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Care and nursing training (CNT) refers to developing the ability to effectively
respond to patient needs by investigating their requests and improving trainees’
care skills in a caring environment. Although conventional CNT programs have
been conducted based on videos, books, and role-playing, the best approach
is to practice on a real human. However, it is challenging to recruit patients
for continuous training, and the patients may experience fatigue or boredom
with iterative testing. As an alternative approach, a patient robot that reproduces
various human diseases and provides feedback to trainees has been introduced.
This study presents a patient robot that can express feelings of pain, similarly to a
real human, in joint care education. The two primary objectives of the proposed
patient robot-based care training system are (a) to infer the pain felt by the
patient robot and intuitively provide the trainee with the patient’s pain state, and
(b) to provide facial expression-based visual feedback of the patient robot for
care training.

KEYWORDS

human-robot interaction, care and nursing education, pain expression, robotic facial
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1 Introduction

Patient robots for care and nursing training (PRCNT) can be used for training
and improving care abilities in interactions with patients, older adults, or care
receivers, such as treatment, nursing, bathing, transferring, and rehabilitation. In
terms of various care and nursing environments, an outstanding caregiver must have
not only competent skills to provide adequate care and support but also ancillary
qualifications such as reliability, stability, optimism, and communicationwith care recipients
as follows:

• Reliability: Skilled caregivers must increase the reliability of their skills by empirically
acquiring the required skills of treatment and care.

• Stability: Stable posture and facial expression can reassure the patient and create a
comfortable environment when constantly communicating with the patient.

• Optimism:Caregiverwith an optimistic disposition can positively change the depression
or low moods and anxious psychology of a care recipient.

• Communication: Care recipients may experience pain or stress in care or nursing
environments, and caregivers must interact with them based on communication.
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To achieve these abilities and qualities, experts or students in
care and nursing need to learn and train to reach their superior
skills consistently. CNT is to develop the ability necessary to
effectively respond to the needs by investigating patients’ requests
and improving caregivers’ skills in a caring environment. In CNT,
however, the principal issue is the risk of injury to the subjects during
training due to a trainee’s ineptitude. Therefore, it is necessary to
train experts who can competently manage various situations and
meet the needs of individuals with diseases (Kitajima et al., 2014)
according to medical and healthcare systems’ advances.

Two of the critical challenges in using PRCNTs in daily
life are patient transfer and rehabilitation. For patient transfer,
caregivers commonly perform tasks in hospitals, vehicles, and
homes to move patients with mobility problems or those who need
a wheelchair (Huang et al., 2015). The complicated tasks in patient
transfer include parking a wheelchair, mutual hugging, standing
up, pivot turning, and sitting down in a wheelchair. Huang et al.
(Huang et al., 2015; Huang et al., 2017; Huang et al., 2016) proposed
the patient robot for transfer and investigated the effect of practice
on skill training through robot patients. In addition, Lin et al. (2021)
proposed a PRCNT to assist patients in sit-to-stand postures. Many
studies involving the use of patient robots in training systems for
daily life activities have yielded notable outcomes.

In the case of rehabilitation, patients with musculoskeletal
disordersmay experience limitedmuscle and jointmovement due to
various symptoms (stiffness, contraction, or weakness of muscles).
Thus, caregivers or therapists must periodically ask patients to
undergo rehabilitation. Because novices may apply unnecessary
force to the joints when performing rehabilitation or stretching
for patients, caregivers must practice sufficiently in advance to
not stress the joints or skin of a patient with musculoskeletal
disorders when providing care or treatment. Mouri et al. (2007)
developed a robot hand that evaluates the joint torque with a
disability for rehabilitation training. Fujisawa et al. (2007) proposed
an upper-limb patient simulator for practical experience training.
Their simulator can simulate elbow joint stiffness, allowing trainees
to improve their skills in stretching during physical therapy.
Although studies have indicated that patient simulator robots
are gaining increasing attention, simulators for CNT remain
insufficient. Simulated robots have been developed in many studies;
however, a human-robot interaction system in which simulated
robots can directly interact with humans is yet to be developed,
as shown in Table 1. In addition, the simulated robot for CNT
still relies on post-evaluation using statistical analysis, and a more
advanced feedback method is required for the interaction between
users and robots.

