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We live in a visual world where text cues are abundant in urban environments.
The premise for our work is for robots to capitalize on these text features for
visual place recognition. A new technique is introduced that uses an end-to-end
scene text detection and recognition technique to improve robot localization
and mapping through Visual Place Recognition (VPR). This technique addresses
several challenges such as arbitrary shaped text, illumination variation, and
occlusion. The proposed model captures text strings and associated bounding
boxes specifically designed for VPR tasks. The primary contribution of this
work is the utilization of an end-to-end scene text spotting framework that
can effectively capture irregular and occluded text in diverse environments.
We conduct experimental evaluations on the Self-Collected TextPlace (SCTP)
benchmark dataset, and our approach outperforms state-of-the-art methods in
terms of precision and recall, which validates the effectiveness and potential of
our proposed approach for VPR.
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1 Introduction

Signage is an ubiquitous feature in our society that provides us with vital information
about locations and identities through various environments like street signs, billboards,
and labels. Although several classifiers are proposed to identify specific types of signage,
like street signs or license plates, their applicability is limited by a lack of prior
knowledge, making it difficult to extend them to general text detection and recognition
in diverse environments. It is essential to overcome this limitation and make the most
of the wealth of information provided by signage ubiquitously. While classical Optical
Character Recognition (OCR) algorithms achieve good performance in highly constrained
environments, they may fail to detect and recognize text in any place (i.e., in the wild).

Signage is a crucial element for robots to navigate and map environments. The
traditional SLAM processes rely on direct or indirect features (i.e., corners of texture
patches), but these features lack semantics that are inherent in text. Signage offers a
global localization cue that can be particularly useful in identifying addresses or locations.
Additionally, the geometric characteristics of letters and numbers on signs can facilitate
as features for relative pose estimation, assuming planar or vertical alignment with the
ground plane. Visual Place Recognition (VPR) (Hong et al., 2019; Li B. et al., 2023) helps
robots localize with respect to previously visited places, which is essential for detecting
loop closures in visual SLAM and general localization tasks. However, VPR faces several
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challenges, including appearance variations caused by factors like
perceptual aliasing, illumination changes, viewpoint shifts, pose
variations, and environmental conditions such as weather and
seasons. Current techniques primarily focus on indirect feature-
based approaches, such as Bag of Words (BOW) methods. The
lack of semantics and feature topological relationships with BOW
complicate VPR result uniqueness as many solutions may map to a
single signature.

Scene Text Spotting (STS), also referred to as end-to-end scene
text detection and recognition (Liu et al., 2021; Raisi et al., 2021b),
is a technique that aims to locate text in images (detection) and
convert them into character sequences (recognition). This approach
addresses both detection and recognition tasks simultaneously.
However, it inherits the challenges associated with each task, such
as irregular text shapes, illumination variations, low resolution, and
occlusions (Raisi et al., 2020).

Deep learning Convolutional Neural Networks (DCNNs) like
VGG (Simonyan and Zisserman, 2014) and ResNet (He et al.,
2015) are commonly used as feature extraction backbone for
various computer vision tasks like classification (Zhang et al., 2024),
object detection (Zhang et al., 2021), and scene text detection and
recognition (Ren et al., 2015; Liu et al., 2016; Redmon et al., 2016;
He et al., 2017). Similarly, Recurrent Neural Networks (RNNs) are
used to capture sequential dependencies in text (Rumelhart et al.,
1986; Hochreiter and Schmidhuber, 1997; Baek J. et al., 2019)
and have shown great success on benchmark datasets. However,
irregular text instances and occlusion decline the performances
of these approaches. The term “irregular text” refers to text
with non-standard text instances that appear in arbitrary shape,
significant orientation variations, or curvature. On the other
hand, when there is occlusion which is the partial or complete
hiding of text characters, makes it difficult for existing methods
to perform well (Shi et al., 2018; Baek Y. et al., 2019; Liu et al.,
2019; Baek J. et al., 2019). Morever, CNNs have two limitations: 1)
difficulty in capturing long-range dependencies (Zhu et al., 2020)
and 2) challenges in adapting to input variations (Khan et al.,
2022). Recent advancements in text spotting approaches (Raisi and
Zelek, 2021; Kittenplon et al., 2022; Zhang et al., 2022; Raisi and
Zelek, 2022) have leveraged transformers (Vaswani et al., 2017),
achieving superior performance. These approaches include (Raisi
and Zelek, 2021, Kittenplon et al., 2022, Zhang et al., 2022), and
(Raisi and Zelek, 2022). This transformer-based method with
attention mechanisms (Vaswani et al., 2017) as the main module
achieved superior performance in arbitrary shape benchmark
datasets (Ch’ng and Chan, 2017; Yuliang et al., 2017).

