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Introduction: Robotics uptake in the aerospace industry is low, mainly due
to the low-volume/high-accuracy production that aerospace manufacturers
require. Furthermore, aerospace manufacturing and assembly sites are often
unstructured environments not specifically suitable for robots to operate in.

Methods: This paper introduces a robotic visual inspection systemusing off-the-
shelf components able to inspect the mounting holes for wing slat actuators
without the need for fixed-coordinate programming; the part just needs to
be left within reach of the robot. Our system sets one of the opposed pairs
of mounting holes as a reference (the “datum”) and then compares the tilt
of all other pairs of mounting holes with respect to it. Under the assumption
that any deviation in the mounting hole tilt is not systematic but due to
normal manufacturing tolerances, our system will either guarantee the correct
alignment of all mounting holes or highlight the existence of misaligned holes.

Results and Discussion: Computer-vision tilt measurements are performed
with an error of below 0.03° using custom optimization for the sub-pixel
determination of the center and radius of the mounting holes. The error
introduced by the robot’s motion from the datum to each of the remaining hole
pairs is compensated by moving back to the datum and fixing the orientation
again before moving to inspect the next hole pair. This error is estimated to
be approximately 0.05°, taking the total tilt error estimation for any mounting
hole pair to be 0.08° with respect to the datum. This is confirmed by manually
measuring the tilt of the hole pairs using a clock gauge on a calibrated table (not
used during normal operation).

KEYWORDS

robotic systems, inspection, aerospace, machine learning, drill analysis, slat actuator
mount

1 Introduction

Aerospace assembly processes account for 45%–60% of the total manufacturing
(Jiang et al., 2021). Titanium alloys, super-alloys, and composite parts were used to
improve the overall strength of the aircraft (Jiang et al., 2009). However, such components
are difficult to repair and can cause instability issues during drilling (Turki et al.,
2014). When manufacturing rivets and screw connections, the 1.5–3 million holes
per aircraft needed for assembly are typically drilled using a twist drill (Aamir et al.,
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FIGURE 1
Conceptual framework of the proposed robotic system.

2020; Giasin and Ayvar-Soberanis, 2017). Twist drilling is a major
machining process in the aerospace industry (Aamir et al., 2020).
The mounting holes are pneumatically drilled and inserted into
the fuselage skin. This process generates shock and vibration
phenomena that can lead to fatigue failure (Sun et al., 2018). On
the other hand, a hand-held pneumatic drill is used to drill
mounting holes in the fuselage skin. Drilling direction that deviates
from the surface normal will cause perpendicularity and hole-
diameter quality issues, which is unsafe for an aircraft (Shi et al.,
2016). Additionally, removing material using an edge chisel to
accommodate the hole deviation creates stress concentration
areas (Sun et al., 2018) that are the main cause of fatigue crack
formation.

Robotics is of interest for the manufacture of aerospace systems,
especially aircraft structures. Robots offer cost and flexibility
advantages to manufacturers in this industry. This option increases
the flexibility for drilling, unlike standard drilling systems such as
large gantries, which require unobstructed access to the product.The
only drawback of robotic systems is that they cannot independently
meet the high-precision requirements of aerospace assembly
(Devlieg and Szallay, 2010), and additional techniques like added
external sensors need to be combined with the robot.

This paper focuses on introducing a robotic system capable of
determining drill hole tilts in a group of related drills in wing slat
support slots, as shown in Figure 2, a process commonly carried
out manually in the aerospace industry. The system introduced is
controlled by a simple, finite, state-controlled, autonomous robotic
system with machine vision cameras and integrated light systems.
The performance of the system is evaluated by comparing its
inspection results with the metrology of the drill tilt deviations. The
mathematical analysis of the system was carried out and verified
in previously published work (Morsi et al., 2023). However, as the
system lacked positional detection of shapes, the updated system
was upgraded with a machine learning system and a template
matching approach to improve the system’s autonomy and accuracy.
The approach proposed uses visual feedback to achieve autonomous
motion using Python scripts on an ABB GoFa robot. Figure 1 shows
the conceptual framework. The components introduced aids in the

system’s flexibility by eliminating the need for jigs andfixtures or pre-
recorded positions to inspect the workpiece; it is enough to leave the
part within the field of view of the robot camera.

The remainder of the paper is structured as follows: Section 2
reviews related works on robotic inspection systems for drill holes
and key components needed to achieve this; Section 3 introduces the
problem setting, control approach, and simulated and experimental
setup; Section 4 discusses the results; and finally, the conclusion is
summarized in Section 5.

2 Related works

2.1 Industry 4.0/5.0

Industry 4.0 represents the current revolution inmanufacturing.
The ultimate objective is to establish smart factories (Sherwani et al.,
2020; Wan et al., 2019). One of the key impacts of Industry
4.0 is the increased adoption of robotic systems, driven by
the pursuit of competitiveness (Javaid et al., 2021). To further
increase competitiveness, robotic systems must be capable of
performing in unpredictable environments by learning from
collected data through various models, i.e., autonomous robotic
systems (Mukherjee et al., 2021).

2.2 Simulation and control

To achieve adaptability for production variations, current
robotic controls need to be updated as they only fit single-purpose
assemblies (Arents and Greitans, 2022). Instead, sensors can be
used to collect information about the surroundings, and then
automated logic and programmable planning methods are used to
plan operations ahead. Such systems rely on independent judgments
over possible courses of action based on information about the task
and its surroundings.

To test amodel and analyze its output, simulation entails creating
a hypothetical or real object (Žlajpah, 2008). Robotic simulators have
become an essential component of research paradigms in order to
assess the algorithms’ stability, efficiency, and safety levels. In this
paper, RoboDK is used. It is a universal software program that offers
a simulation platform to analyze various robotic configurations
(Garbev and Atanassov, 2020). The initial design of the system in
a simulator minimizes the risks of collision as the setup modeled
provides a glimpse of the possible interactions/collisions the system
will face when deployed in the real process, which helps in prior
planning for the design of the tools and feasible control approaches.