To achieve an effective CNT feedback system, it is important to
design patient robots for CNT that can express feelings of pain states
like humans through visual feedback. Robust feedback methods
that robots can use to provide feedback to learners can be based
on visual information and sound. Huang et al. (Huang et al., 2015;
Huang et al., 2017; Huang et al., 2016; Huang et al., 2014) proposed
the patient robot for transfer and investigate the effect of practice
on training skills though robot patient with voice-based feedback.
However, the visual feedback is the most effective method in
terms of practice for caregivers because they need to periodically
investigate whether the patient is feeling pain or not. In particular,
it is imperative to observe painful expressions on the patient’s face

because the patient may experience a burden in communicating
with caregivers. Pain is an immediate response that protects the
human body from tissue damage and can be observed as a subjective
measure. When humans are subjected to physical pressure from
external factors, most humans usually express pain through facial
expressions, voice, and physical responses. In 2011, Ishihara et al.
(2011). presented the realistic child robot Affetto, which aims to
improve understanding and interaction between the child and
caregiver to support the child’s development. Affetto can sense a
touch or hit by detecting changes in pressure from synthetic skin.
Based on this pressure sensation, Affetto is being developed as
a robot capable of expressing pain and emotions with a painful
nervous system. Thus, by applying the pain response system to a
robotic system, it is possible to build a robotic system that can feel
pain as a real human does when subjected to physical pressure from
external factors.

Based on the aforementioned issues andmotivation, we consider
the patient robot as a care training assistant to simulate a patient
with specific musculoskeletal symptoms as shown in Figure 1.
Furthermore, as previously stated, an advanced feedback system for
care training is a significant issue for the proposed care training
system.Therefore, this study presents a patient robot that can express
feelings of pain states like humans and examines a visual feedback
method that allows the user to respond immediately to the robot’s
pain state during care training.The objectives of themethod for pain
inference and expression of the patient robot introduced in this work
to achieve the goals are as follows:

• To provide automated quantitative assessment feedback on
care training to the caregiver
• To develop a method for pain inference for the care
training system
• To build a database to generate a robot’s avatar by recruiting
subjects of various ages
• To express the current pain state through the robot’s avatar

2 RU-PITENS database

Most care training studies use statistical or empirical techniques
to manually analyze the results. These methods are suitable for the
analysis of each parameter and are easy to use when investigating
the effects of parameters on care training. However, it is difficult
for trainees to evaluate their treatment quantitatively in a real-
time system, and there is a limitation in terms of automatically
calculating the final score after finishing care education. Therefore,
there is a need to present a method for automatically inferring the
care and nursing skills as well as the robot’s pain level, based on
data acquired from sensors mounted on the robot. In addition,
caregivers should periodically investigate whether the patient is
feeling pain and observe painful expressions on the patient’s face
during care because the patient may have difficulty communicating
with caregivers. This section describes robotic pain expression
based on the pain inference results. In this study, the novelty is
that it presents the avatar-based feedback system to express the
pain of a patient robot to improve caregivers’ skills in a training
environment.
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TABLE 1 Comparison between the related work and the present study in this work.

References Description Feedback method

Matsumoto et al. (2018) Whole-body robotic simulator of an elderly person for
evaluating robotics devices for nursing care

Not provided

Fujisawa et al. (2007) Upper limb simulator (elbow joint) of a patient for
evaluating robotics devices for nursing care

Not provided

Huang et al. (2015), Huang et al. (2017), Huang et al.
(2016), Huang et al. (2014)

Whole-body robotic simulator of a patient for transfer
training

Voice-based feedback

Wang et al. (2012), Wang et al. (2013) Upper limb simulator of a real human for neurologic
examination training

Not provided

Ishihara et al. (2011) Child robot for understating the caregiver-child
attachment relationship

Facial expression-based feedback

Present study Patient robot with robotic pain inference model for
rehabilitation training

Facial expression-based feedback

FIGURE 1
Proposed patient robot in previous studies (Lee et al., 2019; Lee et al., 2020) (A) proposed patient robot (B) care training tasks using the robot.