Unlike Recurrent Neural Networks (RNNs), which process
information sequentially, transformers work better in analyzing the
entire input sequences simultaneously. The attention mechanism,
which facilitates parallel processing, enables transformers to
capture complex relationships between distant elements within
the input data (Vaswani et al., 2017). In scene text detection,
this means effectively reasoning about the connections between
characters, even those with irregular shapes or occlusions.
Moreover, the attention mechanism enables transformers to
selectively focus on relevant image regions, making it easier to
pinpoint characters amidst cluttered backgrounds. By shifting
from CNNs to transformers, we can overcome the challenges
of irregular text and occlusions in scene text detection and

recognition. This will pave the way for more robust and accurate
text processing, an important step towards achieving reliable Visual
Place Recognition (VPR) in real-world environments (Carion et al.,
2020; Dosovitskiy et al., 2020; Khan et al., 2022).

Visual Place Recognition (VPR) is a computer vision task that
helps the robots to recognize previously visited locations by using
visual cues (Hong et al., 2019). It is designed to withstand challenges
such as severe changes in illumination, blurring, and large viewpoint
changes. When it comes to identifying places, text that appears in
wild images (such as street signs, billboards, and shop signage) can
offer valuable information that can help improve the accuracy of
VPR algorithms. This is due to the highly discriminative features in
such collections of text that can be used to improve place recognition
based on high-level textual features.

This paper presents a new approach for Visual Place Recognition
(VPR) by utilizing an extended version of the transformer-based
scene text spotting model our previous work, namely, called
TDRL (Raisi and Zelek, 2024), to spot low-resolution, multi-
oriented, and occluded text instances that are abundant in VPR
tasks. Unlike previous methods (Hong et al., 2019) that relied
on separate modules for text detection and recognition, the
proposed technique can directly extract text strings alongside their
quadrilateral bounding box coordinates from the given input in a
single end-to-end process. Moreover, the backbone of the proposed
architecture benefits from a masked autoencoder (MAE) (He et al.,
2021)module that empowers thewholemodel in capturing occluded
text instances. Our main contributions are as follows.

1. We propose a scene text spotting architecture that can handle
the text of arbitrary shape with quadrilateral bounding boxes
coordinated alongside the word instances.

2. We provide several quantitative and qualitative ablation
experiments to show the performance of the proposed model
when compared with state-of-the-art (SOTA) techniques for
VPR, scene text detection, and scene text spotting tasks on
the SCTP (Hong et al., 2019) and ICDAR15 (Karatzas et al.,
2015) datasets.

3. We conduct experiments to demonstrate that using the high-
level text features obtained from the proposed scene text
spottingmethod achieves better results than SOTA visual place
recognition (VPR) techniques that rely on keypoint features.

2 Related work

2.1 Scene text spotting

Scene text spotting, also called end-to-end scene text detection
and recognition, is a computer vision task that unifies the
detection and recognition modules and aims to output the
detected bounding box and its corresponding word strings. Several
techniques have been developed by researchers for this task,
which can be categorized into classical machine learning methods
(Wang et al., 2011; Netzer et al., 2011; Wang et al., 2012; Neumann
andMatas, 2012) and deep learning-basedmethods (Li et al., 2017;
Liu X. et al., 2018; Lyu et al., 2018; Feng et al., 2019; Qin et al.,
2019; Liao et al., 2020; Liu et al., 2020). Conventional methods
(Wang et al., 2011; Netzer et al., 2011; Wang et al., 2012; Neumann
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and Matas, 2012) for recognizing text in a scene from end-to-
end depend on manual input features to produce the final text
outcomes. These methods are only effective when the background
is clear, and the text is horizontal. In more challenging situations
like VPR applications, these approaches may result in poor
performance.

With advancement of deep learning techniques in computer
vision, several scene text spotting pipelines are proposed. Early
deep-learning based STSmethods (Li et al., 2017; Liu X. et al., 2018)
usually utilized two separate module of detection and recognition
to output the final results. These methods often used Convolutional
Neural Networks (CNNs) for feature extraction as detection of
text instances (Simonyan and Zisserman, 2014; He et al., 2015) and
after alignment they applied Recurrent Neural Networks (RNNs)
(Rumelhart et al., 1986; Hochreiter and Schmidhuber, 1997) for
outputting the sequence of characters. These methods were mostly
designed to detect and recognize horizontal text. For instance,
Li et al. (2017) proposed a pioneering text-spotting approach that
utilized a shared CNN backbone for feature extraction, followed
by Region-of-Interest (RoI) pooling (Ren et al., 2015) for detection
and RNN-based recognition to output word instances. Later, FOTS
(Fast Oriented Text Spotting) (Liu X. et al., 2018), addressed the
limitations of early methods by using an anchor-free CNN-based
object detection framework that improved both training and
inference efficiency. Additionally, FOTS introduced a RoIRotate
module to handle multi-oriented text instances.

