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Introduction: In this paper, we introduce an advanced robotic system integrated
with an adaptive optimization algorithm, tailored for Brachytherapy in prostate
cancer treatment. The primary innovation of the system is the algorithm itself,
designed to dynamically adjust needle trajectories in response to the real-time
movements of the prostate gland during the local intervention.

Methods: The system employs real-time position data extracted from Magnetic
Resonance Imaging (MRI) to ensure precise targeting of the prostate, adapting to
its constant motion and deformation. This precision is crucial in Brachytherapy,
where the accurate placement of radioactive seeds directly impacts the efficacy
of the treatment and minimizes damage to surrounding safe tissues.

Results: Our results demonstrate a marked improvement in the accuracy
of radiation seed placement, directly correlating to more effective radiation
delivery. The adaptive nature of the algorithm significantly reduces the number
of needle insertions, leading to a less invasive treatment experience for patients.
This reduction in needle insertions also contributes to lower risks of infection
and shorter recovery times.

Discussion: This novel robotic system, enhanced by the adaptive optimization
algorithm, improves the coverage of targets reached by a traditional
combinatorial approach by approximately 15% with fewer required needles.
The improved precision and reduced invasiveness highlight the potential of this
system to enhance the overall effectiveness and patient experience in prostate
cancer Brachytherapy.

KEYWORDS
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1 Introduction

With approximately 1.5 million newly diagnosed cases and 397,000 fatalities reported
globally, prostate cancer stands as the second most common cancer and ranks as
the fifth principal contributor to cancer-related mortality in the male population for
the year 2022 (Bray et al., 2024). Its treatment typically surgery, external radiotherapy,
or brachytherapy (BT), which are validated by the High Authorities for Health
(Dhaliwal et al., 2021a) and follow common guidelines. The guidelines, for giving
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radiotherapy and brachytherapy are thoroughly explained
in established recommendations. Specifically the (National
Comprehensive Cancer Network, 2024) and the guide for
brachytherapy in Henry et al. (2022). These guidelines outline
the criteria, for selecting patients the best treatment dosages and
procedural methods to ensure that treatment is effective and
customized to each patients situation.

These treatments are integral to amultidisciplinarymanagement
strategy that includes urologists, radiation oncologists, and the
patient, who plays a crucial role in decision-making. Surgical
approaches typically involve the complete removal of the prostate,
while external radiotherapy requires delivering 70 Gy (Gy) across 35
sessions using a particle accelerator. Brachytherapy presents a more
patient-tolerant option, utilizing either low-dose (LDR) or high-
dose (HDR) ionizing radiation to target the affected area, typically
guided by trans-rectal ultrasound (TRUS) imagery. This method,
known as TRUS-BT, has traditionally been preferred for guiding the
brachytherapy process. However, TRUS-BT faces several challenges
which include primarly the rigid grid limited insertion angles
(Belarouci et al., 2022) which has been improved by Lakhal et al.
(2023) by proposing a new type of grid (See Figure 1).

The primary focus of this paper is to optimize these minimally
invasive procedures by reducing the number of needles inserted into
the organ. This approach aims to decrease patient discomfort and
enhance the overall efficiency of the treatment, addressing some of
the inherent limitations of the current methodologies.

1.1 Organ motion in clinical settings

Organ motion (Like the prostate motion in Figure 1) in clinical
settings plays a crucial role in radiotherapy treatment planning and
delivery. Studies have shown that organ motion, particularly in
the abdomen and thorax, can impact radiation dose distribution
(Kavak et al., 2022; Ng et al., 2023). Techniques like real-time MRI
imaging and dynamic MR-guided radiotherapy have been developed
to address and correct for organ motion in real-time, ensuring
optimal treatment doses with minimal toxicity to nearby organs
at risk (Senneville et al., 2015; Kannan et al., 2017). Similarly, the
accuracy ofmotion tracking in the liver using 4Dultrasound has been
validated, offering potential for interventions on moving abdominal
organs (Vijayan et al., 2014). Lastly, adaptive compensation for subject
motion in real-time during MRI scans has been achieved through
the use of object orientation markers, allowing for continuous
correction of scan planes (Ernst et al., 2019). These advancements
collectively underscore the critical importance and ongoing efforts to
accurately account for and manage organ motion in clinical settings.
Consequently, the integration of advanced AI methods for predicting
organ motion before it occurs has recently become a focal point
in clinical settings. These predictive technologies are designed to
further refine treatment approaches, ensuring even higher precision
and improved outcomes for patients.