2.3 Aerospace industry

Aerospace industry aircraft operators receive a low return on
the capital used (Büchter et al., 2022), which requires them to adapt
to operational demands and unveil efficient new aircraft. Cost
optimization is heavily enforced to ensure that minimal growth is
maintained. This strain increased during the COVID-19 pandemic,
in which all planes have been grounded. This leads some airlines to
repurpose planes for cargo transport to keep at least some revenue
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FIGURE 2
Slat support slot mounting holes, numbered.

running. However, this is mainly controlled by reduced demand and
sales per weight.

In manufacturing engineering, metrology and tooling are
considered separate fields. Commonly, tooling, which comprises jigs
and fixtures, focuses mainly on part manipulation during assembly,
with quality checks as a secondary objective (Vichare et al., 2014).
Typically, for the assembly of a single aircraft type, specially
designed, large steel structures are bolted to the factory floor. These
structures are configured to provide precise alignment and support
for the assembly process. However, the structures are very expensive
and have limited ability to be used for any other product variation.

When wings are assembled, hole alignment checks need to
be assessed. Practically, processed structures (that may span over
20 m) are too large to be practically inserted in and measured with
a coordinate measurement machine (National Physical Laboratory,
2024). Therefore, costly, large-volume metrology (LVM) metrological
equipment needs to be used on the wing.

Evidently, a shift toward flexible and light tooling from heavy,
rigid structures will significantly increase assembly lines and non-
recurring costs (NRCs). A viable, flexible, and fast robotic inspection
system is needed to pave the way for improving the aerospace
manufacturing lines. This is where the proposed system can help.

2.4 Non-destructive testing

Part manufacturers aim to ensure product quality during
production, which ensures the product in its extended life functions
as intended. Therefore, discontinuities and defects need to be avoided
when producing the part. Defects in parts represent imperfections,
which impede its performance, ultimately leading to failure prior to

the expected life expectancy. On the other hand, similar to defects,
discontinuities cannot be corrected (Gupta et al., 2022).

Non-destructive testing (NDT) offers approaches that identify
and quantify the characterized failure in products to account for
its current state, avoiding the intensification of the failure. The
approach can be applied at all stages of the product cycle, which
allows for accurate monitoring of defects if present and a better
understanding of the drivers of the failure, which allows for future
product optimization. Presently, the aerospace sector conducts
inspections using non-destructive testing carried out by experienced
technicians who examine or sample the structure to assess its quality
Mineo et al., (2017). NDT is a cost-effective method for material
inspection, damage characterization, and quantization (Gholizadeh
and Gholizadeh, 2022). However, NDT relies on the technician’s
expertise and knowledge. Successful methods include visual testing
(VT), ultrasonic testing, acoustic emission, eddy current testing,
infrared thermography, and laser shearography (Towsyfyan et al.,
2020). VT is the oldest form of NDT. This method uses visual aids,
primarily the eye, to inspect the surface. The main visual aid needed
to performVT is the human eye.There are two types of VTmethods:
direct VT (DVT) and remote VT (RVT). Direct VT is performed
when the eye can be positioned within 25 inches of the surface of
the sample being examined at a minimum angle of 30° (Allgaier and
Sayler, 2011). Remote VT is performed in difficult-to-access, unlit
locations. In this mode, light is supplied via a cable from an external
source, and the camera sends an image or live feed to the monitor.
This method offers the possibility of automating the inspection (or
part of it) using computer vision techniques to either algorithmically
extract relevant information or manipulate the images in a way that
makes human observation easier.

Light is an important prerequisite for performing VT. The
amount of light that enters the eye (or the camera lens) determines
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the quality of the image. Several factors, such as the surface texture,
brightness, temperature, size, and shape of the object, can affect
the amount of light reflected. Controlling the illumination (or even
providing a particular light structure) can significantly simplify VT
processes.

Human factors, such as emotional and physical effects, also
influence the results of VT. Replacing human-based VT with
computer vision-based VT can achieve much better performance.

2.5 Robotic systems

Several robotic systems have been used for inspecting and
drilling holes. Typically, the repeatability of industrial robots is
adequate for one direction, but repeating the same procedure (such
as drilling) from multiple directions is not (Devlieg and Szallay,
2010). Radial tolerances in the order of 0.25 mm cannot be achieved
due to errors such as backlash and wind-up between the feedback
and the joint. Therefore, inspecting structures requires mapping the
environment in which the product exists, a calculated path plan and
navigation procedure, and sensing devices to collect information
along the path.This emphasizes that a strong information procedure
aids in an accurate inspection (Almadhoun et al., 2016).

Adaptable autonomous robotic systems offermanufacturers cost
and flexibility benefits. This option offers better access to difficult
drilling locations, unlike a large standard drilling system (such as
a gantry) that requires a clear access route to the product. If the
robotic system can be moved, it can then be used to inspect large
or long-thin structures. The critical disadvantage is the inability to
meet the high precision needed by aerospace assembly (Devlieg and
Szallay, 2010). The aerospace industry’s stringent requirements can
reach positional and normality accuracies as low as 0.1 mm and 0.5°,
respectively, which is not achievable with off-the-shelf industrial
robots. Therefore, solutions must include embedding sensors into
the robot system that correct its position and orientation to achieve
the required accuracy.

Research and application of robots in assembly tasks such as
large-scale aviation components have exhibited growth. Vision-
based assembly methods have been widely used in industrial
applications. However, pure visual sensor combinations for high
accuracy remain a challenge. A literature search was conducted to
understand the types of systems introduced. The proposed systems
exhibit several common approaches and alignment configurations.