Many architectures (Lyu et al., 2018; Feng et al., 2019; Qin et al.,
2019; Liao et al., 2020; Liu et al., 2020, 2021) were developed to
address the irregular text spotting challenge by adopting CNN-
based segmentation networks with multiple post-processing stages
to generate polygon bounding boxes for these irregular text regions.
For example, Qin et al. (2019) proposed a RoI Mask module to
bridge the gap between detection and recognition for capturing
arbitrarily shaped text. Liu et al. (2020) introduced a Bezier curve
representation for the detection stage, followed by a Bezier Align
module to transform curved text instances into regular text
before feeding them into an attention-based recognition network.
Alternative methods (Baek et al., 2020; Raisi and Zelek, 2021) have
emerged that focus on spotting individual characters and then
merging them to reconstruct the final text instance with an irregular
shape. These approaches offer a different perspective on tackling the
challenge of irregular text in scene text spotting tasks.

Recent advancements in transformer architectures
(Vaswani et al., 2017) have proven to be effective in unified
architecture for scene text spotting. Several SOTA STS methods
(Huang et al., 2022; Kim et al., 2022; Kittenplon et al., 2022;
Zhang et al., 2022; Raisi and Zelek, 2021) incorporated transformers
into their frameworks and achieved superior performance on
benchmark datasets that include both regular and irregular text
(Lee et al., 2020; Atienza, 2021; Raisi et al., 2021a; Fang et al.,
2021; Raisi et al., 2022). For example, Kittenplon et al. (2022) used
a transformer-based detector, called Deformable DETR (object
DEtection with TRansformers) (Zhu et al., 2020), as the core of
their framework. They developed a multi-task prediction head that
can generate both word instances and bounding boxes for text
of any shape. Zhang et al. (2022) also developed a transformer-
based pipeline, namely, TESTR (TExt Spotting TRansformers),
by leveraging the Deformable DETR as the main component of

the proposed framework for arbitrary shape scene text spotting.
To address challenging scenarios such as occluded text, Raisi and
Zelek (2022) recently proposed an end-to-end scene text spotting
framework that enhances recognition performance in adverse
conditions. Their method incorporates a Masked Autoencoder
(MAE) within their pipeline, which works in conjunction with
a powerful Deformable DETR detector (Zhu et al., 2020) to
effectively capture the arbitrary shapes of occluded text instances
in natural images.

2.2 Text-Aided VPR

The goal of VPR is to match a query image with references
from a large dataset of images taken in different locations, based
on visual cues alone. Many methods have been proposed by the
VPR community (Arandjelovic et al., 2016; Anoosheh et al., 2019;
Li Z. et al., 2023), which have achieved superior performance on
benchmarks. However, most of these VPR methods (Cummins
and Newman, 2008; Milford and Wyeth, 2012; Arandjelovic et al.,
2016) use low-level key point features to match the query
against the reference image. Extracting high-level semantic
features, such as the text object including the bounding box
coordinates and the corresponding word strings, can improve the
matching performance and aid navigation. Various techniques
(Hong et al., 2019; Li B. et al., 2023) use a different approach for
VPR by utilizing extracted 2D text instances to locate places. To
achieve this, specific datasets were collected from different places
that contain at least one text region tomatch the query and reference
images in the dataset.

For instance, TextPlace (Hong et al., 2019) uses two separate
modules of detection and recognition from Textboxess++
(Liao et al., 2018) to extract street and store names and billboards
from real-world scenarios for place recognition.The performance of
this work compared to the previous SOTA techniques that used key
point features demonstrates the advantages of using text objects to
handle changes in illumination and viewpoint for localization. More
recently, Li et al. (2023) introduced TextSLAM, a SLAM system that
integrates the Visual SLAM architecture with the text objects for
the VPR application. TextSLAM incorporates semantic text features
and treats them as texture-rich planar patches for precise camera
pose estimation and optimization, producing more accurate and
robust results.

3 Unified scene text spotting
architecture

Detecting and recognizing text in a single pipeline from a given
set of images is an important step for robust and efficient scene
text reading. End-to-end frameworks offer significant advantages
by eliminating the need for multiple processing stages, and
recent advancements suggest that an end-to-end transformer-based
architecture can potentially surpass the accuracy of previous end-
to-end Convolutional Neural Network (CNN)-based approaches
for scene text spotting tasks (Liu X. et al., 2018, 2020). In this
work, we propose a single framework for unified text detection
and recognition without requiring post-processing steps or ROI
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FIGURE 1
The proposed unified end-to-end scene text detection and recognition architecture for visual place recognition.

computations. Figure 1 provides an overview of the proposed
model’s architecture. The proposed pipeline consists of three
primary modules.

1. The backbone module ensures that the features are of
high quality.

2. The encoder module further encodes the extracted multi-scale
features from the previous stage.

3. The decoder localizes the text coordinates in terms of a
quadrilateral bounding box and predicts the word strings.

The model is trained on color RGB images with quadrilateral
bounding box annotations. Each annotation consists of eight
coordinates (xi,yi) alongside the corresponding word string (ws),
structured as gi = [x1,y1,x2,y2,x3,y3,x4,y4,ws]. The model’s output
consists of quadrilateral bounding boxes with word string text
instances within the given input image. These outputs are later fed
into the VPR retrieval algorithm to match the query and reference
frames (See Section 3.4).