1.2 Organ motion prediction techniques

In treatments for prostate cancer, the Prostate Motion AI-
based Prediction Model focuses on translational and rotational
movements of the prostate, overlooking deformations. Advanced

time series forecasting models are crucial for precise organ
movement tracking during such medical procedures.

Convolutional Neural Networks (CNNs) excel in detecting
spatial patterns (Bai et al., 2018; Ismail and Sengur, 2021), while
Long Short-Term Memory (LSTM) networks are adept at capturing
extended sequences (Chauhan and Vig, 2015; Yang et al., 2023).
Graph-basedmodels effectivelymanage topological data (Liao et al.,
2023; Wang et al., 2023; Xiao et al., 2023), and hypergraph-based
models capture complex relationships, useful in varied domains like
stock market predictions (Huynh et al., 2022).

Dynamic MRI techniques facilitate real-time motion tracking,
addressing motion artifacts in procedures such as PET scans
(Frohwein et al., 2019; Li et al., 2019; Purushotham et al., 2019;
Bengs et al., 2023). Deep learning models, renowned for intricate
pattern recognition, are increasingly employed for motion
prediction in healthcare, promising enhanced diagnostic accuracy
(Krebs et al., 2019; Morid et al., 2021).

The ability to predict organs motion is vital for optimizing
minimally invasive interventions, enabling clinicians to perform
procedures with greater accuracy and reduced risk. By integrating
such advanced motion prediction models, healthcare professionals
can significantly enhance the operational precision required in these
sensitive clinical environments.

1.3 Optimization in local interventions

Highprecision and a low level of patient trauma are necessary for
minimally invasive procedures, particularly in targeted therapies like
prostate cancer treatment. The physical and algorithmic approaches
to optimization tactics in these procedures can be roughly classified
as improving the effectiveness and efficiency of treatments.

Physical optimization in minimally invasive procedures
primarily involves enhancing the method and tooling used for
interventions. Figure 2 represents the suggestion of Dhaliwal et al.
(2021b) to use oblique needle insertion techniques instead
of a traditional straight needle insertions which minimise
the number of insertions drastically since one needle is used
to reach a larger area and does not impact the medicament
delivery (Su et al., 2019; Li et al., 2022) introduced manipulability
optimization control for a 7-DoF robot manipulator in Robot-
Assisted Minimally Invasive Surgery, ensuring Remote Center of
Motion (RCM) and improved manipulability.

As for Algorithmic approaches, various studies have explored
the application of optimization algorithms in different aspects
of minimally invasive surgery (Ruijters, 2021). proposed
evolutionary computing strategies like APSO and OBDE to
optimize electromagnetic sensor measurements, significantly
reducing tracking errors in surgical navigation. Surgical planning
and training have also benefited from algorithmic optimization.
Hyuck et al. (2020) have introduced a computer-based surgery
optimization method using genetic algorithms to derive optimal
surgical procedures. Additionally, Lakhal et al. (2023) introduced
a combinatorial optimization problem approach for efficient path
planning, which is technically advantageous for making oblique
insertions and clinically beneficial for reducing harm to patients.
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FIGURE 1
Prostate MR Image: The prostate gland is a walnut-sized organ located just below the bladder and in front of the rectum in males. An example of the
size of an adult and healthy prostate is 43.2 mm length and 27.4 mm width. Understanding the 3D anatomy of the prostate is crucial for diagnosing and
treating conditions such as benign prostatic hyperplasia (BPH) and prostate cancer.

FIGURE 2
(A) Conventional parallel needle insertions from multiple entry points: This can cause oedema and trauma to patients due to multiple insertion points;
(B) Optimal oblique insertions point prostate targeting: One needle can be inserted from one entry point with different orientations for optimal
coverage of the target volume, which means a faster and less traumatic treatment for the patients.

1.4 Main contributions

Building on the previous discussions regarding organ motion
and the optimization of minimally invasive procedures, we extend
the research initiated by Lakhal et al. (2023) by implementing the
following methodologies:

• Developing a predictive model for organ motion using
a deep learning framework that combines Long Short-
Term Memory (LSTM) networks and Convolutional Neural
Networks (CNNs).

