wedistinguishproductiveintervals(P) fromcoordination(collision
avoidance) intervals (A) in Equation 2. Given a task run hC (a sequence
of C joint actions by the swarmmembers), we define the coordination
overhead of the swarm is defined as follows (Equation 3):

Definition 1: The coordination overhead (CO) is the total amount of
time the system was in avoidance time divided by the total time
invested in the task run:

CO(hC) ≔ 1
T
∑
i∈N

C

∑
j=1

Ai (hj) . (3)

We show that U is a linear decreasing function of CO, i.e.,
minimizing CO is maximizing U. In the following, n = |N|, i.e., it is
the number of robots.

Theorem1: Given the assumptions on the cost and gain,U is a linear
decreasing function of CO.

Proof.

U(hC) = ∑
i∈N

C

∑
j=1
[ui (hj)] = ∑

i∈N

C

∑
j=1
[gi (h

j) − ci (hj)]

= ∑
i∈N

C

∑
j=1
[αPi (hj) − β(Ai (hj) + Pi (hj))]

= ∑
i∈N

C

∑
j=1

αPi (hj) −∑
i∈N

C

∑
j=1

β[Ai (hj) + Pi (hj)]

= α∑
i∈N

C

∑
j=1

Pi (h
j) − β∑

i∈N

C

∑
j=1
[Ai (h

j) + Pi (h
j)] .

Since T is the sum of all cycle lengths of any of the robots′ task
run, we can write T = ∑Cj=1 (Ai (hj) + Pi (hj)) for any robot i. Thus,

= α∑
i∈N

C

∑
j=1

Pi (h
j) − β∑

i∈N
T (T total time, identical forall robots)

= αT

∑
i∈N

C

∑
j=1

Pi (hj)

T
− βnT (n = |N| is thenumberofagents)

= αT(1−CO(hC)) − βnT = αT− αTCO(hC) − βnT

= −αT ⋅CO(hC) +T (α− nβ) .

As α,β,T are positive constants in this setting, it follows that U
is a linear decreasing function of CO(hC).

This completes the proof. □
As a result of Theorem 1, now it is possible to look at our

problem as minimizing CO rather than maximizing U. However,
this does not give information about how robots should choose their
actions in a way that CO is minimized.

3.3.2 Coordination overhead and the folded
matrices

We turn to utilizing the folded matrices as a step toward making
it possible for robots to maximize U (by minimizing the swarm’s
CO). To do this, we re-examine the sequence of normal-form games
making up the history of agent decisions.

We follow Kaminka et al. (2010); Douchan and Kaminka (2016)
in making a Markovian assumption that for every collision, the
outcomes of the robots’method selection dependonly on the current
joint action performed and not on the history of all joint actions
performed. This means that the outcome of any collision, given a
collision-avoidance action s, depends only on the action and not the
history of previous collisions. Under this assumption, variables hj ∈
Sj that depend on the history of joint actions played until collision j,
depend only on the joint action that was played in time j, sj ∈ S. We
therefore denote the avoidance time as Ai(s

j). The same applies for
Pi,gi,ci,ui and U.

One consequence of this assumption is that instead of the task
run being a sequence of different folded-game matrices depending
on the history of play, it is now a single game matrix, which is the
same for every collision in the task run. In game theory, such a
sequence is termed repeating games. As the number of games is not
known in advance, these settings are formally known as infinite-
horizon repeating games.

Minimizing COmaximizes the global utility. Since T is the sum
of all cycle length of any of the robots’ task run, we can write
T = ∑Cj=1(Ai(hj) + Pi(hj)) for any robot i. Therefore, CO can also
be written as

CO(hC) = ∑
i∈N

C

∑
j=1

Ai (sj)

C

∑
j=1
[Ai (sj) + Pi (sj)]

. (4)

Given the above, it makes sense for swarm agents
to attempt to individually increase their own Pi() and
minimize their own Ai() by selecting appropriate individual
actions. Indeed, Kaminka et al. (2010)—predating the introduction
of the coordination overhead—proposed using the ratio of avoidance
time to total cycle duration (since the last conflict) as a substitute
for the robot’s estimate of the swarm’s utility from taking an action
s. They refer to this ratio as the EI:

EI (i, s) ≔
Ai (s)

Ai (s) + Pi (s)
. (5)

Kaminka et al. (2010) conjectured that individually minimizing
EI is equivalent to maximizing the robot’s utility and, thus, the
swarm’s utility. However, this conjectured connection is generally
incorrect: maximizing the individual robot’s EI may mean selecting
an action that increases the costs to others, resulting in overall
degraded performance for the swarm. To intuitively see why this
happens, imagine some foraging robots are attempting to enter the
collection area to drop foraged items, while others are attempting
to leave, to search for new items. Those attempting to enter should
ideally back off, allowing those inside the nest to go out. However,
backing off adds to the duration of the avoidance mode and
reduces from the duration of the program mode. Thus, those
robots are motivated to push forward. This hinders the swarm from
collecting items.
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Despite its lacking, the structural similarity between the
individual EI (Equation 5) and the coordination overhead in its
rewritten form (Equation 4) has led us to define a related measure,
𝔼𝕀tot(s), the total sum of the effectiveness indices of all robots:

𝔼𝕀tot (s) ≔ ∑
i∈N

EI (i, s)

= ∑
i∈N

Ai (s)
Ai (s) + Pi (s)

. (6)

We draw a connection between 𝔼𝕀tot (Equation 6) and CO
(Equations 3, 4). Let s∗ be the joint action that minimizes 𝔼𝕀tot:

s∗ ≔ arg min
s
(𝔼𝕀tot (s)) .

Let the swarm play the joint action s∗ repeatedly, generating the
history h

∗
= (s∗, s∗,…, s∗). Then, CO(h

∗
) will be equal to 𝔼𝕀tot(s∗):

CO(h
∗
) = ∑i∈N

C⋅Ai(s
∗
)

C⋅[Ai(s
∗)+Pi(s
∗)]
= ∑i∈N

Ai(s
∗
)

Ai(s
∗)+Pi(s
∗)
= 𝔼𝕀tot(s∗).