The model accept an RGB image I ∈ ℝH×W×3 as input, whereH
and W show the height and width of I. Then, with the size of (P,P),
N =HW/P2 are created. For example, if (H = 224,W = 224) and
P = 16, then we create 196 = 14× 14 patches with the size of 16× 16
from the given input image. After masking a random portion of the
input image and since the transformer is permutation equivalent, 1D
Sinusoidal Position Encoding (1DSPE) introduced in Vaswani et al.
(2017) is added to the patches.

3.1 VIT-based backbone

3.1.1 Pre-trained MAE
After adding the 1DSPE to the patched and removing the

masked patches, the remaining subset of patches are fed into the
ViT Transfomer (Vit-B/16) module. This module is responsible
for extracting 2D features. Vit-B/16 has repeating inner sub-
blocks, each containing two essential parts: a self-attention module
that analyzes relationships between different parts of the input
patches and a feed-forward network that adds non-linearity. The
model learns intricate relationships within the input data by
stacking these modules multiple times. This allows it to capture

long-range dependencies, refine features within the patches, and
extract useful information about the characters. In this work,
inspired by the success of Masked Autoencoders (MAE) (Li et al.,
2021), We use a pre-trained Vision Transformer (ViT) architecture
(Dosovitskiy et al., 2020) as the backbone for feature extraction.
Initially, the input image with the size of (224× 224) is divided
into 196 = 14× 14 non-overlapping patches with the size of 16×
16, and a significant portion of these patches (∼75%) are masked.
One-Dimensional (1D) positional embeddings are added after the
masking step, as used in the Vaswani et al. (2017).

3.1.2 Multi-scale adapter
There is a crucial issue with the standard architecture of ViT that

only outputs single-scale features because of its columnar structure
(He et al., 2021). This problem makes the MAE ViT-B/16 backbone
unsuitable for scent text detection and recognition tasks that have
characters with different shapes, which require extracting multi-
scale feature maps. To tackle this problem, the Multi-scale Adapter
(MSA) module is added at the end of the ViT module. The multi-
scale adapter module morphs the single-scale ViT features into a
multi-scale Feature Pyramid Network (FPN) (Li et al., 2021; Raisi
and Zelek, 2022). MSA manipulates feature maps from different
encoder depths by utilizing up-sampling or down-sampling to
integrate information from intermediate single-scale ViT feature
with d module by using four sub-blocks that produce multi-scale
features for the given resolutions input. The first two sub-blocks
in MSA are up-sampled by a factor of 4 and 2, respectively. The
third sub-block remains unchanged, and the fourth block is down-
sampled by a factor of 2. This process creates a set of feature maps
with varying resolutions (strides of 4, 8, 16, and 32 pixels relative to
the input image) that encompass a wide range of spatial details.

3.2 DETR-based encoder

The resulting multi-scale features (F′) from MSA are then fed
into a standard transformer-based encoder (E) (Zhu et al., 2020)
with 6 layers to provide better semantic text features. The encoder
consists of multi-heads-self-attention and Feed-forward-Network
sub-blocks, enabling it to handle text instances with complex scales
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and resolutions. Then, the output of the encoder is set as learnable
embedding queries (E′) that are later fed to the multi-task decoder.
During the training phase, the encoder’s multi-head self-attention
mechanism separates individual characters and word instances of
the input images. It provides robust features for low-resolution and
occluded text regions later used by the decoder.

3.3 Multi-head text spotting decoder

The decoder module is a prediction head that can output the
absolute quadrilateral bounding box coordinates and the sequence
of characters as word strings. The proposed multi-head prediction
head eliminates the need for hand-designed components such as
anchor boxes, region alignment, and non-maximum suppression
used in many two-step scene text spotting methods, which decline
the computational complexity and increase the inference time. As
shown in Figure 1, the decoder part is different from our previous
work, namely, TDRL (Raisi and Zelek, 2024). It consists of two
blocks, which are described below.

3.3.1 Localization decoder
The localization decoder utilizes a simple Feed-Forward-

Network (FFN) to generate detection information in a format of
quadrilateral bounding box coordinates of text instances from the
encoded features. The outputs are then combined with learnable
embedding queries of the encoder and the aggregation of themes
is fed into a Transformer decoder that automatically outputs word
string information.

3.3.2 Recognition decoder
The recognition decoder block creates a sequence of characters

using an auto-regressive transformer decoder. For each token
produced, the decoder transformer uses the information of the
previous token, the start location of the detected text region, and
the encoded features. This process helps improve both the detection
and recognition tasks during training and enables the model to be
robust in capturing more challenging text instances.