2.5.1 Robotics based on calibrated coordinates
The most traditional approach involves offline programming

and operation with a fixed (or clamped) workpiece. This method
necessitates an accurate part location in the workspace (Jayaweera
and Webb, 2010). This approach minimizes alignment and
positional errors by using metrological equipment to ensure
the perfect alignment of the workpiece. However, it is slow to
respond to the fast-paced environment of the aerospace industry,
which involves frequent changes in product designs. Moreover,
linked weights and applied forces can create an additional loss in
the joints, which commonly creates a panel skid where the tool
deflects by 2 mm.

Devlieg et al. (2001) introduced the ONCE robotic drilling
system. It was used for drilling, countersinking, and inspecting

fastener holes on F/A-18E/F Super Hornet and Boeing wing trailing
edge flaps, achieving a positional accuracy of ± 1.5 mm. It is a
multi-functional end-effector (MFEE) tool equipped with a re-
synchronization camera to align the robot’s tool spindle with
the workpiece and other process tools, achieving the required
positional accuracy.

Bi and Liang (2011) utilized a fixed drilling procedure for
a titanium workpiece. A holding fixture frame was used to
drill the lower panel of a fuel tank model, employing ABB
RobotStudio software with an IRB6640-235/2.55 achieving accuracy
up to 0.2 mm.

Zhu et al. (2013) utilized offline programming to generate a path
for the robot to drill holes on a wing structure, mitigating alignment
errors by employing four reference hole measurements that are bi-
linearly interpolated to extract the surface model of the workpiece
and align the KUKA KR360 robot’s tool accurately. At a distance of
0.5 m between reference holes, the positional errors were ± 0.5 mm.

2.5.2 Robotics not relying on calibrated
coordinates

The systems introduced in this section focus on utilizing robotic
systems integrated with sensors that control the translation or
rotational position of the robot to achieve accurate drilling rather
than depending on accurate, calibrated positions.

Fernando et al. (2010) used a vision module to measure and
correct the hole’s linear position on a fuselage surface. Furthermore,
the perpendicularity is corrected by a perpendicularity module
design. The module uses a patella with a spherical joint, which
creates a contact between its surface and the object, and the
deviations are then measured using four linear sensors.

Gong et al. (2012) used vision positioning to locate the holes
to be drilled using three laser range sensors equally equidistant on
a circle around a drill point. The approach focuses on measuring
a small surface on the skin to align the drill. From two tangent
vectors to the surface of the skin, a normal vector is calculated using
their cross-product.The system is tested onmultiple curved surfaces
in simulation and on a mid-fuselage covering skin, achieving an
alignment accuracy of 0.02°.

Yuan et al. (2014) designed a drilling end effector equipped
with four laser-ranging sensors strategically placed around the
drill to measure the surface normal. By obtaining coordinates
from these sensors, the method calculates the surface normal
at the drilling point. Additionally, the end effector incorporates
an adjusting mechanism to ensure the drill attitude meets the
assembly requirements. The approach achieves ±0.5° accuracy in
surface normalmeasurement, demonstrating the effectiveness of the
adjusting mechanism in achieving the desired drilling outcomes.

In general, the offline simulation approaches reviewed above
achieved high accuracy and eliminated alignment errors; previous
approaches incorporated jigs and devices such as shuttle tables
to accurately place process tools to be picked up by the robot,
such as cameras and hole probes. As the approach requires the
accurate location of the components, this design confines the
system’s flexibility rather than allowing freedom in the placement
and usage of the tools and limits the system’s adaptability if there are
any changes in the drilling and inspection processes. Moreover, the
alignment accuracy of the system degrades with time (Kiran, 2017).
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Most importantly, such systems cannot be used in a workspace
shared with humans due to the necessary safety measures.

On the other hand, when the robot is required to adjust to the
tool’s location, detection and alignment are ensured by visual and
laser sensors. However, the accuracy of the alignment approaches,
such as laser sensors and visual sensors, is dependent on the
correct clamp of the clamping module and the accuracy of the drill
detection.

In recent years, approaches have aimed at moving away from
fixtures and clamps to overcome vertical alignments by using
metrological devices such as laser sensors and cameras to reorient
the tool with respect to the workpiece. Furthermore, the bulk
of the papers introduced vast approaches that considered many
possible laser configurations. On the other hand, in-depth camera
approaches for detection were not discussed, only mentioned. The
accuracy of the hole positioning also contributes to the quality of the
hole.The use of cameras to realign the tool is not evidently explored.
This can be justified by the non-trivial task of having to analyze a
mostly flat and textureless surface from a 2D image but to analyze
hole alignments; this could be possible as the holes themselves can
act as reference points. Therefore, this paper explores the use of
visual servoing as an approach to detecting drill hole tilts on an
aerospace workpiece.

2.6 Machine learning for image processing

2.6.1 Machine learning
Robotic systems can acquire experience from their interactions

with their surroundings, which allows them to perform their
function in a more efficient manner when exposed to the same
experience (Trovato et al., 2016). The cognition should be sufficient
for the system to actively execute its tasks in an unstructured
environment. To improve the system, a possible approach is to
incorporate machine learning (ML) to address challenging tasks.

ML is a new approach used to complete a desired task
without being programmed to the literal case (i.e., hard coding)
(El Naqa et al., 2015). Through a repeated learning experience with
the desired results attached (training), the system is created as a
“soft code” in such a way that it automatically alters its actions to
fit the needs required. This is implemented as an algorithm that
optimizes a parametric model in such a way that it produces the
desired outputs based on input examples. During the training, the
ML system is able to optimize the internal parameters to produce
the desired outcome for the input; this is then checked during the
testing phase and, eventually, monitoring real-world operation. The
ML systemmust be able to generalize themodel built on the training
data in such a way that it learns and “understands” (models) the
connection between the training data and the desired outcome with
enough flexibility to successfully replicate this operation on unseen
data (testing data and real-world operations).