• Enhancing the approach to minimally invasive prostate
interventions by incorporating predicted organ movements
into the procedure planning (See Figures 3, 4)

These initiatives aim to refine the precision and efficacy of
treatments by anticipating and adjusting for organ motion, thereby
improving the overall outcomes of minimally invasive procedures.

2 Materials and methods

This section describes the CoBra robotic system tools
and methodologies in precision needle control for precision
needle control in medical procedures. The system in Figure 5 is
composed of AI-based prediction, adaptive optimization, system
modeling, control mechanisms, and instrumentation. All of them
are vital to enhance the precision and effectiveness of needle
navigation.
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FIGURE 3
Optimisation Problem: The blue points describe the set of entry points
of the grid installed along the perineal skin. The orange points
represent the target tumours in the prostate. Each needle path (green)
is defined by a point in the target and an entry point.

Our main focus is on segment (a) of the system which
follows a novel approach by integrating an AI-based prediction
model with an adaptive optimization algorithm. Its aim is to
enhance the way the needle is controlled through adapting its
path in real-time in response to changes inside the patient’s
body. This segment is the main contribution of the present
work, building upon previously published foundational work in
modeling by Belarouci et al. (2022), control (Dhaliwal et al., 2019),
and instrumentation (Dhaliwal et al., 2021a).

The global system in Figure 5 uses four different coordinates,
the coordinate systems (xbase,ybase,zbase), (xn,yn,zn), (xg,yg,zg),
and (xp,yp,zp) define the positions and orientations of various
components. (xbase,ybase,zbase) is typically considered as the global
origin for the system, serving as the foundational reference for all
other coordinates. (xn,yn,zn) describes the needle’s position and
orientation. (xg,yg,zg) specifies the grid’s alignment and position,
ensuring that the needle’s path through the grid is correctly aligned
for precise insertion. (xp,yp,zp), the coordinates for the prostate or
target area, detail the target’s position and orientation.

The AI model forecasts future movements of the target organ,
essential for guiding the needle precisely to the right area despite the
motion of organs.The adaptive optimization algorithmutilizes these
predictions for refining the needle trajectory in a way that ensures
the needle is always pointed toward the target.

This section covers in detail the operational principles of
segment (a), addressing how the AI model predicts the movement
of organs and how the optimization algorithm adapts the path of
the needle.

2.1 MR-robot for prostate intervention

The prostate organ is a small, walnut-sized gland situated below
the bladder and in front of the rectum in males. The normal sized
prostate is typically about 4 cm wide, 3 cm high, and 2 cm thick,
though its size can vary slightly between individuals.

When the procedure is less invasive, such as in a biopsy
or brachytherapy, it is possible to approach the prostate
through the perineal or rectal route. Regarding the CoBra robot
application (Dhaliwal et al., 2019), the desired entry point is the
perineum. Laparoscopic surgery is performed through multiple
small incisions made in the abdomen of the patient, who is
positioned in the lithotomy position. The lithotomy position
involves the patient lying on their back, with the legs drawn up
at the hip and knee joints and the feet resting on stirrups. This
position exposes the perineal area well, assisting the clinician in
conveniently reaching the prostate.

The perineal approach entails the use of a needle inserted
through the skin of the perineum and into the prostate gland with
the help of imaging techniques such as MRI for the CoBra robot.
This approach reduces the impact on other tissues and results in a
brief healing period compared to other surgical procedures.

The CoBra robot is a parallel robot with 5 degrees of freedom
(DoF) designed for interventions underMRI.The concept allows for
oblique insertion with minimal access points through the perineum
to target multiple lesion sites. To ensure precise intervention,
the system is equipped with absolute encoders, including the
LAK14-Heidenhain from Traunreut and the Numerik-Jena from
Jena, offering a scale resolution of 1.25 μm. This high precision
enables accurate guidance and needle insertion when interacting
with tissues during medical procedures. The use of these absolute
encoders for each of the five degrees of freedom movements is
crucial to ensure closed-loop position control. Absolute encoders
immediately provide position information upon power-up, ensuring
both precision and safety. Interrupting a procedure due to loss
of position information is unacceptable in a clinical environment.
Therefore, maintaining backup power is imperative to prevent any
abrupt stops or power failures.