Building on this, we show that for every sequence of joint
actions, CO will be greater or equal to 𝔼𝕀tot(s∗). This means that in
order to minimize CO, the system always needs to select s∗ as the
joint action.

Theorem 2: For any number of collisions C and histories of play hC,
CO(hC) ≥ 𝔼𝕀tot(s∗).

Proof.

CO(hC) = ∑
i∈N

C

∑
j=1

Ai (sj)

C

∑
j=1
(Ai (s

j) + Pi (s
j))

= ∑
i∈N

C

∑
j=1

Ai (sj)

T

= 1
T
∑
i∈N

C

∑
j=1

Ai (s
j) .

We re-order the summations:

= 1
T

C

∑
j=1
∑
i∈N

Ai (sj) .

Defining li (s) as the cycle length of robot i, given joint action s:
li (s) = Ai (s) + Pi (s), we rewrite

= 1
T

C

∑
j=1

[

[
l(sj)∑

i∈N

Ai (sj)

l(sj)
]

]

= 1
T

C

∑
j=1
[l(sj)𝔼𝕀tot (sj)] .

Replacing sj with the optimal joint action s∗, necessarily:

≥ 1
T

C

∑
j=1
[l(sj)𝔼𝕀tot (s∗)]

= 𝔼𝕀tot (s∗)
1
T

C

∑
j=1

l(sj)

= 𝔼𝕀tot (s∗)
1
T
T

= 𝔼𝕀tot (s∗) .

This completes the proof. □
The step taken in Theorem 1 allows robots, in theory, to

use measurements of time instead of global count of items
picked (which in a swarm, they cannot possibly achieve). The
step taken in Theorem 2 shows that under some assumption, the
sequence of collisions can be treated as a repeating game with an
infinite-horizon, where each stage is an identical normal-form game.
Thus, determining s∗, the optimal joint action in a collision, leads to
optimal results for the swarm.

However, robots cannot know s∗ as it requires knowledge of
the actions of other robots. We need to find a way to make the
robots converge to s∗ by using internal measurements only, without
requiring knowledge of coordination methods selected and utilities
obtained, by other robots.

3.4 Optimal joint actions

We approach the challenge by finding a potential function that
turns the normal-form game into a potential game [Monderer and
Shapley (1996)]. A potential game is a normal-form game, where,
for every player i, the difference in the payoff of every unilateral
deviation of player i’s action si is related to the difference of a single
potential function ψ(s) mapping each joint action to a scalar. ψ(s)
can be seen as a global signal (not necessarily visible to the players)
which depends on the joint action.

Potential games hold several important characteristics:
First, they always have at least one pure-strategy Nash
equilibrium. Furthermore, when players use pure strategies, an
improvement in one player’s individual payoff due to changing
its individual action will necessarily improve the potential
function, i.e., the individual payoff and potential function are
aligned. When players choose to maximize their individual
payoffs, the system will converge to a pure-strategy Nash
equilibrium, which would be at least a local optimum of the
potential function.

If the robots play a potential game with potential function 𝔼𝕀tot,
the swarm will converge to an optimal joint action in terms of 𝔼𝕀tot.
However, 𝔼𝕀tot is a global function: it is not accessible to the robots.
We therefore seek a reward function for each robot that is both
accessible to each robot and aligned with 𝔼𝕀tot.

To derive a local aligned reward from 𝔼𝕀tot, we use the
formulation of Wonderful Life Utility (WLU) (Wolpert and Tumer,
1999; Tumer et al., 2002), later renamed the difference reward
(Agogino and Tumer, 2008; Tumer et al., 2008; Devlin et al., 2014).
Given a global function F, the difference reward for robot i using
joint action s is the difference between the F value resulting from
the action with i participating and the counterfactual F value when
robot i is hypothetically absent. We denote the absence of robot i
as the robot choosing a null action denoted by ϕi. We denote by
s−i the joint action of all robots excluding i. Then, F(si, s−i) is the
value resulting from the complete joint action (including all robots’
actions), and F(ϕi, s−i) is the value of the swarm when robot i is
absent. Then, the difference reward of F is given by ΔF

i ≔ F(si, s−i) −
F(ϕi, s−i). For reinforcement learning, it is a reward that is both
accessible and aligned, and highly effective (Tumer et al., 2008;
Arslan et al., 2007; Marden and Wierman, 2009).
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Using 𝔼𝕀tot as the global potential function, we define the
Aligned Effectiveness Index (AEI) as the difference reward of𝔼𝕀tot, i.e.,
Δ𝔼𝕀toti (s):

Definition 2: Given a joint action s = (si, s−i), the AEI reward of
robot i is defined by

AEI (i, s) ≔ 𝔼𝕀tot (si, s−i) −𝔼𝕀tot (ϕi, s−i) .

AEI is a measurement of robot i’s marginal contribution to
𝔼𝕀tot, given the action s. If the robots individually select actions that
optimize it, they will converge to a joint action that will, at least, be
a local minimum of 𝔼𝕀tot due to the properties of potential games
(Tumer et al., 2008; Marden and Wierman, 2009).

We derive a bounded closed-form expression of AEIi(s):

AEI (i, s) = 𝔼𝕀tot (si, s−i) −𝔼𝕀tot (ϕi, s−i) , (FromDef.2)
= 𝔼𝕀tot (s) −𝔼𝕀tot (ϕi, s−i) , (Notation:s = (si, s−i))

= ∑
j∈N

Aj (s)
Aj (s) + Pj (s)

− ∑
j∈N

Aj (ϕi, s−i)

Aj (ϕi, s−i) + Pj (ϕi, s−i)
(FromEq.6)

=
Ai (s)

Ai (s) + Pi (s)
+ ∑

j∈N\{i}

Aj (s)
Aj (s) + Pj (s)

− ∑
j∈N

Aj (ϕi, s−i)

Aj (ϕi, s−i) + Pj (ϕi, s−i)
.

We observe that one of the components here is actually EI
Kaminka et al. (2010) (see Equation 6).

= EI (i, s) + ∑
j∈N\{i}

Aj (s)
Aj (s) + Pj (s)

− ∑
j∈N

Aj (ϕi, s−i)

Aj (ϕi, s−i) + Pj (ϕi, s−i)
(FromEq.5) .