2.6.2 Locating objects in the image
To accurately localize the position of a robot in uncalibrated

environments, visual odometry (VO) has been proposed. It allows
us to solve this problem without any prior processing of the robot’s
motion (Kostavelis et al., 2016). VO estimates the relative motion
between the robot and some reference elements in the image. VO

has been utilized in robotic applications such as path planning,
localization and mapping, and collision avoidance.

Image matching is a visual task that can be used to calculate VO
(Zhang et al., 1995). Various methods have been proposed, which
mainly fall into two categories:

• Template matching: correlation of image patches from a
template with the target images.
• Feature matching: extraction of features from the template

(such as edge segments, contours, corners, or other salient
elements) and matching them with the target images.

A template may appear with some variance due to added noise,
different viewpoints, and changes in illumination (Brunelli, 2009).
Template matching is quite straightforward, but it is sensitive to
scale and rotation that occur under different viewpoints. If this
is likely to happen, feature matching increases the robustness of
detections (Bay et al., 2006). Feature vectors are built by appending
the information from the considered features; they are obtained
from one (or several) template images as an internal representation
of the object to be found. The feature vector needs to be distinctive
and resistant to noise, geometric, and photometric deformations. It
can then be matched against the same set of features on new images
to find whether the object is present (and where it is located in that
case). The matching between feature vectors from the template and
any new image is based on some distance metric (like the Euclidean
or Mahalanobis distance) between the template vectors.

Several papers have already proposed interesting point detectors
(Harris and Stephens, 1988; Matas et al., 2004; Tuytelaars et al.,
2013; Ke and Sukthankar, 2004; Mikolajczyk and Schmid,
2002; Lindeberg, 1996). Scale-invariant feature transform (SIFT)
calculates the spatial and frequency of well-localized features in the
image, which are invariant to image scaling and rotation (Lowe,
2004). SIFT computes a histogram of local gradients around the
points of interest and stores it as a 128-dimensional vector in bins.
Its uniqueness and speedmake it one of themost appealing practical
descriptors. The SIFT descriptor mixes localized features with
distributed gradient-related features to create distinctive criteria
while avoiding false detections. However, the high dimensionality
of the descriptor is a major drawback (Tuytelaars et al., 2013).
Further related proposals aiming to speed up the process have been
devised, although at the cost of decreasing accuracy (Fergus et al.,
2003). Speeded-Up Robust Features (SURF) is another promising
feature detector that is based on the Hessian matrix but with
a basic approximation similar to the difference of Gaussians
(Lakemond et al., 2009). This detector relies on image integrals
to reduce processing time. The SURF descriptor is similar to that
of SIFT in that it computes reproducible orientation information
about a circular region around the interest point. The region is
then mapped with an aligned square region to extract the SURF
descriptors. A variant introduced with SURF, Upright SURF (U-
SURF), is a scale and orientation invariant detector that can compute
detections at faster rates, provided that the applications it is used in
do not exhibit major orientation changes.

After extracting the features, the next step is matching them
with image points on a new image to find a match. A number
of matching algorithms can be used. In matching algorithms, the
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underlying computational expense is searching for possible matches
of high-dimensional vectors.

A brute-force matcher computes and compares the Euclidean
distance of all of the descriptors in the new image to the descriptors
of the template image, which is obviously time-consuming.

A common approach is nearest-neighbor matching (Muja and
Lowe, 2014). In a metric space M with a multitude of points
S = {s1, s2,…, sn}, the aim is to locate the element closest neighbor
to the query point q, where q ∈M and NN(q,S) ∈ S according to a
distance function dminimizing d(q, s).The basis of nearest neighbor
approaches is to pre-compute the existing dataset P so that the
matching operation NN(q,P) is carried out adeptly. By finding the
closest K points from the point of query, k-nearest neighbor (kNN)
is used (Muja and Lowe, 2014). kNN is an improvement of the
brute-force matcher, and it is not restricted to matching using the
Euclidean distance and allows for the user to decide the number of
best matches for each key point (Garcia et al., 2010).

3 Materials and methods

3.1 Slat actuator mounting slot inspection

The aim of this paper is the inspection of the mounting holes
of a wing slat actuator support to detect misalignments that could
prevent mounting. The frontal and side views of this support are
shown in Figure 2 and Figure 5, respectively, where the mounting
holes are labeled with arbitrary reference numbers, where “b”
represents the back hole (e.g., 2 and 2b and 3 and 3b). Each pair
of front and back holes forms an axis that corresponds to the
rod inserted during assembly. The unique shape of the structure
presents a significant challenge for automation due to the location
of mounting holes being obscured inside the arching structure of
the wing spar and the unstructured setup in which the spar itself
will be located. Inside the support slot, six mounting holes on each
side forming an axis require an inspection to ensure that the holes
are correctly oriented before the assembly of the slat actuators can
be completed.

The robotic system is required to autonomously inspect the
mounting holes regardless of their position, i.e., in an uncalibrated
setup; the only restriction is that the mounting slot must be within
the field of view of the approach camera. The robot can then be
mounted on a cart, and a personwould need to place it in the vicinity
of the support. The selection of a collaborative robot enables the
operator to safely work next to the robot without security cages.