2.1 Participants

Forty-one Japanese subjects (26 men and 15 women)
participated in this experiment (Table 2). Pain expression facial

images from 41 subjects, including 26 men (mean age 46.6±3.4)
and 15 women (mean age 55.8±2.4), were acquired for pain image
analysis. None of the subjects had a history of neuropathy or pain
symptoms, facial muscle disorders, trauma, or medication in past.
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TABLE 2 Demographics of the participant’s gender and age in pain
intensity using the TENS device (RU-PITENS) database.

Pain intensity using the TENS device (ru-PITENS)
database

Age range

Gender Measure 20–29 40–49 50–59 60–69 Total

Male

N.S

11 5 5 5 26

Female — 5 5 5 15

Total 11 10 10 10 41

Male

M.A

23.7 45.0 53.6 64.0 46.6

(2.1) (4.6) (3.0) (3.9) (3.4)

Female
- 45.2 56.0 66.2 55.8

(2.3) (1.6) (3.3) (2.4)

Total
23.7 45.0 53.6 64.0 47.2

(2.1) (4.6) (3.0) (3.9) (2.9)

Note: N.S and M.A indicate the number of subjects and the mean age, respectively.
Numbers in parentheses are standard deviations.

Further, each subject was briefed on the study’s purpose, and all
participants have agreed to experience by signing a consent form.
Researchers observed to ensure their safety during the experiment.
In addition, consent was sought to use the database containing facial
images as an openly available database, and all participants agreed.
This study was approved by the Institutional Review Board (IRB) of
Ritsumeikan University (BKC-2019-060).

2.2 Data acquisition

Transcutaneous electrical nerve stimulation (TENS) has
been used to stimulate muscles to evaluate the pain state
(Jiang et al., 2019), (Haque et al., 2018) because the TENS is
inexpensive, non-invasive, and easy to utilize compared to other
devices (thermal or pressure stimulation). TENS devices are
frequently used for muscle therapy in daily life and can induce
acute painful situations with high levels (frequency).

To collect a painful database in this study, we used theHV-F128
electric therapy device (OMRON Co., Ltd., Japan). TwoHV-LLPAD
durable adhesive pads (OMRON Co., Ltd., Japan). The experiment
was performed until the subjects could no longer tolerate the pain
when the TENS level (from one to five) was increased or reached
the maximum level (the output had five levels and its frequency
range from 0 to 1,200 Hz). Figure 2 shows the environment of the
pain stimulation using a TENS device and the acquisition of a
pain expression image. The participants sat on a chair, attached a
TENS to their right arm, and stared at the front camera during
the experiment (Figure 2A). The arm muscles were stimulated for
approximately one to 3 seconds through the TENS device, and face
images were acquired from the camera at three to five frames per

second. Figure 2B illustrates the protocol for the experiment, and the
subjects performed the self-assessment manikin (SAM) (Lang et al.,
1997) scales for arousal (SAM-A), SAM scales for valence (SAM-V),
and subjective pain level assessment at the end of each level.

A total of 13,773 frames of images were acquired from all
subjects. Figure 3 illustrates an example of the acquired pain facial
expression images. The experiment for building this database
was conducted at the Ritsumeikan University in Japan, and it
was released as an open database: https://github.com/ais-lab/RU-
PITENS-database. Further information is provided in the following
subsections.

3 Pain intensity and expression

3.1 Network-based pain intensity

The optimal objective of this study is to create an avatar
representing pain facial expressions from sequential pain images in
the RU-PITENS database. Although the proposedmethod generates
an avatar using the face image in the RU-PITENS database, the
pain expression images in this database do not have a quantitative
value (reference) for the expression intensity from the onset to the
cessation of pain state. Therefore, it is necessary to measure the
pain intensity using a verified model. In this study, the Siamese and
Triplet networks were used to measure the intensity of pain from
pain images for the following reasons:

• Because this study aimed to develop the avatar-based
expression system based on sequential pain intensity
estimation, models that could measure the change in pain
intensity between the previous image and the current image
were required.
• It is difficult to distinguish the type of pain and to provide an
accurate pain label to new input data because pain is subjective
information that can bemeasured differently depending on the
individual.