Once again, let li (s) be the cycle length of robot i given a joint
action s: li (s) = Ai (s) + Pi (s):

= EI (i, s) + ∑
j∈N\{i}

Aj (s)
lj (s)
−∑

j∈N

Aj (ϕi, s−i)

lj (ϕi, s−i)

= EI (i, s) + ∑
j∈N\{i}

Aj (s)
lj (s)
− ∑

j∈N\{i}

Aj (ϕi, s−i)

lj (ϕi, s−i)
−
Ai (ϕi, s−i)
li (ϕi, s−i)

.

Multiplying the first sum by li(s)
li(s)
= 1 and the second sum by

li(ϕi,s−i)
li(ϕi,s−i)

yields

= EI (i, s) + ∑
j∈N\{i}

Aj (s)
li(s)
lj(s)

li (s)
− ∑

j∈N\{i}

Aj (ϕi, s−i)
li(ϕi,s−i)
lj(ϕi,s−i)

li (ϕi, s−i)
−
Ai (ϕi, s−i)
li (ϕi, s−i)

.

We remind the reader that we had assumed earlier that collisions
are synchronous and involve all agents. This means that the cycle
length depends only on the joint action selected and not on any
specific robot. Therefore, for all pairs of robots i, j ∈ N and all joint
actions s, li(s)

lj(s)
= li(ϕi,s−i)

lj(ϕi,s−i)
= 1. This yields

AEI (i, s) = EI (i, s) + ∑
j∈N\{i}

Aj (s)
li (s)
− ∑

j∈N\{i}

Aj (ϕi, s−i)

li (ϕi, s−i)
−
Ai (ϕi, s−i)
li (ϕi, s−i)

.

(7)

We note that all the denominators li() are durations measured or
estimated (as counterfactuals) by robot i. However, to compute its
reward, robot i must seemingly require knowledge of the duration

Aj(s), which it does not know. We, therefore, seek a simplification of
the above.This is done in two steps. First, we bound the value of AEI
from below and above (Theorem 3 below). Then, we argue that as
the number of robots increases, the bounds become tight, and thus,
a simpler formula emerges.

Theorem 3:

EI (i, s) +
Aϕ
i (s)

Ai (ϕi, s−i) + Pi (ϕi, s−i)
≥ AEI (i, s) ≥ EI (i, s) +

Aϕ
i (s)

Ai (s) + Pi (s)
− 1,

where Aϕ
i (s) = ∑j∈N\{i}(Aj(si, s−i) −Aj(ϕi, s−i)).

Proof. Note that terms using ϕ are counterfactuals: they are
hypothetical values, modeling the effects of robot i on others, when
it is hypothetically logically absent from the collision, and unable
to contribute. Two potential ways to model this assumption are (i)
either that robot i was removed from the set N for the collision
(Case 1 below), or that it is present but remained in collision
avoidance during the entire cycle length and thus did not contribute
(Case 2). In both cases, we begin with the closed form formulation
for AEI(i,s), as found in Equation 7.
Case 1: Robot i hypothetically removed from N in the collision.

Ai (ϕi, s−i)
li (ϕi, s−i)

= 0,

and we may also assume that its absence shortens the swarm’s
avoidance period (the collision resolution was shorter), and thus,

li (ϕi, s−i) ≤ li (s) .

Therefore, continuing from step 7 above,

AEI (i, s) = EI (i, s) + ∑
j∈N\{i}

Aj (s)
li (s)
− ∑

j∈N\{i}

Aj (ϕi, s−i)

li (ϕi, s−i)
−
Ai (ϕi, s−i)
li (ϕi, s−i)

= EI (i, s) + ∑
j∈N\{i}

Aj (s)
li (s)
− ∑

j∈N\{i}

Aj (ϕi, s−i)

li (ϕi, s−i)

≤ EI (i, s) + ∑
j∈N\{i}

Aj (s)

li (ϕi, s−i)
− ∑

j∈N\{i}

Aj (ϕi, s−i)

li (ϕi, s−i)
.

Adding using the common denominator and using Aϕ
i (s) to

denote ∑j∈N\{i} [Aj (s) −Aj (ϕi, s−i)],

= EI (i, s) +
Aϕ
i (s)

li (ϕi, s−i)

= EI (i, s) +
Aϕ
i (s)

Ai (ϕi, s−i) + Pi (ϕi, s−i)
(Transformingbackfromli (ϕi, s−i)) .

This yields the left-hand inequality of the theorem. Aϕ
i is the

counterfactual change in the total avoidance time of the swarmwhen
robot i is hypothetically not involved.

EI (i, s) +
Aϕ
i (s)

Ai (ϕi, s−i) + Pi (ϕi, s−i)
≥ AEI (i, s) . (8)

Case 2: Robot i’s absence—inability to contribute—is modeled as
being in collision avoidance for the entire duration of the cycle. In
this case, Ai(ϕi, s−i) = li(ϕi, s−i), and therefore,

Ai (ϕi, s−i)
li (ϕi, s−i)

= 1.
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As the agent is still hypothetically present, the counterfactual
cycle length does not change:

li (ϕi, s−i) = li (s) .

Then, continuing from Equation 7 yields

AEI (i, s) = EI (i, s) + ∑
j∈N\{i}

Aj (s)
li (s)
− ∑

j∈N\{i}

Aj (ϕi, s−i)

li (ϕi, s−i)
−
Ai (ϕi, s−i)
li (ϕi, s−i)

≥ EI (i, s) + ∑
j∈N\{i}

Aj (s)
li (s)
− ∑

j∈N\{i}

Aj (ϕi, s−i)
li (s)
− 1

= EI (i, s) + ∑
j∈N\{i}

Aj (s)
li (s)
− ∑

j∈N\{i}

Aj (ϕi, s−i)
li (s)
− 1

= EI (i, s) +

∑
j∈N\{i}
[Aj (s) −Aj (ϕi, s−i)]

li (s)
− 1

= EI (i, s) +
Aϕ
i (s)
li (s)
− 1 Aϕ

i (s)asabove.