To check if all the rods will fit into the slot using our approach,
holes 5a and 5b are used as a datum reference axis; the robot centers
and orients the optical axis of the camera until it is aligned with the
front hole and the tilt angle between the front and back holes is less
than the threshold (0.2°). Then, the tilt in the datum reference (if
present) is compared with the rest of the hole axis, indicating the
amount of tilt of each pair of mounting holes, and the tilt angle
is calculated using the approach proposed by Morsi et al. (2023)
(mentioned in Section 3.3.1). The cart can be easily moved along a
hangar to inspect several wing spars lying, aroundwith no particular
positioning requirement other than room enough for the cart to
move along them. Instead of a person pulling the cart from support
to support, a simplistic, uncalibrated drag system moving the robot

along the wing spar could be easily deployed; note that this fully
avoids the need for a precise motion control rail.

The objectives of this paper are as follows:

• To devise a flexible motion approach to allow the accurate
positioning of the tool with respect to the support.
• To integrate the machine learning approach with the motion

approach to allow accurate rotation adjustment.
• To integrate the hole tilt analysis approach into this new system.

The use of a vision system coupled with a complicated
shape favors approaches such as machine learning, as indicated
in Section 2.6 The proposed system comprises a custom-designed,
lightweight robotic arm end-effector tool holding two cameras,
three light sources (controlled by a microcontroller), and a
collaborative robot controlled using Python code, with an
overall control approach loosely based on a finite-state machine
(FSM) approach.

To safely test the designed tool before using it on a real robot, a
rough design of the slat support wasmodeled in SolidWorks to study
the possible robot trajectories. The conceptual robotic inspection
system is designed by RoboDK Inc. (2023), where simulation tests
are performed to ensure that a reliable inspection system is designed
before transferring actual commands to the robot. Figure 3 shows
the inspection tool in RoboDK and real life, showing both its
conceptual overview and its real-world implementation, along with
a side view for additional detail. The three light sources and two
cameras are related to each other as follows:

• Approach light: AnLED ring around the approach camera, used
for locating and approaching the slat support and orienting
the tool with respect to it. This camera is just a basic HP
webcam, mounted looking “forward,” i.e., its optical axis is
roughly normal to the flange frontal surface of the robot.
• Front light: It comprises four LEDs and is mounted around the

hole inspection camera, an industrial (DFK 42BUC03) camera
(The Imaging Source, 2023). The intensity of the LEDs can
be controlled via Pulse-width modulation (PWM) using the
microcontroller. It is used for the detection and inspection of
front holes (holes 1–6, on the right-hand side of the mounting
slot).
• Back light (diffuse): It is intended to provide backlight for the

detection and inspection of back holes (holes 1b–6b on the left-
hand side of the mounting slot) using the frontal inspection
camera.

Figure 4 shows the illumination system connected to a
microcontroller, which is commanded via USB with the main
computer via custom commands from the Python script to switch
on/off the individual lights or change their illumination levels
(PWM percentage).

The approach to analyzing a hole tilt using front and back circle
coordinates was developed and tested in previous work (Morsi et al.,
2023) (also presented in Analysis stage), including a custom circle
detectionoptimization algorithm to achieve sub-pixel accuracy for the
estimation of the center and radius of the circle; it was applied for the
measurement of the tilt of drills in a test block. To transfer this analysis
to the current problem, the designed tool needs to accommodate light
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FIGURE 3
Simulated setup versus real setup.

FIGURE 4
Microcontroller-based light system.

sources to allow the detection of the front and back of the mounting
hole pairs (i.e., 1–1b, 2–2b,...). Therefore, a U-shaped tool design was
created specifically to allow for the subsequent capture of the front and

back holes of the slat support from the inspection camera using the
front light and back light, respectively.

The motion control of the robot for centering objects in
the image, or fixing the orientations, is implemented using a
Proportional–integral–derivative (PID) approach working on visual
feedback from the relevant camera.This allows the part to be stationed
inanyreachableplace,avoidingtheneedforcalibrated,fixedpositions.

To initiate the inspection process, the defined parameters of the
system are as follows:

• The template used in the system to approach the spar (a frontal
view of the support to be found, i.e., Figure 5).
• Approximate the minimum and maximum radii for each hole

(in pixels).
• Rough offset to prevent the front camera and back light from

colliding with the spar (approximately 50 mm).

In our approach, we use ML techniques to solve the two steps
needed in the image processing to locate the workpiece to be
inspected (mounting slots for slat actuators along a wing spar):
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FIGURE 5
Shape to be detected (mounting slot for the slat actuator).

• Locating the workpiece to be inspected in the image.
• Estimating the orientation of the camera with respect to the

mounting slots.

A regular webcammounted on the robot flange (with the camera
axis roughly normal to the frontal surface of the flange) is used for
this. This is called the approach camera as it is used to control the
motion of the robot to approach the work piece before inserting
the inspection tool into the wing spar structure. Figure 5 shows an
example of the support slot to be found. The robot must center
the approach camera (and consequently, the inspection tool) with
respect to it and orient itself to be perpendicular to it.

3.1.1 Positioning the robot tool with respect to
the slot

For this particular application, Figure 5 was used as the template
to be detected, representing a typical view of the target support
slot. Both SIFT and U-SURF extractors were tested in combination
with both brute-force and kNN matchers to identify the more
effective system. The tests show U-SURF to be the best feature
extractor (exploiting the fact that the target will not suffer relevant
rotations), while kNN is the fastest matcher. Overall, the U-SURF
extractor paired with the brute-force matcher demonstrated the
highest detection accuracy.

This detector is used to calculate the pixel coordinates of the
target in the image, which is then used to control the motion of the
robot (using an empirically tuned PID approach) until the target
is located at the center of the image and an adequate distance
(determined by a correct apparent size in the image in pixels). After
this centering approach, the orientation of the camera with respect

to the target is now determined (and controlled) using a separateML
approach, which is described next.