According to the aforementioned considerations regarding the
use of the Siamese network, the pain intensity from pain images
in the RU-PITENS database was measured using the Siamese and
Triplet networks. This network (Bromley et al., 1994) provides one
output, which indicates the similarity between two inputs. In many
studies (Hayale et al., 2019; Liu et al., 2020; Sabri and Kurita, 2018),
it has been used as a system for analyzing facial expressions
because facial expressions gradually change while expressing an
emotion from the current emotion to the next emotion. The
Siamese or Triplet network has two or three sister networks (sub-
networks) with the shared weight and structure, which consists
of a layer for computing the distance of the feature vectors from
the sister networks. For loss learning, we adopted the exponential
loss (Sabri and Kurita, 2018) using Losssiamese (Equation 1) and
Losstriplet (Equation 2).

Losssiamese =min ∑
x0,x1

exp(g0 (x0) − g1 (x1)) (1)

Losstriplet =min ∑
x0,x1,x2

exp(g0 (x0) − g1 (x1)) − exp(g0 (x0) − g2 (x2)) )

(2)
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FIGURE 2
Environment of pain facial expression images in RU-PITENS database (A) environment (B) protocol.

FIGURE 3
Example of the pain images in RU-PITENS database.

where gi(xi) indicates each branch output. In the loss of the
Triplet network, g0(x0) is the anchor input, the distance from the
anchor to the positive input is minimized, and the distance from the
anchor to the negative input is maximized.

As shown in Figure 4, the sharing networks have basic
ConvNet model’s structures, and the network architecture contains
three ConvNet layers and a fully connected layer with 48 units
based on the results of the hyper-parameters that have been
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FIGURE 4
Structure of the Siamese network for pain intensity evaluation in the RU-PINTENS database (A) Siamese Network (B) Triplet Network.

FIGURE 5
Example of avatar generation using the facial images in RU-PITENS database.

empirically tuned (Lee et al., 2024). The fully connected layer that
calculates the output of the two sister networks is added to the last
layer for connecting the shared networks.

3.2 Avatar-based pain expression

Based on the pain intensity of pain images determined using the
Siamese and Triplet networks, we obtained the quantitative level for
pain images in the RU-PITENS database, and the sequential pain
expression can be expressed through the avatar. The robotic head
provides natural facial expressions that can sustain the interaction
between a robot and an individual. Berns andHirth (2006) proposed
a method for controlling robotic facial expressions using the robot
headROMAN. Kitagawa et al. (2009) proposed a human-like patient
robot to improve the ability of nursing students to inject a vein in
the patient’s arm; the robot was designed with the aim of being
operated to express various emotions such as neutral, smile, pain,

and anger. Although the robot’s expression can be communicated
in various manners, using a projector has the advantages of low
expense and comfort. One of the most significant advantages is that
the facial features (age, gender, specific person, etc.) can be easily and
conveniently transformed.The visual feedback that may be obtained
using a projector can represent various realistic facial expressions.
Maejima et al. (2012) proposed a retro-projected 3D face system
for a human-robot interface. Kuratate et al. (Kuratate et al., 2013;
Kuratate et al., 2011) developed a life-size talking head system
(Mask-bot) using a portable projector. Pierce et al. (2012) improved
the preliminary Mask-bot (Kuratate et al., 2013; Kuratate et al.,
2011) by developing a robotic head with a 3-DOF neck to study
human-robot interactions. According to the study of (Pierce et al.,
2012), The meaningful advantage of the robot’s avatar using a
projector is that it may not depend on complicated mechanical
systems such as motors. Therefore, many motors do not need to be
handled to change the facial expression, and it is easy to modify the
avatar or the robot’s head form. Hence, a projector-based robotic
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FIGURE 6
The method to animate the avatar’s facial expressions.

head that expresses the pain and emotions for care training is
proposed in this study.