= EI (i, s) +
Aϕ
i (s)

Ai (s) + Pi (s)
− 1(Transformingbackfromli (s)) .

This yields the right-hand inequality of the theorem. Putting it
together with the left-hand inequality (Equation 8 above) yields

EI (i, s) +
Aϕ
i (s)

Ai (ϕi, s−i) + Pi (ϕi, s−i)
≥ AEI (i, s) ≥ EI (i, s) +

Aϕ
i (s)

Ai (s) + Pi (s)
− 1,

thus completing the proof. □
We make the following observation with respect to the above

derivation of bounds on AEI(i, s) inTheorem 3. As the swarm tends
to grow in size (|N|), the difference between the two boundswill tend
towards 1 as the counterfactual removal of robot i from the collision
will not affect the cycle length, under the assumption of synchronous
collisions.

Formally, we conjecture that

lim
|N|→∞
[Ai (ϕi, s−i) + Pi (ϕi, s−i)] − [Ai (s) + Pi (s)] = 0.

Proving this conjecture depends on a formal model of the
counterfactual removal of a robot from a swarm collision, which
is outside the scope of this paper. Lacking such a model, we
use [Ai(s) + Pi(s)] as the cycle length for [Ai(ϕi, s−i) + Pi(ϕi, s−i)].
This implies

EI (i, s) +
Aϕ
i (s)

Ai (s) + Pi (s)
≥ AEI (i, s) ≥ EI (i, s) +

Aϕ
i (s)

Ai (s) + Pi (s)
− 1. (9)

The goal, of course, is for each robot i to minimize AEI(i, s)
(henceforth, AEI for short) as it is an aligned reward function, to
be used in a reinforcement learning algorithm. Robots minimizing
it will necessarily minimize also the swarm’s 𝔼𝕀tot and, thus, the
swarm’s CO (Theorem 2). This will maximize the swarm’s utility, as
shown in Theorem 1. The assumptions made in the development of
the model are summarized in Table 1. We remind the reader that a
nomenclature is given in Table A1. In practice, tominimize AEI(i, s),
the robot can attempt to minimize Ai(s) and/or improve Pi(s).
Minimizing the counterfactual Aϕ

i (s) requires the robots to estimate
the impact of the agent on others, as detailed in the next section.

4 Swarming in practice, through
learning

We now turn to using the derived reward AEI in practice.
Having no ability by the robot to estimate the cycle length when it
is hypothetically absent, there are several gaps between the theory
and practice: (i) computing AEI(i, s) requires knowledge about
other robots’ measurements (Aϕ

i ); (ii) collisions in practice are not
necessarily synchronous, or even mutual; and finally, (iii) avoidance
and program times (A, P) vary for the same method, breaking the
Markov assumption. These gaps are discussed below.

4.1 Approximating AEI(i,s)

This practical approximation of AEI(i, s) in Equation 11 is
composed of three elements: Ai,Pi (which are internal to the robot,
thus known) and Aϕ

i . The latter requires the robot to know the
avoidance times of other robots and predict their change when
i is hypothetically absent. This is impractical as the effects of a
robot on other robots often impossible to perceive accurately by
swarm robots. It is, therefore, necessary to use an estimate Âϕ

i (s)
instead, yielding

ÂEI (i, s) ≈ EI (i, s) +
Âϕ
i (s)

Ai (s) + Pi (s)
,

where Âϕ
i (s) ≈ ∑j∈N\{i}[Aj(si, s−i) −Aj(ϕi, s−i)].

As a first step, we impose a structure on the approximation,
setting Âϕ

i (s) ≔ na ⋅A0, where na is the number of robots affected by
this robot and A0 is an approximation of how much avoidance time
was added or removed to each robot due to the presence of robot i.
One way of measuring na is by the number of robots in the vicinity
of the robot i as the collision occurs.

Next, we propose a number of potential values forA0. These will
be evaluated empirically (see Section 5 for results).Three immediate
estimators are

• A0 = 0. Setting A0 = 0 yields ÂEI(i, s) = EI(i, s), demonstrating
that EI is a special case of AEI, where the avoidance times of
other robots are unaffected.

• Same for all, A0 = Ai(s). This assumes each robot’s change to
avoidance time is worsened, by Ai(s).

• Average over time, A0 =
1
C
∑Cj=1Ai(sj). The addition in avoidance

time to other robots is this robot’s average avoidance time
measured in its history, for any action.

The last estimate raises the opportunity to utilize the robot’s
own experience with the specific action selected as the basis for
estimating the effect of the collision on others. Given a history of
play hC and a joint action s ∈ S, we define R(s) ⊆ {1,…,C} as the
subset of collision indices where joint action s was played. In the
samemanner, we define R(si) as the subset of collision indices where
the robot i chose individual action si ∈ Si, regardless of the actions
chosen by other robots. Using this notation, we additionally propose
the following possible approximations for A0:
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TABLE 1 Assumptions made in the development of the theoretical model and the motivation for creating them.

Assumption Motivation

Gains in avoidance time are zero Robots cannot directly contribute to the task when they focus on conflict resolution and
avoid collisions

Gains are proportional to program time The more a robot works uninterrupted, the higher its gains will be; assumption for
theoretical derivation

Costs are proportional to time Robots spend resources (e.g., power) when operating. Longer operations lead to more
spending; assumption for theoretical derivation

Outcomes of robots’ actions do not depend on the history of method choices Without learning, the success of collision avoidance in past collisions does not impact its
success in the current collision; for theoretical derivation

Cycle length is the same for all robots for a joint action The theoretical model is synchronous, for all N agents

When a robot is hypothetically absent, its gains are zero By definition, it cannot contribute

• Average over actions, A0 =
1
|Si|
∑s′∈Si

1
|R(s′)|
∑j∈R(s′)Ai(sj). The

addition in avoidance time to other robots is by measuring
this robot’s average avoidance time for each type of method it
selected s′ ∈ Si and then averaging over those averages.

• Minimum over actions, A0 = mins′∈Si (
1
|R(s′)|
∑j∈R(s′)Ai(sj)). The

addition in avoidance time to other robots is by finding
the individual action s′ ∈ Si that has the lowest average
avoidance time.