3.1.2 Estimating the orientation of the camera
with respect to the target

The robot needs to detect the slat actuator mounting slots and
orient itself to be normal to the slot surface before inserting the
inspection tool. ML is also used for this task, in this case, by
training a dedicated algorithm estimating the relative orientation
of the approach camera with respect to the target (mounting slot).
Once this system is trained, the ML algorithm will operate in the
following way:

1. Capture an image with the approach camera.
2. Extract the features of the image and input them into the pre-

trained ML system.
3. A classification output is presented, representing the relative

orientation.
4. According to the output orientation class, the robot rotates the

tool by a small amount, correcting the orientation and trying
to make it “centered” (normal to the target).

These steps are repeated until the ML algorithm indicates
a “centered” orientation in several successive images. Then, the
inspection tool can be safely inserted into the spar structure. This
inspection tool holds a second camera (the “inspection” camera) that
takes control to inspect themounting holes present on the target slot.

In general lines, an ML system is designed through a
series of steps:

• Unless a suitable training dataset already exists (which is
unlikely in new applications), a large number of training
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examples must be generated and manually associated with the
desired outputs for each example.
• Training examples can be augmented to increase their number

and/or to emulate possible variations occurring in real-world
operations.
• Related literature is reviewed to identify the possible

algorithmic approaches to be considered.
• Possible features that are more likely to let the ML algorithm

determine how to produce the correct outputs from the inputs
are reviewed (or designed), i.e., features that contain relevant
information about the problem.
• The selected features are extracted from the training dataset.
• The system is trained and tested to tune its parameters so that it

provides the expected output.

Following a literature survey of possible detection algorithms
(Vailaya et al., 2002; Luo and Boutell, 2004; Luo and Boutell,
2005; Shima et al., 2017), random forest, Bayesian, and support
vector machine (SVM) approaches were initially selected for
their computation time and feasibility and the ability to work
with relatively few training examples. The machine learning
algorithms were tested on features extracted from images, such
as Figure 5. The extracted features selected include Sobel masks,
Histogram of Oriented Gradients (HoG), and Harris corners
(Harris and Stephens, 1988; Chaple et al., 2015; Akshaya Devi and
Arulanand, 2023).

A training dataset has been created, with approximately
2,000 images exhibiting different orientations of the workpiece.
Determining the orientation has been set up as a classification
problem, where the considered orientations are shown in Figure 6.
The robotic system should only insert the inspection tool into the
wing spar structure once the orientation of theworkpiece is correctly
aligned, i.e., “centered,” as shown in Figure 6E, with the approach
camera optical axis approximately normal to the workpiece.

To select a suitable machine learning system capable of
estimating the camera orientation with respect to the slot surface,
training using k-fold cross-validation is performed on SVM,
random forest, and Bayesian algorithms. K-fold cross-validation
is a technique that helps avoid overfitting (Peco Chacón et al.,
2023). These algorithms are supplied with the same feature vectors,
containing Harris corners, Sobel masks, and HoG values. The tests
showed that the SVMalgorithmoutperformed the other approaches,
achieving 94% accuracy. Finally, the previous detector approach and
this trained SVM are integrated into the system’s control approach.

3.2 Control approach

RoboDK is used to run a Python script containing the control
program, connected to the main robot’s controller via a standard
Ethernet connection used to send motion commands. The control
approach follows the design proposed by Morsi et al. (2023), loosely
based on FSM. This design approach allows conceptual states to be
programmed and easily modified, removed, or added to adapt to
other similar inspection applications. Figure 7 shows the top-level
flow diagram, where the orange blocks represent robotic motion
steps while the yellow blocks represent image-processing steps
(blocks with a combination of green and yellow represent a mix of

image-processing steps and robotic motion steps). The execution is
initialized at any start position close enough to the element to be
inspected to make it appear in the approach camera image. Then,
the system initiates an approach control to center the element to be
inspected in the image.

3.2.1 Approach stage
To commence the inspection process, the robot is initialized

with the tool roughly parallel to the ground (no need for
calibrated orientation).The system initiates the process by capturing
an image with the approach webcam, followed by the use of
the U-SURF matching subsystem (discussed in Section 3.1.1) to
detect the template of the element to be inspected (slat actuator
support). When the detection is successful, the system calculates
the translation error between the template center in the captured
image and the camera optical center (the center of the image). This
error is then used in a proportional controller that calculates the
robot’s motion appropriately to center the tool on the target element.
Furthermore, the system calculates how close the tool is to the target
by calculating the detected template bounding box area (inversely
proportional to the distance between the camera and target) and
comparing it to a pre-defined area to keep the tool at a safe distance
from the target before attempting the insertion.

Once the target is centered in the approach camera and at
the correct distance, the pre-trained ML orientation subsystem
(discussed in Section 3.1.2) is used to correct the orientation until
the approach camera is perpendicular to the target. As this re-
orientation can take the target away from the center of the image,
the centering and orientation steps are alternated. This process ends
up with the approach camera (and therefore, the inspection tool)
centered on the target, at the desired distance, and normal to it.

Then, a pre-defined translation motion is made to insert the
inspection camera (and backlight) into the spar; the C-shape of the
tool leaves the inspection camera and frontal light on the right side of
the support and the backlight on the left side, as shown in Figure 3.
The control approach used to center the template in the approach
camera image and correct the orientation is shown in Figure 8.

3.3 Entry stage

To ensure the safe insertion of the tool into the spar, the system
makes a translation position in the flange Z coordinate axis (roughly
along the approach camera optical axis) to enter the shape while
attempting to detect the closest hole (number 5, which will be used
as the reference, or datum, hole). The approach light is switched off,
and the front inspection light is turned on to facilitate detection
by the industrial camera. This aims to initialize the inspection
process with the procedure starting within the vicinity of mounting
hole 5 (Figure 2), which is the first hole expected to be detected
by the industrial camera during the entry motion. The decision
to select drill 5 as the datum is influenced by the relatively large
diameter of the hole, which contributes to a lower misalignment
error than in smaller holes, and its convenient location next to the
entry point. Furthermore, this hole is positioned midway between
other mounting holes, allowing a shorter trajectory to reach them to
reduce accumulated error during motions. For each hole (including
datum hole 5), very rough minimum and maximum radius values
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FIGURE 6
Example workpiece orientations for each considered class. (A): Heavy left, (B): Heavy right, (C): Slight left, (D): Slight right, (E): Centred.