To create an avatar object (.obj), a commercial avatar SDK
(Itseez3D, Inc., CA, USA) was used in this study. The patient
robot’s avatar, which can express pain, was converted from the
original image (.jpg) to an avatar object (.obj) through the avatar
SDK added to the Unity program (Unity Technologies, Inc., CA,
United States). Figure 5 illustrates the robot’s avatar from the
participant’s facial image from theRU-PITENSdatabase.The avatars
generated according to the frames of all the original images were
classified into five pain groups (PGs): PG1, no pain at all; PG2, weak;
PG3, moderate; PG4, strong; and PG5, very strong. In other words,
five types of pain avatars can be expressed based on the pain level of
the robot that feels pain during CNT.

To generate the animation, Unity’s animator was adopted
to animate the avatar’s painful facial expressions. Each group
maintained an interval of approximately 0.5 s, and animation
according to the facial expressions of the avatars was completed, as
shown in Figure 6A. Figure 6B depicts the expression transition of
the avatar as it changes from neutral to a specific expression (painful
expression in this study) and then returns to the neutral state.

4 Results and discussions

4.1 Results of the questionnaire in
RU-PITENS database

As shown in Figure 7, to examine the result of pain intensity in
our RU-PITENS database, subjects responded to the questionnaire
instantly after the stimulation tests for each level.The survey consists
of a visual analog scale (VAS) and a subjective pain score (SPS).
The VAS is easy to use and is frequently used to assess variations
in the intensity of pain. In this experiment, the SPS survey was

designed as a subjective indicator of pain. In terms of value, SPS
can be classified as follows: no pain at all = 0, very faint pain
(just noticeable) = 1, weak pain = 2, moderate pain = 3, strong
pain = 4, and very strong pain = 5. As shown in Figure 5A, the
SPS continuously increased according to the stimuli levels, and
there were statistically significant differences among stimuli levels
(F = 164, p < 0.01, ANOVA test). For the pleasure score, the score
decreased with respect to the stimuli level, indicating that the pain
stimulus had a negative effect on the subject’s emotions. There
was a difference of approximately 2.0 between the maximum level
(Lv.5) and the minimum level (Lv.1) in SPS (Q = 9.89, p < 0.01,
Tukey’s post hoc test). An increase in the arousal score with the
stimuli level suggested a negative effect of the stimulus and showed
a difference of approximately 3.81 between the minimum (Lv.1) and
maximum (Lv.5) stimulation levels (Q = 14.42, p < 0.01, Tukey’s post
hoc test). Additionally, according to the evaluation of all parameters
for gender, there was no statistically significant difference between
the men and women groups. However, when the survey statistics
were analyzed by age group (20 s, 40 s, 50 s, and 60 s), there were
differences in each survey result. In the case of SPS and arousal
scores, there was a statistically significant difference in all age groups
from Lv. to Lv.5 (ANOVA test), and there was a significant difference
between Lv.2 and Lv.5 (ANOVA test) in the pleasure score. Based on
these results, the pain images in Lv.5 (maximum stimulation level)
were utilized to generate the robot’s facial avatar.

4.2 Results of siamese and triplet
network-based pain intensity

To train the Siamese andTriplet networks, theUNBC-McMaster
database was used to train a model to measure pain intensity
from facial images in the RU-PITENS database, which was used to
generate pain expression avatars. The UNBC-McMaster shoulder
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FIGURE 7
Result of the survey in RU-PITENS database (A) All subjects (B) Survey results according to gender group (C) Survey results according to age groups
(20 s, 40, 50 s, and 60 s). The test methods were used the analysis of variance (ANOVA) and Tukey’s method (post hocanalysis). The significant level was
set at α= 0.05. An asterisk (∗ ) indicates statistical significance at p < 0.05, and double asterisk (∗∗ ) indicate statistical significance at p < 0.01. SPS and Lv
indicate the subjective pain score and the stimuli level.