3.4 VPR retrieval

We follow to the retrieval technique outlined in Hong et al.
(2019), which utilizes the topological map generated during the
mapping stage and information from scene text recognition in
a new image. To calculate the similarity between the map and
query image sequences, it employs a matching process that
encompasses semantic (Levenshtein distance between text strings)
and localization (Intersection over Union (IoU) of bounding boxes)
information. The VPR retrieval process can be summarized as
follows: Firstly, we extract the bounding box and word string
of the input image from the output of the proposed model
(Scene Text Extraction). Subsequently, we compare the extracted
text information with the topological map, which contains data
about previously identified scene text instances and their spatial
relationships. This involves searching for matches between the
extracted text and the text stored in the map (Matching with the
map). In addition, the retrieval process takes into account the

TABLE 1 Quantitative comparing the proposed model with SOTA VPR
techniques (Cummins and Newman, 2008; Milford and Wyeth, 2012;
Arandjelovic et al., 2016; Anoosheh et al., 2019; Hong et al., 2019; Raisi
and Zelek, 2024) on the SCTP (Hong et al., 2019) dataset using the
Precision-Recall metric. The best results are shown in Bold.

Backbone Recall

0.2 0.4 0.6 0.8 0.9

Proposed 1 1 1 0.98 0.95

TDRL 1 1 1 0.97 0.93

TextPlace 1 1 1 0.96 0.91

NetVLAD-10 1 1 1 0.95 0.93

ToDayGAN-10 0.50 0.55 0.58 0.57 0.56

FAB-MAP-10 0.79 0.69 0.67 0.65 0.63

SeqSLAM 0.30 0.24 0.18 0.13 0.13

spatial and temporal coherence of the text to achieve more precise
localization. This involves analyzing the positions of the matching
texts relative to each other in both the new image and the map,
which helps eliminate false positives where similar textmight appear
in unrelated locations (Spatial-Temporal Coherence). Based on the
text matches and their spatial-temporal coherence, the location of
the new image relative to the existing topological map is estimated,
providing an indication of the place depicted in the new image
(localization). Finally, by identifying matching text and considering
their spatial relationships, the retrieval system can determine if a
new image represents a previously visited location and estimate its
position within the map.

4 Experimental results

The benchmark datasets and evaluation metrics
are first defined. Subsequently, quantitative/qualitative
comparisons with SOTA methods (Hong et al., 2019;
Anoosheh et al., 2019; Arandjelovic et al., 2016) for the VPR task
are presented. Lastly, we concluded the experimentations with an
ablation study and an evaluation of computation performance.

4.1 Implementation details

The final model was trained on 4 NVidia GPUs RTX-3090
using 500 K cropped alphanumeric synthetic character images from
the SynthText dataset (Liu et al., 2021) and 300 images from the
ICDAR15 (Karatzas et al., 2015) datasets. The final proposed model
that is used for evaluation is trained with a batch size of 2 per
GPU. The number of object queries is set to 100 in the encoder
module. The AdamW optimizer was used to optimize the model’s
parameters by setting the initial learning rate to 1× 10−4. For
augmentation, the input images are trained with the following
techniques: horizontal and vertical flips, image resizing, brightness,
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FIGURE 2
The VPR retrieval results of NetVLAD (Arandjelovic et al., 2016), TextPlace (Hong et al., 2019), and our proposed model on SCTP (Hong et al., 2019)
dataset. The correct and incorrect results are shown with green and red bounding boxes. Best viewed when zoomed.

FIGURE 3
Sample query (top column)-reference (bottom column) frame pairs with text spotting results using the SCTP dataset (Hong et al., 2019). The proposed
model spotted the majority of challenging cases of text instances in these frames. Best viewed when zoomed.

contrast, and saturation. The evaluation and inference are done on a
machine equipped with an NVIDIA RTX 3080TI GPU and 12 GB
of memory. A re-implemented version of TextPlace (Hong et al.,
2019) by Li B. et al. (2023) is used for comparison of qualitative
results in Section 4.5. During pre-training, 75% of the input images
with a resolution of 224× 224 is masked out.

4.2 Evaluation datasets

We evaluate the performance of our proposed model using two
benchmark datasets: Self-Collected TextPlace (SCTP), introduced
by Hong et al. (2019), and ICDAR15 (Karatzas et al., 2015). The
SCTP dataset contains images collected specifically for the VPR

tasks in urban environments. It contains three map and query
sequence images captured in outdoor streets and an indoor
shopping mall using a mobile phone camera to simulate real-
world scenarios. The SCTP evaluation dataset consists of two
sets of street images for matching. The first set has 103 query
images and 123 reference images, while the second set has 1097
query images and 1036 reference images. The dataset includes
challenging images with high dynamic range, diverse occlusions,
significant illumination variations, arbitrary-shaped text instances,
and viewpoint changes, reflecting the complexities of real-world
scenarios. It is worth noting that the dataset from Li B. et al. (2023)
is not used in this study due to the presence of Chinese text
instances which are different than the English characters used for
the training of our proposed model.
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TABLE 2 Classification accuracy results demonstrate the effect of different modules in the proposed architecture, including the MAE backbone,
masking ratio, and multi-scale adapter (MSA) module. The CTT and OCTT are original and occluded alphanumeric cropped characters of the Total-text
dataset (more details Section 4.2). The best performances are shown in bold.