• Maximum over actions,A0 = maxs′∈Si (
1
|R(s′)|
∑j∈R(s′)Ai(sj)). The

addition in avoidance time to other robots is by finding
the individual action s′ ∈ Si that has the highest average
avoidance time.

4.2 Dealing with asynchronous and
non-mutual collisions

An important assumption made in the derivation of the
theoretical model is that collisions are synchronous to the swarm:
all robots are assumed to be involved in every collision. In reality,
as swarms grow in size, collisions between robots are asynchronous
and may even be non-mutual (some robots physically involved in a
collision may not recognize the collision state).

As it turns out, the effects of breaking this assumption in practice
are mild. First, when a collision occurs and a robot cannot recognize
it, there is nothing this robot can do but continue in its task, in which
case it will not learn from the collision. This is compatible with the
expectation that if the robot does not recognize the collision, then its
effect on it is negligible. If, however, it does recognize a collision, its
learning from it depends only on its own estimates of ÂEI, which do
not require any cooperation from the other robot. Thus once again,
we expect the learning robot to be able to learn effectively from the
collision.

A potential complication in practice may occur, when a robot
taking a collision-resolution action may find itself colliding again
with the same or other robots. Once again, however, this is addressed
easily. Compatibility with the theoretical model is maintained in
such cases by preempting the first collision (essentially, treating the
entire cycle leading from the first collision to the new collision as a

period of collision avoidance, with Ai being set to the entire cycle
duration). Then, a new collision is declared, with the robot having
the opportunity to once again choose a coordination action (s) and
learn from its application.

4.3 Varying avoidance and program times

An assumptionmade in theory is that the outcome of a collision,
given a joint action selected, remains the same. However, in practice,
this assumption breaks from the point of view of the learning robot.
First, the robot does not know the joint action played but only
its own individual action, which is only a component in the joint
action.Thus, as it chooses the same individual action, itmaymeasure
different avoidance and program durations, due to other robots
varying their own individual actions, synthesizing different joint
actions without its knowledge. Second, the cycle length may vary
even for the same joint action due to latent environment variables,
which states that the robot is unable to sense directly.

To address this, we propose to use an averaging procedure on
Ai,Pi and Aϕ

i and then calculate a ÂEI approximation, which is

averaging over a number of collisions ÂEI = Ai+Ai
ϕ

Ai+Pi
. This can cause

inaccuracies in learning because the cycle length Ai + Pi is a real-
valued signal in continuous time while sampling of Ai,Pi and Aϕ

i
is discrete.

We treat the learning problem as reinforcement learning in
semi-Markov decision processes (SMDPs) (Bradtke and Duff, 1994),
rather than discrete MDPs. We use the SMDPs to represent discrete
sampling of a continuous-time reward and also introduce a Q-
Learning variant for SMDPs, called the continuous-time Q-Learning.
It differs from Q-Learning in the update step: first, the learning rate
α is now a function of interval length: the longer the interval, the
closer it will be to 1, thus giving more weight to cycles with longer
intervals. Second,Ai,Pi andA

ϕ
i are now also scaled, according to the

interval length. Algorithm 1 shows the update step. Note that due to
the game-theory conventions, s denotes actions, not states, while we
use x here to denote the state perceived by the robot. We experiment
with this algorithm in comparison with the familiar Q-learning (see
next section).
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1:  procedure CTQL-UPDATE(Ai,Pi,Ao,τ,γ,xi,x
′
i
,si)

2:   α← 1−e−
Δt

τ

3:   A′
i
← (1−e−

Ai
τ )

4:   P′
i
← e−

Ai
τ (1−e−

Pi
τ ) ⋅Pi

5:   A
ϕ′

i
← (1−e−

A
ϕ′

i
τ ) ⋅Ao

6:   Q(xi,si) ← (1−α)Q(xi,si) +α(−
A′
i
+Aϕ
′

i

A′
i
+P′

i

+γ ⋅maxs′(Q(x
′
i
,s′)))

7:  end procedure

Algorithm 1. Continuous-time Q-Learning.

5 Experiments

We report below on experiments that evaluate swarms utilizing
the reinforcement learning using the AEI reward function. The
results show that these swarms perform better, and more so,
that these improvements come from the learning, leading to
specialization in the robots: they become heterogeneous in their
reactions to collisions.

Section 5.1 explains the experiment environments (simulation
and robots). Then, we present results from experiments
utilizing adaption (Section 5.2, and from experiments
using learning (Section 5.3). In all sections, we emphasize the role
of heterogeneity.

5.1 Experimentation environments

We conducted experiments in two environments: the Alphabet
Soup order picking simulator (Hazard and Wurman, 2006) created
by Kiva Systems engineers, and the Krembot swarm robots, built by
Robotican3. Videos showing the physical in simulated robots and an
overview of the evolution of the EI reward are available online on
the project’s web page4.

The Alphabet Soup simulator simulates 2D continuous-area
order picking by considering the items as letters and orders
(combinations of items) as words. Several word stations are
positioned in the area, each with a list of words to be composed.
Buckets which contain letters, letter stations that are used to re-fill
buckets with letters and robots.The robots have threemain tasks: the
first is to take a bucket to a word station in order to put one letter in
this station. The second is to return a bucket to its original position,
and the third is to take a bucket to a letter station. Figure 4 shows a
screenshot of the simulator in action.

The simulator comes with a centralized task allocation
mechanism, which we do not modify. The original collision
avoidance mechanism in place is run individually by each robot.
It is a reactive heuristic which is a combination of dynamic window
(moving towards most vacant direction) and waiting in place for
a random amount of time. This mechanism was replaced by an
algorithm-selection mechanism, which can choose between various
reactive collision-avoidance algorithms, including the original. This

3 https://www.robotican.net/kremebot

4 https://www.cs.biu.ac.il/∼galk/research/swarms/

choice would be governed by a learning algorithm (as described
above) or a different method.

The main measurement of performance for this simulator
is the amount of letters placed in word stations in a given
amount of time. Unless stated otherwise, each simulation is
10 min long with the last 30 s used for measuring performance and
other statistics.