TABLE 3 Definition of pain states based on PSPI for classifying classes in
UNBC-McMaster shoulder pain database (Lucey et al., 2011).

Prkachin and
solomon pain
intensity (PSPI)

Pain state Number of images

0 None 40,149

1 Trace 3,037

2 and 3 Weak 3,482

from 4 to 15 Strong 1,730

Note: PSPI indicates Prkachin and Solomon Pain Intensity score.

pain database (Lucey et al., 2011) contains pain images from 25
patients with shoulder pain collected through an experiment on
shoulder range of motion. The UNBC-McMaster database can

be used for model training because it contains the Prkachin and
Solomon Pain Intensity (PSPI) score, which is the ground truth of
pain level. The PSPI (range from 0 to 15) is a score that measures
the level of pain in facial expressions, which was first proposed in
(Prkachin, 1992), and is calculated by several action units (AUs)
using a facial action coding system (FACS) (Ekman et al., 2002).
AUs are the visible indicators of the operation of facial muscles. The
PSPI score can be calculated as the sum of several AUs including
AU4 (brow lower), AU6 (cheek raiser), AU7 (eyelid tightener), AU9
(nosewrinkle), AU10 (upper lip raiser), andAU43 (eyes closed).The
PSPI value was the basic factor in evaluating the model generated to
calculate pain intensity from pain images.

Before training the model, the UNBC-McMaster database
must balance the number of data entries in each class because
the data are unbalanced and skewed. Based on the PSPI score
(ranging from 0 to 15), the pain images in the UNBC-McMaster
database can be divided into four pain labels: none (PSPI = 0),
trace (PSPI = 1), weak (PSPI = 2 and 3), and strong (PSPI > =
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FIGURE 8
The method to animate the avatar’s facial expressions (A) animator (B) expression transition.

TABLE 4 Confusion matrix for the user’s facial expression.

Siamese network PCC MAE

Siamesenetwork

ConvNet-Layer 3 0.87 3.13

ConvNet-Layer 4 0.79 4.89

ConvNet-Layer 5 0.55 6.11

Triplet network

ConvNet-Layer 3 0.86 3.39

ConvNet-Layer 4 0.76 4.31

ConvNet-Layer 5 0.49 7.59

4). As shown in Table 3, the total number of data entries from
UNBC-McMaster is 48,398. Because pain is subjective and there
are no clear criteria for classification, many studies arbitrarily
classify the PSPI labels. Therefore, in this study, the PSPI label
was decided according to the standards proposed in the study of
(Bargshady et al., 2020) by considering the unbalanced data in the
UNBC-McMaster database. This study included only 1,730 images
in each pain group for balanced data based on aminority grade (pain
label: strong (PSPI > = 4)), and the data were extracted randomly.
To use this database for research purposes, an end user license
agreement was submitted to the Affect Analysis Group at Pittsburgh
(Lucey et al., 2011). Figure 8 illustrates an example of pain images in
the UNBC-McMaster shoulder pain database.

Table 4 shows the confusion matrix for the user’s facial
expression. For testing the models, input images of × resolution
were input to the networks to train the Siamese and Triplet networks
(learning rate = 0.1, batch size = 64, and epochs = 30; these
hyper-parameters were adjusted empirically to determine the best
performance.). A total of 2,856 pairs of samples were used for
the training set, and the remaining samples were used for the
testing set in the UNBC-McMaster database (Lucey et al., 2011).
For the network’s estimation, we calculated the Pearson correlation
coefficient (PCC) and the mean absolute error (MAE) to estimate
the sequential pain intensity using the networks compared to the

ground truth (PSPI). The PCC is a statistical test that calculates the
relationship between two variables. It has a value between −1 and
1, and the nearer it is to 1 (positive correlation) or −1 (negative
correlation), the higher the correlation. 4 shows that the Siamese
network with the three-layer model had the optimal estimations
(PCC = 0.87 and MAE = 3.13).