(in pixels) are used for faster detection while decreasing the chances
of wrong detection.

The system keeps entering the wing spar until the hole is
detected by the inspection camera for the first time; then, the
insertion motion is terminated, and the hole-centering algorithm
dictates the robot motion in the camera x and y directions to
center the hole within the image so that the inspection camera

optical axis is centered on the front hole center. This is controlled
as before: the difference between the hole center and the camera
center is the error input to a PID controller, with the output
being the relative translation motion values of the robot. The
PID controller ensures a smooth trajectory during centering and
avoids overshooting (which could cause small collisions in those
holes close to the spar surfaces). The hole centering is mostly a
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FIGURE 7
Proposed control framework.

FIGURE 8
Approach algorithm.

replica of the one used for the approach. Figure 9 shows the datum
algorithm approach.

3.3.1 Analysis stage
After any front hole has been centered in the inspection camera

image, the analysis module is used to compute the hole tilt with
respect to the camera’s optical axis.The process commences with the
back light on, allowing the camera to capture an image where the
back hole is highlighted (such as that shown in Figure 10A), from
which the center and radius values (x,y, r) of the back hole circle
are extracted in pixels. Then, the back light is turned off, and the
front light is switched on, producing a correct image of the front of
the hole (such as that shown in Figure 10B). The search for the front
hole is now restricted to an area surrounding the back hole to allow
for faster and more robust detection of the front hole, obtaining its

FIGURE 9
Datum reference detection and analysis.

corresponding center and radius. After the detection of the front
and back holes, a custom-optimized circle search algorithm is used
to estimate the circle center and radius with a pixel error of 0.4
(Morsi et al., 2023). Using the front- and back-circle coordinates (x,
y, and r), the tilt angle α is calculated using Eq. 1 derived from the
pinhole model (discussed by Morsi et al. (2023)):

α = tan−1(
(yc − yt)
f ⋅K

rt
(rt − rc)
), (1)

where

• rt : front-circle radius (pixels).
• rc: back-circle radius (pixels).
• yt : front-circle coordinate (pixels).
• yc: back-circle coordinate (pixels).
• f: focal length (mm).
• K: image sensor physical resolution (pixels/mm).

Thedatumhole is used as the tilt reference for all of themounting
holes. If the measured datum hole tilt is greater than 0.2° in either
the x or y direction, the system proceeds to reorient the camera to
align the optical axis with the datum hole axis until the observed
tilt is less than 0.2° (as shown in Figure 11). As this may mis-
center the frontal hole in the image, a centering step is also taken.
This reorientation/recentering process is executed iteratively until
the camera axis is aligned with the datum-hole axis. The selected
threshold of 0.2° is enough to satisfy the requirements; the visual
analysis can potentially do better than that (theoretically, down
to 0.03° as discussed in Results), but the time it takes to make
tiny corrections greatly increases, and eventually, the robotic arm
precision limits get into play and are not able to reliably follow the
relative motion control commands.

With the reference hole centered and aligned with the optical
axis, the current robot pose is now memorized as the datum. If
needed, 3D reconstruction can now be used to position the front
and back holes with respect to the robot base, although this is not
the target of this application.
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FIGURE 10
(A) Image used for back-hole detection (back light on). (B) Image used
for front-hole detection (front light on).

Once the datum pose is set up, the system initiates the search
and analysis of the remaining mounting holes. The image plane
is now roughly normal to the surface containing the remaining
holes, so the approach executes a rough translation (in the camera
frame) to the vicinity of the next hole to be inspected. The precision
needed to indicate the relative position of the next hole is within
a few cm as it is enough that the next hole appears inside the
inspection camera image; then, the controlled centering approach
takes control to precisely center the frontal hole in the image. The
rough relative position of the remainingmounting holeswith respect
to the reference hole is determined by just using a simple ruler, and
the results are given in Table 3. It is the same for all mounting slots
to be inspected as any variations in the actual location of the holes
in each specific slot will be below a millimeter. Strictly speaking,
the rough relative position of the remaining holes would not be
necessary as the robot could follow an exploration approach to locate
the remaining holes, but it would greatly increase the inspection
time, and a motion limit envelope would be necessary to avoid the
inspection camera colliding with the inside of the spar.

Once the next hole is centered in the inspection camera image,
the tilt analysis is run, and the tilt results are recorded. At this point,

3D reconstruction could be used to determine the position of the
front and back holes with respect to the robot base, if desired.

Then, the robot returns to the recorded datum pose and repeats
the reorientation process to cancel any misalignment due to the
limitedmotion precision of the robot. It then travels to the vicinity of
the next hole and starts the centering and tilt analysis. This iterative
approach is repeated until the tilt of all mounting holes is measured.

4 Results and discussion

The system is able to autonomously detect and analyze all the
drilled holes on the support slot in real experiments, regardless of
the relative location of the spar itself (note in Figure 3 that the spar
is just resting on a pallet, obviously uncalibrated) as long as the slot is
within the viewof the approach camera (which covers approximately
2 m wide and 1.5 m tall at the work distances).