The Krembot robots were used in a variant of multi-
robot foraging, where the objective of the robots is to find
as many items in a given time. They have relatively limited
sensing and processing capabilities. They are cylindrical-shaped
robots with a height of 10.5 cm and a diameter of 6.5 cm.
Despite their limited sensing capabilities, those robots can
detect collisions and also distinguish between a robot and a
static object.

The behavior of the robot was controlled by three behavioral
states and a few transitions, triggered by specific perceived events.
The three states are as follows:

• Wander: Search for a station by randomly wandering over the
field. Whenever the robot is in this state, its LED light will be
magenta (both red and blue simultaneously).

• Go to homebase: Go to the homebase to retrieve the item after a
station was found. When the robot is in this state, its LED light
will be blue.

• Resolve conflict: The robot enters this state when it detects an
imminent collision with another robot (not a static obstacle). In
this state, the robot learns and chooses a reactive coordination
method. When the robot is in this state, its LED light
will be red.

If a robot detects an imminent collision with a static obstacle,
it executes a fixed behavior, unlike with a robot where it executes
a coordination method by reactive method arbitration. For each
of the three states, there are several transitions from it to
other states:

• Wander→ Go to homebase: The robot found a station.
• Go to homebase → Wander: The robot retrieved an item to
the homebase.

• Wander/Go to homebase→ Resolve Conflict: The robot detected
an imminent collision with another robot.

• Resolve Conflict → Wander/Go to homebase: The robot finished
executing the reactive coordination method and goes back to
its previous state.

Figure 5 shows the environment where experiments with the
Krembots were conducted. On the table, the wooden cylinders are
the stations where robots gather items from. The arena consisted of
a 150× 80 cm2 tabletop, where we evenly spread 11 stations, fixed
in position. Once a robot reaches one of those stations, an item
is considered taken, and the robot needs to simulate transporting
it, by moving back to the a small area devoted to be a home. It
should be noted that since the Krembot robots have no localization
capabilities, they are unable to either remember or plan a path to one
of the stations not home.Therefore, they do it by randomly searching
for a station.The home is lighted (bottom left corner in Figure 5) for
identification.
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FIGURE 4
Alphabet Soup simulator. Red lines are the robots, purple circles are the buckets, green circles are the word stations, and cyan circles are the
letter stations.

FIGURE 5
Krembot swarm robots.

5.2 Heterogeneity in adaptation

We distinguish between learning and adaptation. Learning
focuses on converging to a policy which consistently chooses
the best action for each state. On the other hand, adaptation
focuses on rapidly changing between policies, according to what is
best now.

Previous work by Kaminka et al. (2010) focused on adaptation.
To do this, they used stateless Q-Learning with a very high learning

rate (as high as 0.8).This allows the robots to rapidly switch between
policies; the robots donot typically converge to a particular preferred
choice. The reward function used was the original EI (which is a
special case of the ÂEI we discuss).

We began by evaluating the use of EI-based adaptation (learning
rate α = 0.5) versus convergent learning (α ≤ 0.1), in the two
environments: Alphabet Soup and Krembot foraging. The goal is
to examine whether heterogeneous swarms do better and whether
adaptation or learning leads to performance increases.
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FIGURE 6
Results obtained by Douchan and Kaminka (2016). The horizontal axis marks the group size, and the vertical axis represents the group performance in
terms of total placed letters.

FIGURE 7
Swarm performance as a function of the heterogeneity of the swarm (time fraction of BE20, p).

5.2.1 Adaptation is better in Alphabet Soup
As a first step, we briefly summarize early results evaluating

the use of EI-based adaptation in the Alphabet Soup simulator,
published by Douchan and Kaminka (2016). They tested the
performance of five reactive methods alone (i.e., each used by
a homogeneous swarm, where all robots use the same collision
avoidancemethod).Three of these have been used byRosenfeld et al.
(2008) and Kaminka et al. (2010): Repel [moving back for 20 ms,
as introduced by Rosenfeld et al. (2008)], Noise [moving toward
a random direction for 20 ms, as introduced by Balch and Arkin
(1998)], and Aggression [randomly choose between backing off
like in repel, or staying put until the robot has moved, as
introduced by Vaughan et al. (2000)]. Two additional methods
were provided by the Alphabet Soup simulator: Best Evade (always
go to most vacant direction for a given amount of time) and
the default method (termed Original), a stochastic combination of
best evade and noise.

Douchan and Kaminka (2016) compared the performance
of these five basic methods with random selection of
methods by each robot, in each collision (a Random selection
method), and with an adaptive use of stateless Q-learning
(learning rate α = 0.5 and exploration rate ϵ = 0.1). All settings
tested in group sizes vary between 10 and 40 and were
repeated 60 times.

Figure 6 shows the results from these experiments. The figure
shows that three of the fixed collision avoidance methods (repel,
noise, and aggression) are inferior to the others. These three
are behaviorally homogeneous swarms: all robots use the same
collision-avoidance methods. Of the four top performers (not
necessarily statistically distinguishable), three are behaviorally
heterogeneous: the Random method, by definition, has every robot
change its selected collision-avoidance method with every collision,
independently of other robots; the Original method stochastically
switched between best-evade and noise; the EI method is the adaptive
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FIGURE 8
Results for Best Evade 500 (BE500) and Best Evade 10,000 with four (top) and eight (bottom) Krembot robots, respectively. The horizontal axis marks
the fraction of BE500 used. The vertical axis marks the group performance in terms of total retrieved items.

method using the original EI as a reward function, i.e., AEI with
A0 = 0.

Intrigued by these results, we used the Alphabet simulator to
directly evaluate the level of heterogeneity of the swarm and its effect
on performance, especially in relation to the use of the EI reward.
Fixing the group size to 20, we focused on the only homogeneous
method that proved to perform well in the experiments reported
above: best evade. We allowed each robot to select between two
variants of this method: Best evade for 20 ms (BE20) and best evade
for 2000 ms (BE 2000).