The results of most subjects showed that the intensity of facial
pain increased with the intensity of the electrical stimulation,
as shown in Figure 9. Comparing the pain intensity extracted
from the facial image (SNPI) and the questionnaire, considering
the results of S1, S10, S15, and S38, the four participant’s
SPS, pleasure, and arousal scales averaged approximately 4.0
(out of 5 points), 3.0 (out of 9 points, the higher the score,
the more positive) and 5.75 (out of 9 points), respectively.
Thus, in general, as the stimulation intensity increased using
the TENS device, the intensity of pain obtained from the facial
expression and the questionnaire results showed a similar pattern.
Consequently, it can be concluded that facial images, including
pain intensity, can be acquired through stimulation using a
TENS device.

4.3 Results of the avatar-based pain
expression

Figure 10 illustrates an example of the avatar for pain
expression. This study attempted to create an avatar of a patient
robot that considered various age groups and genders without
depending on a specific target’s facial shape and appearance.
Several images for avatars were used based on the RU-PITENS
database. The pain images in the RU-PITENS database are
images captured when the subjects felt pain and are divided
into five pain groups according to the intensity of pain obtained
from the image.

A projector was used in the experiment to express the robotic
facial expressions. Figure 10 depicts the testing of the projector-
based robotic head for emotion and pain expression. The projector
is placed in front of a translucent facial mask, and the avatar’s
expression is represented based on the facts obtained from the
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FIGURE 9
The result of pain intensity using Siamese network (SNPI) from subjects in RU-PITENS database (A) S1 (B) S38 (C) S10 (D) S15.

patient robot or the user. Moreover, the command is transmitted to
the Unity program on the personal computer.

For the quantitative evaluation of the generated avatars, we used
a survey to assess the users’ satisfaction, as shown in Figure 11.
The subjects who participated in the survey tried to use the avatar’s
interaction in a VR environment. The survey’s items consist of
four types: presence, immersion, satisfaction, and friendliness.
Additionally, subjects can estimate the avatar’s interaction through
the Likert scale (0–5) for each survey item. As shown in Figure 11,
most participants were satisfied with all items, and in
particular, the average score for presence and immersion
was high at 4.50.

4.4 Limitations

The integration system for practical care training based on visual
feedback was proposed to improve the care skills of caregivers.
The most crucial advantage of a projector-based robot head is
that it is easier and more convenient to change the avatar than
mechanical or physical methods.The avatar with various age groups
and genders can be expressed. Therefore, our proposed system
provides an environment for learners to train how the patient’s
mood changes and respond to the patient’s pain according to the
patient’s personality and pain sensitivity by applying the patient’s
face picture and personality to the patient robot in advance in
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FIGURE 10
Avatar-based robot’s pain expression.

FIGURE 11
Result of subject’s survey for avatar (A) experimental environment (B) survey result.

the future. Despite the advantages described above, the proposed
system have obvious limitation. Our study has not yet proven the
effectiveness of the proposed system in a CNT environment and

its impact on learning outcomes. Addressing these limitations will
significantly enhance the contributions and impact of their work in
the field of CNT and human-robot interaction.
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5 Conclusion

In this study, we focused on technological improvements
in advanced care and nursing training systems by developing
patient robots based on pain expression. Our contributions can be
summarized as follows:

• Typically, the user relies on the parameter’s result or graph of
the robot’s sensor data for performing care training. Because
the user’s gaze tends to be concentrated on the robot’s joints
and joint movements, it is difficult to determine how the
caregivers conduct their care tasks satisfactorily. However,
this study’s proposed visual feedback approach allows the
caregivers to receive feedback from painful facial expressions
in the robot and receive more attributes via advanced human-
robot interaction.
• We addressed the database of the facial images with pain
expressions from 41 Japanese people to generate a robot’s pain
avatar and the database will be disclosed as an open database
to expand the scalability of the research related to the pain
expression in various fields.

Consequently, it is anticipated that these visual indicators can
play a crucial role in achieving the purpose of effective care
education that allows users to react immediately.
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