Model Train data Mask ratio MSA CTT OCTT

ResNet-50 SynthText – – 86.3 83.2

ViT-B/16 SynthText – – 87.1 83.5

MAE SynthText 0.65 – 89.2 86.3

MAE SynthText 0.75 – 91.7 89.6

MAE SynthText 0.85 – 90.8 88.4

MAE SynthText 0.75 ✓ 92.6 90.8

MAE ImageNet + SynthText 0.75 ✓ 94.5 92.5

TABLE 3 The effect of Transformer-based encoder in the overall architecture. The model are fine-tuned and tested on ICDAR15 datasets using the
lexicon-free F-score metric. The best performance is shown in bold.

Backbone Train data Encoder Decoder F-score

ResNet50 ImageNet + SynthText + ICDAR15 ✓ ✓ 64.1

MAE ImageNet + SynthText + ICDAR15 – ✓ 71.3

MAE (Proposed) ImageNet + SynthText + ICDAR15 ✓ ✓ 75.4

The ICDAR15 (Karatzas et al., 2015) is a publicly available
benchmark dataset that is designed primarily for detecting
and recognizing “incidental scene text” using machine learning
models. This dataset contains 1500 images for training
and 500 images for evaluating end-to-end text detection
and recognition algorithms. Like SCTP, these images are
challenging, captured using wearable cameras both indoors
and outdoors.

The Total-Text (Ch’ng and Chan, 2017) dataset is a well-known
benchmark dataset specifically designed for multi-oriented and
curved scene text detection and recognition. Total-Text includes
1255 images for training and 300 images for testing. In this paper,
we only use the test sets of this dataset. More specifically, to
evaluate the different components of the proposed pipeline in the
ablation study, we use two versions of this dataset annotated at the
character level as presented in Raisi and Zelek (2022). The first set
contains CTT, annotated only at the character level from the original
images of Total-Text.The second test set containsmanually occluded
characters of Total-Text, called OCTT. During the evaluation, 36
alphanumeric characters, including 10 digits + 26 capital English
letters, are used.

4.3 Evaluation metrics

In order to fairly compare the effectiveness of our
proposed model with other SOTA methods (Hong et al., 2019;

Anoosheh et al., 2019; Arandjelovic et al., 2016), we use
the precision-recall evaluation metric as described in
Sun et al. (2019); Hong et al. (2019), which measures how well our
model can accurately detect and recognize text instances for the
VPR application.

To evaluate the performance of the proposed model with the
current state-of-the-art (SOTA) scene text detection and end-to-
end scene text detection and recognition models, we use the
standard evaluation metrics introduced in Karatzas et al. (2015).
These metrics include precision, recall, and H-mean (F-score) based
on intersection over union (IoU).The Intersection over Union (IoU)
metric is widely used in the scene text detection community to
determine the accuracy of detection. To be considered accurate, a
detectionmust have an IoU of 0.5 or greater (IOU ≥ 0.5).The IOU
metric is defined as:

P = T P
T P +FP

(1)

R = T P
T P +FN

(2)

When evaluating scene text detection, True Positives (T P) are
correctly predicted text instances, False Positives (FP) are non-
text regions predicted as text regions and False Negatives (FN )
are missed text regions. We can calculate the H-mean (F-
score) as follows:

H−mean = 2× P ×R
P +R

(3)
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TABLE 4 The quantitative results of the proposed model in comparison
among several SOTA text detection and recognition approaches on the
ICDAR15 dataset. Precision, Recall, H-mean, and F-measure metrics are
used to evaluate the performance of the models. The best performances
are highlighted in bold.

Model Detection E2E FPS

Precision Recall H-
mean

F-
score

FPS

CRAFT
Baek et al.
(2019b)

88.5 84.7 86.9 – –

PSENet
Wang et al.
(2019)

86.9 84.5 85.6 – –

EAST
Zhou et al.
(2017)

83.3 78.3 80.7 – –

FOTS
Liu et al.
(2018b)

88.8 82.0 85.3 – –

DRGN
Zhang et al.
(2020)

88.5 84.6 86.5 – –

CharNetR50
Liu et al.
(2018a)

– – – 60.7 –

Textboxes++
Liao et al.
(2018)

87.8 78.5 82.9 51.9 2.3

ABCNet-
v2
Liu et al.
(2021)

90.2 84.1 87.0 70.4 10

DEER
Kim et al.
(2022)

93.7 86.2 89.8 71.7 -

TESTR
Zhang et al.
(2022)

90.3 89.7 90.0 65.3 -

TDRL
Raisi and
Zelek
(2024)

90.2 83.1 86.5 68.2 11.0

Proposed 92.1 88.8 90.4 75.4 15.2

4.4 SOTA VPR comparison

Table 1 presents the results of the quantitative evaluation
comparing our proposed model with several state-of-the-art
methods (Cummins and Newman, 2008; Milford and Wyeth, 2012;
Arandjelovic et al., 2016; Anoosheh et al., 2019; Hong et al., 2019)
on the SCTP dataset (Hong et al., 2019). Our model achieves the
highest recall on this benchmark, which is known for containing

challenging scenarios like irregular and partially occluded text
instances. This superior performance in recall highlights the
effectiveness of our proposed method for visual pattern recognition
tasks that require robustness to such complexities.