Table 1 presents a comparison between the measured tilt (in
degrees) of the robot for each pair of left-right mounting holes in
the support slot (determined with respect to the datum hole 5) and
a meteorological measurement of the same tilt. This measurement
is carried out manually using a clock gauge, which measures the
tilt of a steel bar resting at the lower part of both holes in a pair.
This is an indirect measurement performed by setting the height
on one extreme of the bar with respect to a flat steel table as 0
and then measuring the height difference (in mm) with the other
extreme of the bar with respect to the table surface. The tilt angle is
then calculated as the arc-tangent of the height difference over the
bar length. This procedure is accurate down to 0.08°. As the robot
tilt measurements are relative to datum hole 5, the hand-measured
tilt of hole 5 is subtracted from the tilt of other holes to provide
equivalent values. This manual measurement checks for just the
vertical tilt, matching the Y tilt in the camera frame, and verifies the
accuracy of only one direction. Similar hand-made measurements
of the tilt in the horizontal direction could not be obtained with the
equipment available. The manual measurement results indicate that
all mounting holes exhibit tilts well below the usual requirement of
0.5° in the aerospace industry (at least in the measured y-axis). The
observed differences between the robot-measured tilts and manual-
measured ones are within ± 0.08°.

A comparison is also made between the tilt in the y-axis for the
datumhole (number 5) beforemoving to inspect a newhole and after
returning to the memorized datum after inspecting that hole. The
results are presented in Table 2, averaged over three measurement
runs. This reveals that the robot’s motion is not precise enough to
keep an exact tilt reference, justifying the need for re-alignment after
each new inspection to minimize this motion-related error.

Morsi et al. (2023) reported that the tilt error when inspecting
drill holes with a front and back circle distance of 10 mm was 0.04°
(mostly resulting from the sub-pixel error when determining the
center and radii of the hole circles); in this application, with an
increased distance of 155 mm between the front and back holes of
each pair, the inspection accuracy gets as low as 0.03°. This is the
only tilt calculation error contributed by the approach; therefore, the
remaining error up to the observed 0.08° can be the motion-related
error, attributed to the robot motion limitations failing to keep a
perfectly constant orientation in the motion from the reference hole
to each of the remaining holes.
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FIGURE 11
Example of drill-hole tilt analysis combining the front- and back-hole detection.

TABLE 1 Comparison of robot-measured and actual vertical-axis tilt values for each hole, in degrees.

Drill number Robot-measured y-axis tilt Actual y-axis drill tilt Measurement error

Drill 1 0.04 −0.039 0.079

Drill 2 −0.02 −0.103 0.083

Drill 3 0.1 −0.094 0.194

Drill 4 −0.01 −0.048 0.038

Drill 6 0.09 −0.026 0.12

TABLE 2 Comparison of hole 5 (datum) tilt before and after inspecting each new hole, in degrees.

Drill number Before new hole inspection After returning from inspection Tilt change

Drill 1 −0.16 −0.2 0.04

Drill 2 −0.22 −0.24 0.02

Drill 3 −0.15 −0.2 0.05

Drill 4 −0.2 −0.17 −0.03

Drill 6 −0.19 −0.24 0.05

Table 3 summarizes the rough linear distances along the camera
x and y-axes (corresponding to flange z and x-axes) used to reach
each of the holes from the datum hole (the precise adjustments
to center each hole in the image are then carried out using
visual feedback control on the detected holes, as discussed). The
longest distances correspond to holes 3 and 6 (100 and 120 mm,
respectively), which also happen to be the holes causing the
biggest misalignment in the datum tilt when returning from
their inspection. That reinforces the idea of using as the datum

a hole that minimizes the maximum distance to travel to the
remaining holes.

5 Conclusion

In this paper, we present an initial proposal for a robotic
system using visual feedback to measure the tilts of a group of
related mounting holes relative to one of them selected as the
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TABLE 3 Rough translation of the robot in the camera x and y-axes to reach other holes from the datum hole, in mm.

Drill number Robot motion in the z-axis (mm) Robot motion in the x-axis (mm) Total distance moved (mm)

Drill 1 −70 −20 72.8

Drill 2 −50 −20 53.8

Drill 3 50 90 102.9

Drill 4 50 0 50

Drill 6 −120 0 120

datum. The system is based on the hole tilt inspection approach
discussed by Morsi et al. (2023) and extended to an intricate
structure like the mounting slot for a wing slat actuator. Other
than designing a custom tool to hold the different lights and the
approach and inspection cameras in a way that allows for their
insertion within the wing spar structure, the approach required
minimal modifications. The control strategies were developed
in a simulated environment on RoboDK and run as Python
scripts (which then interact with the robot controller), providing
full flexibility.

Machine learning has been used to calculate the relative position
and orientation of the target to be inspected (the support slot) to
control the robot approach stage and could be extended to different
targets for other inspection tasks.

All robotic motion is driven by visual feedback control,
eliminating the reliance on calibrated positions. Therefore, the
proposed system can be just mounted onto a cart and easily
wheeled by a person to deploy it near the support to be
inspected (it just needs to appear within the field of view of the
approach camera, covering approximately 1 m at the operation
distance); the use of a collaborative robot plus low operation
speeds avoids the need for a protection cage. Ground-truth
measurements demonstrate a system accuracy of 0.08° on this
task. Robot motion limits are the main reason for preventing even
better accuracy.

Further optimization to speed up the precise alignment motion
required for inspecting the holes, i.e., centering the holes in the
image and, especially, adjusting the datum tilt, would be beneficial.
The current control PID approach converges slowly as it is adjusted
to avoid overshooting (which might cause low-velocity collisions
of the inspection camera with the inside of the spar). This can
be accomplished by incorporating a better motion control model.
Another aspect to improve is the machine learning techniques used
for locating the inspection target during the approach stage; an
adapted simultaneous localization and mapping (SLAM) approach
(Temeltas and Kayak, 2008) deals with position and orientation in a
more cohesive way.
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