We then evaluated four configurations of the robots selections:
in the individual mix configuration, each of the robots, when
entering a collision, chooses BE20 with probability p/100 and
BE2000 with probability (1− p)/100, independently of others.
These robots make heterogeneous choice that vary over time.
In the population mix configuration, p percent of the robots
always chooses BE20, and the rest always chooses BE 2000;
their choices do not vary with time. These configurations
allow systematic evaluation of the level of heterogeneity: when
p = 0, the swarm is homogeneous, and all robots select BE
2000; when p = 100, all robots use BE20. In between these

two extremes, the swarm is heterogeneous, more-so in the
individual mix configuration than in the population mix. We
emphasize these are not learning methods: p is controlled
and fixed.

Figure 7 shows the performance of the two configurations as
a function of the fraction of BE20 in Alphabet Soup as p is
controlled and varied between 0 and 100. We interpolate linearly
between the sampled experiment points. The figure shows that
both controlled-mix configurations reach their maxima points at
p between approximately 30 and 50, i.e., where only between 30%
and 50% of the robots select BE20. Both homogeneous swarms
shown (at fraction = 0 and at fraction = 100) have the lowest
performance.

The figure also shows two specific performance points, resulting
from the application of reinforcement learning with the EI
reward. The EI-Adaptation point marks the result of using learning
with a learning rate α = 0.5 and exploration rate of 0.1, both
encouraging rapid changes in the learned policy, just as the
individual mix changes selection by the same robot over time.
The EI-Learning point marks the result of using learning rate
α = 0.05 and exploration rate of 0.02, to encourage convergence
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FIGURE 9
Performance of different WLU approximations with regular Q-learning (upper chart) vs. with continuous time Q-learning (lower chart) and where they
are relative to the population mix.

to a single selection (just as the population mix enforces).
We note that the adaptive method outperforms the individual
mix and the learning method outperforms the population mix,
and both points are reached when the swarm is behaviorally
heterogeneous.

5.2.2 Adaptation is not always better in Krembots
We now turn to testing the role of adaptation and learning with

real robots, hoping to draw lessons as to the role of heterogeneity
in these different settings. We test two coordination methods of the
same type butwith different time parameters (the speed of the robots
is different, and so these were empirically determined): Best Evade
for 500 ms (BE500) and Best Evade for 10,000 ms (BE10000). We
first test each method separately and then perform test selection
using EI-Adaptation (learning rate α = 0.5 and an exploration rate
of 0.1) and EI-learning (learning rate α = 0.05 and an exploration
rate of 0.02).

We tested the performance of the different configurations in
four robots and eight robots. We measure the performance of
each configuration and the time fraction the robots spent on
BE500. The duration of each run is 1 h long. For each hour-
long run, we logged each event, such as a collision or an item
that was retrieved. From this log, we extracted statistics on

the number of items retrieved and the coordination method
choices of the robots. We extracted statistics based only on
the last 15 min of the run since we want the learning to
stabilize. As before, this allows controlling the heterogeneity
of the swarm by fixing the fraction of BE500 or assessing it
from the logs.

Figure 8 shows the results for 4 Krembot robots
(top) and for Figure 8 (bottom). Like the previous figure, the
horizontal axismeasures the fraction of the time, inwhich the robots
spent using BE500, i.e., the behavioral heterogeneity of the swarm:
The 0 point on this axis marks a homogeneous swarm that never
uses BE500 and instead always uses BE10000. The point marked
100 on this axis shows the results for another homogeneous swarm,
where all robots use BE500.

Figure 8 shows that in the case of 4 robots (top), the best-
performing swarm is a homogeneous swarm (all robots choose
BE500 collision-avoidance). Both EI-Adaptive and EI-Learning
fail to achieve equivalent performance. However, in the case of
8 robots, a heterogeneous swarm is the best method, and it is
achieved using EI-Learning (where about 50% of the robots choose
BE500). Here, while heterogeneity proves superior, it is achieved by
learning using regular Q-Learning, rather than the adaptive method
proposed by Kaminka et al. (2010).
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FIGURE 10
Learning in Krembots for four robots (upper chart) and eight robots (bottom chart).

5.3 Heterogeneity in learning

As the use of learning does not seem to work stably, we explore
it further. In learning, robots converge to a fixed policy. We compare
regular Q-Learning to continuous time Q-Learning. We do so
by measuring the performance of different WLU approximations
(Section 4.1), each with regular Q-Learning and continuous time
Q-Learning (Algorithm 1, Section 4.3). The parameters of regular
Q-Learning were set as follows: the learning rate was 0.05, and
the exploration rate was 0.02. The parameters of continuous time
Q-Learning are as follows: τ = 10 seconds and the exploration
rate was 0.02.

We begin again with the Alphabet Soup simulator, with the
action set containing two actions as before: BE20 and BE 2000.
Figure 9 shows the results when using regular Q-Learning (top)
and continuous-time Q-Learning (bottom). The line shows the
population-mix, as before. The top figure shows EI learning being
superior to all others (as in Figure 7). The bottom figure shows
the Minimum over actions being superior. We draw two lessons
from these results. First, regardless of the learning method and
assumptions, the top performing swarm is always a heterogeneous
swarm. Second, the algorithm used is sensitive to the selected
ÂEI approximation.

Finally, we go back to the Krembot robots to evaluate the use of
the learning algorithms, with different rewards and both adaptive
and learning parameters. We tested BE500 and BE10000 with EI
(Kaminka et al., 2010) using the same Q-Learning parameters
for learning (EI-learning) and adaptation (EI-Adpative). We also
evaluate the use of EI with the continuous-time Q-Learning
algorithm (Algorithm 1) and, alternatively, the use of theminimum-
over-actions approximation with the same algorithm. Its parameters
were set to τ = 10 seconds and an exploration rate of 0.02.

Figure 10 shows the results. For four robots, as before, a
homogeneous swarm (everyone uses BE500) is the best. It is good
to see, however, that the use of Algorithm 1 with EI comes very
close to its performance. Indeed, it results in a heterogeneous swarm
where 95% of robots select BE500. Given the exploration rate and
the fact that there are only two methods, this corresponds to exactly
the 5% of the time where the exploration rate forces the robot to
choose BE10000. The bottom figure shows that all best swarms are
heterogeneous.