4.5 VPR qualitative results

We evaluate the effectiveness of our text spotting model by
comparing it with state-of-the-art VPRmodels, includingNetVLAD
(Arandjelovic et al., 2016) and TextPlace (Hong et al., 2019) on
the SCTP dataset. Our model performs well in identifying the
correct reference frame that matches the query frame, as shown in
Figure 2. Notably, our model is not trained on the SCTP dataset,
and it performs well without any prior knowledge of the dataset.
Furthermore, we provide some qualitative results of the proposed
method on challenging example images of the SCTP in Figure 3.The
proposed model also shows robustness in detecting challenging text
instances in both query and reference frames and is generalizable to
new datasets like SCTP.

4.6 Ablation study

We conduct further ablation experiments and compare our
proposedmodel with previous recent text detection and recognition
techniques.

4.6.1 The effect of different utilized modules in
the proposed architecture

In this section, we conduct several experiments to evaluate the
effect of different utilized modules in the proposed architecture,
including pre-trained Masked autoencoder (MAE) backbone,
training data, masking ratio, andmulti-scale adapter (MSA). Table 2
shows the experimental results. To that effect, we use two subsets
of alphanumeric characters of Total-Text data effectively original
cropped characters of Total-Text (CTT) and occluded characters of
CTT (OCTT) as described in Section 4.2 in terms of classification
accuracy. We eliminated the encoder and decoder components in
this experiment and only considered the backbone.

We started using a CNN-based ResNet-50 backbone and trained
it on the SynthText (Gupta et al., 2016) characters. It achieved 86.3%
and 83.2% accuracy for the CTT and OCTT datasets, respectively.
We replaced the ResNet-50 with a Transformer-based ViT-B/16
backbone slightly improved accuracy on both datasets.The accuracy
was boosted when utilizing the MAE with a 0.65 masking ratio
instead of the ViT-B/16 backbone on both the CTT and OCTT test
sets. We then changed the masking ratio to 0.75 and 0.65 and fixed
the other parameters. The model with a 0.75 masking ratio obtained
the best accuracy performance.The improvement is more evident in
theOCTTdataset that contains occluded characters, which confirms
that masking a large portion of input image helps better in the
recognition of challenging characters.

We then added the multi-scale adapter module to the model
and continued with a 0.75 masking ratio; the model’s accuracy in
this version also performed better than not using the MSA module.
The MSA module help the model to better classify characters
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FIGURE 4
The detection and recognition results of the (A) textboxx++ (Liao et al., 2018) used in Hong et al. (2019), (B) model in Raisi and Zelek (2024), and (C) the
proposed model. Best viewed when zoomed.

FIGURE 5
Qualitative comparison of the (A) proposed text spotting outputs model and (B) the model in Raisi and Zelek (2024). The red and green arrows
illustrated the correct and missed text instances between the two models. Best viewed when zoomed.

with different scales that are abundant in the text instances of the
wild images.

Finally, we fine-tuned a pre-trained MAE backbone [trained
on ImageNet (He et al., 2021)] on the Synth-Text dataset, and
the model achieved the best performances on CTT (94.5%) and
OCTT (92.5%) datasets. We use this fine-tuned model as the main

backbone for the following experiments and training of the proposed
final model.

We conducted an additional experiment to examine the impact
of the backbone and encoder modules used in the proposed
model. The results are shown in Table 3. The model utilizing
a CNN-based (ResNet-50) architecture achieved a 64.1 F-score
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FIGURE 6
Qualitative comparison between the key point features and STS outputs. Column (A) shows the key points extracted from the GitHub-trained
model of Zhao et al. (2022), while column (B) demonstrates the scene text spotting output of the proposed model. Best viewed when zoomed.

performance. By using an MAE-based backbone and excluding the
encoder in the architecture, it outperformed themodel with ResNet-
50 backbone by a large margin (∼7%). Ultimately, including the
encoder in the architecture resulted in a performance boost of
approximately 4% in terms of F-Score, confirming the effectiveness
of leveraging the encoder in the final end-to-end text detection and
recognition model.

4.6.2 SOTA text detection and recognition
evaluation

We first compare the proposed model with several SOTA scene
text detection and recognition approaches (Baek Y. et al., 2019;
Wang et al., 2019; Zhou et al., 2017) on the benchmark ICDAR15
(Karatzas et al., 2015) dataset. The results are shown in Table 4.
While the evaluation methods are trained on a combination of
synthetic datasets and fine-tuned on real-world data, the proposed
model achieved the highest precision (p = 92.1) for text detection,
in addition to competitive recall and H-mean scores. The proposed
model also performed well in end-to-end text detection and
recognition (E2E) in terms of H-mean = 75.4. For a fair comparison,
only state-of-the-art methods that have similar training image
numbers to our proposed model are selected.

4.6.3 SOTA scene text spotting evaluation
The TextPlace (Hong et al., 2019) model leveraged the

Textboxes++ (Liao et al., 2018) algorithm as its main text extraction
component. Therefore, we also conduct additional experiments
to compare the proposed model with Textboxes++ and provide
quantitative and qualitative results for text instances in the wild
images using the ICDAR15 benchmark dataset. Table 4 presents a
quantitative comparison between the Textboxes++, the recent TDRL
technique (Raisi and Zelek, 2024), and the proposed model using

the standard text detection and end-to-end spotting evaluation
metrics described in section 4.3. The proposed model outperforms
(Liao et al., 2018) in both detection and end-to-end spotting tasks,
achieving an H-mean detection performance of 90.4% compared
to 82.9%. Moreover, it surpasses Textboxes++ by approximately
27% in end-to-end F-measure performance. The proposed model
also outperformed the TDRL model by a large margin, achieving a
difference of∼4% and∼7% in both the detection and end-to-end text
spotting tasks. For confirmation of these performances, we provide
some qualitative STS comparisons on challenging sample images of
the ICDAR15 dataset in Figure 4. As shown, the proposed model
correctly detects and recognizes the text instances in the images and
performs better than the TDRL and Textboxes++. We also compare
the proposed model with recent state-of-the-art techniques that are
equippedwith contemporary ResNet + FPNbackbone as in Liu et al.
(2021) and transformer pipeline as in Kim et al. (2022); Zhang et al.
(2022). As shown, the proposedmodel outperformed thesemethods
in terms of H-mean for text detection and lexicon-free F-score for
end-to-end text detection and recognition on the ICDAR15 dataset.

4.6.4 Qualitative results
We first provide a comparison between the qualitative results

of the proposed method and the TDRL (Raisi and Zelek, 2024) on
challenging example images of the SCTP in Figure 5. As shown,
the proposed model effectively detects low-resolution, motion-
blurred, and small text instances in images, accurately outputting
correspondingword strings for the detected text regions. In contrast,
the TDRL model fails to spot these challenging text instances.
Successful detection of all word instances in the query frame enables
the model to capture these text instances from reference frames.
Outputting more detection text regions with the correct strings of
the proposed model compared to the TDRL in Figure 5 and the
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model used in Hong et al. (2019) also affirm the good performance
results in Table 1, 4.

4.6.5 Semantic text versus key point features
We also conducted experiments to compare qualitatively the key

point features that are the output of the majority of VPR techniques
and the high-level semantic text feature of the proposed model. For
extracting the key points, we use the recent model in Zhao et al.
(2022) that are similar but with more advanced keypoint features
used in common VPR techniques. As illustrated in Figure 6, the
proposed model and VPR methods differ in output features. While
VPR algorithms focus on extracting key point features for place
recognition tasks, the proposed model extracts semantic features
with fewer numbers but with more semantic indexes.

4.6.6 Inference time
Finally, we evaluated our model’s inference speed versus the

TextPlace method (Hong et al., 2019) and used Frames Per Second
(FPS) as the metric. We used an RTX 3080Ti GPU with similar
memory specifications as reported in Liao et al. (2018) for TextPlace.
The TDRL scene text spotting model achieved a significantly faster
inference speed, reaching approximately 11 FPS compared to the 2.3
FPS reported for TextPlace (Hong et al., 2019). The proposed model
shows faster inference time compared to the TDRL, achieving ∼15
FPS. We argue that by equipping the proposed model on a machine
with a faster GPU, we may obtain real-time performance of 30 FPS.

5 Conclusions

We have developed an advanced scene text spotting model
specifically designed for visual place recognition (VPR). Our
model uses a pre-trained Masked Autoencoder (MAE) as a
robust backbone for feature extraction and a modified multi-
task transformer detector for text detection and recognition. Our
experimental evaluation of the SCTP benchmark dataset shows that
our proposed model surpasses the performance of state-of-the-art
(SOTA) methods for VPR tasks. This highlights the effectiveness
of our end-to-end approach for robust scene text detection and
recognition in challenging VPR scenarios. The method can identify
a revisited place chiefly based on text detected and recognized in
the scene. Traditional feature-based methods can be subsequently
deployed to determine the pose (i.e., translation, rotation) changes
between the 2 viewing locations.

The ability to accurately detect and recognize text in the wild
has the potential to revolutionize various localization and mapping
tasks beyond VPR applications including augmented reality tasks.
By leveraging the semantic information extracted from detected
text, such methods can achieve more robust localization and
mapping compared to traditional approaches that rely solely on
indirect features.
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