In a different publication, Douchan et al. (2019) reported on
additional experiments utilizing the learningmethods we presented,
contrasting their results with those achieved by testing directly with
the true swarm utility U, WLU of the utility U, and several WLU
alternatives. We refer the reader there, for further details.
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6 Conclusion

This paper explores the role of behavioral heterogeneity
in robot swarms engaged in foraging. It presents an abstract
theoretical model of this swarm task, showing a mathematical
connection between theCoordinationOverhead (CO) of the robots in
foraging—defined by the portion of time spent coordinating—to the
global utility of the swarm. We then connected between the swarm
CO of the whole lifetime of the swarm, to the decisions of individual
robots in a single collision. This allows us to show that in principle,
swarm robots can maximize an individual reward for each collision
that will yield good global utility in the long run.

Specifically, we presented the Aligned Effectiveness Index (AEI), a
reward function that ties the globalCO of the swarmwith individual
estimates.This reward function allows individuals within the swarm
to make decisions that improve the swarm’s performance while
adapting to changing collision conditions. It is a generalization of
the EI reward proposed in earlier work Kaminka et al. (2010), which
is not aligned, and for which the bounds we present are not known.

We focused on swarm foraging, a canonical swarm task of
great interest both scientifically and commercially (e,g., in order
picking, search and rescue, and agriculture; see applications
discussed in Section 2). We have shown several solutions to
challenges that may rise in practice when applying the theoretical
model. First, we discussed several possible approximations for the
AEI reward function that stands at the basis of utilizing learning
in this task. Second, we developed a continuous time variant of
Q-Learning in order to address possible inaccuracies of regular
Q-Learning that may rise in continuous-time settings, in which
robots operate. The utilization of learning by agents, in a completely
distributed manner, often leads to specialization of behavioral roles,
and thus to more heterogeneous swarms.

The results of the experiments clearly support the hypothesis
that diversity in decision-making can play an important role in the
performance of a swarm. This conclusion agrees with studies of
swarms, whose members evolve their decision-making controllers
using evolutionary computation (Montague et al., 2023), and studies
of behavioral diversity in models of human pedestrians [e.g.,
in mixed culture (Kaminka and Fridman, 2018)]. Surprisingly,
perhaps, Balch (1999) has investigated the use of machine learning
in simulated foraging robots (up to 8) and reached conclusions
opposite from ours, which states that foraging robots seemed to
benefit from being homogeneous. We believe that this seeming
contradiction in conclusions is a result of the previous study
utilizing robots that were able to communicate information about
the location of items and home. We also note that the results
demonstrate that diversity can be extremely important to the success
of the swarm but is not always needed. For instance, in the
experiments we conducted, homogeneous decision-making seems
to do well in smaller swarm sizes (see Figure 10).

The conclusion we reach on behavioral diversity complements
analogous conclusions as to the importance of diversity in capabilities,
in related studies. For example, the swarmanoid project (Dorigo et al.,
2012) explores the use of mechanically different robots in carrying
out complex tasks. Berumen et al. (2023) demonstrated the impact
of robots with diverse error models on foraging performance, and
Adams et al. (2023) developed foraging swarmsmade of two types of

robots: searchers and beacons that assist in communicating signals in-
limited communication settings. Swarms of heterogeneous nanobots
are able to carry out complex tasks, e.g., a form of Asimov’s laws of
robots (Kaminka et al., 2017). In the larger context of multi-robot
systems, similar ideas about the importance of diversity have been
presented in investigations of heterogeneous teams, where robots
communicate globally and essentially without restrictions so as to
coordinate how to bring their different capabilities to bear on the
joint problem. Such investigations include those by Xu et al. (2005),
Parker and Tang (2006), Tang and Parker (2007), and Liemhetcharat
and Veloso (2013). Likewise, heterogeneity plays an important role
in natural swarms as well, e.g., see (Ariel et al., 2022).

Although this study focused on diversity of the swarm,
complementary studies examine the optimality of the individual
robot’s decision-making, when robots use aligned rewards. Recent
investigations of alternative learning approaches and alternative
formulations begin to explore the question of how individual self-
interested rational reward maximization leads to collective utility
maximization (Fatima et al., 2024; Katz, 2023; Kaminka, 2025).
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Appendix A: Nomenclature

TABLE A1 List of symbols and notations used in this paper. Where appropriate, we also list equivalent notation used by Kaminka et al. (2010).

Symbol Meaning Equivalent in Kaminka et al. (2010)

N = {1,2,…,n} Set of n = |N| robots (players) A = {a1,…,an}

Si Set of actions available for robot i M

si ∈ Si Specific action taken by robot i αi or α

S = S1 ×⋯× Sn Set of all possible joint actions

s = (s1,…, sn) ∈ S Joint action, a combination of the individual specific
actions of all robots

sji Specific action of the robot i, in collision j

sj Joint action taken in collision j

hj = (s1, s2,…, sj) History of joint actions played up until (and including)
collision j

Sj Set of all possible joint action histories until (and
including) collision j

gi:S
j↦ℝ Gain by robot i as a function of the joint actions played

up until (and including) collision j
gain

ci:S
j↦ℝ Cost incurred by robot i as a function of the joint

actions played up until (and including) collision j
CC
i ,c

ui:S
j↦ℝ Utility of player i, given the joint actions played up

until (and including) collision j
ui(αi)

𝕌 ≔ ⋃i∈Nui Set of utilities of each player as a function of the joint
actions played up until (and including) collision j

Ai:Sj↦ℝ Active time of the player i as a function of the joint
actions played up until (and including) collision j

Iai

Pi:S
j↦ℝ Passive time of the player ias a function of the joint

actions played up until (and including) collision j
Ipi

li(s) Cycle length of robot i, given joint action s: Ai(s) + Pi(s)

EI(i, s) ≔ Ai(s)
Ai(s)+Pi(s)

Effectiveness index (Kaminka et al., 2010) EIi(s)

𝔼𝕀tot(s) Sum of EIi(s) over all agents i ∈ N

AEI(i, s) Aligned effectiveness index, defined as the difference
reward (WLU) with respect to global function 𝔼𝕀tot,
i.e., Δ𝔼𝕀toti (s)

C ∈ ℕ Number of collisions during swarm lifetime

T ∈ ℝ Total swarm lifetime duration T
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