The needle-based intervention robot-guide can operate inside
theMRI scanner tunnel, in theworkspace located under the patient’s
legs in a lithotomy position. This concept is compatible with large-
diameter 3T MRI scanners, featuring a 70 cm diameter bore. Access
to the prostate is achieved through a transperineal (TP) approach
in the lithotomy position rather than a lateral decubitus position.
To facilitate operator access and provide real-time visualization for
teleoperation control and patient monitoring, the CoBra system is
equipped with an MRI-compatible camera (Figure 6).

The main reasons for using the CoBra robot instead of a single
arm (?) for minimally invasive intervention on the prostate are:

1. RestrictedWorkspace Adaptability:TheCoBra robot canmove
and reach the perineal skin in a 20 cm by 15 cm opening with
a 15 cm penetration depth in the MRI scanner. A parallel
kinematic chain of the CoBra robot is more transportable,
stable, and precise compared to an open kinematic chain of a
single serial arm.

2. MRI Compatibility: Current single serial arm designs are
unsuitable for use inside the MRI scanner where the magnetic
field affects the operation of the joint actuators. The CoBra
robot is designed to clinically meet placement, control
accuracy, andMR-compatibility specifications, ensuring that it
can operate effectively within the MRI environment.

In summary, the CoBra robot’s design addresses the limitations
of single arm minimally invasive surgical robots, particularly in the
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FIGURE 4
(A) Prostate 3D Model. The Prostate gland surrounds the urethra, which is the tube that carries urine from the bladder out of the body. In
three-dimensional anatomical terms, the prostate gland has a roughly spherical shape with a central indentation where the urethra passes through. (B)
Prostate movements: The movement of the prostate involves dynamic shifts in its position and shape within the pelvis. It moves in response to
physiological processes such as respiration, bladder filling and emptying and pelvic floor muscle activity. (C) Prostate Inflammation: It can affect the 3D
geometric movement of the gland by causing swelling and enlargement. This can lead to changes in the shape and structure of the prostate,
potentially impacting its surrounding structures such as the urethra and bladder. Inflammation can distort the normally smooth contours of the
prostate, leading to irregularities in its shape and size. z(D) Prostate Deformation: After a local intervention such as surgery or radiation therapy for
prostate cancer, the prostate gland may undergo deformation. This deformation can result from tissue removal, scarring, or changes in the structure of
the gland due to the intervention. As a result, the shape, size, and position of the prostate may be altered from its original state. Illustrations of Prostate
volume configurations: (A) Prostate 3D Model; (B) Prostate movements; (C) Prostate Inflammation; (D) Prostate Deformation.

context ofMRI-guided prostate interventions. Its precision, stability,
and compatibility with MRI technology make it a superior choice
for clinicians aiming to performminimally invasive procedures with
high accuracy and minimal patient recovery time.

2.2 Image-based robot registration and
robot kinematics

A calibration procedure, referred to as registration, is conducted
using pre-operative MRI scans to align the robot’s reference frame
with the prostate’s coordinate system (see Figures 7, 8).

To commence the registration process, an MRI-compatible grid
is positioned against the perineumusing a suitable support structure
(Figure 7A). This grid features four pockets filled with agar-agar,
which are visible under MRI imaging. Subsequently, the needle’s tip
is positioned at the midpoint of the grid (Figure 7C). Pre-operative
scanning facilitates the identification of various frames attached
to the robot (Figure 7B), the needle, and the prostate gland, as
illustrated in Figure 8.

The frames Rbase, Rn, Rg, and Rp are respectively associated
with the base of the robot-guide, the needle tip, the center of the
grid, and the center of the prostate gland, as depicted in Figure 8.
The transformations basepT, nbaseT, and g

pT are derived from MRI

imaging and forward kinematic models, enabling the calculation
of the global transformation using Equation 1. Once calibration is
accomplished, the inverse kinematic model becomes operational.

basepT = basenTg
nT

p
gT (1)

2.3 Adaptive MR-based control of the
CoBra needle guide robot

In this study, we will focus on the adaptive control system
part in Figure 5A for needle path planning represents a
subsystem within a larger therapeutic framework. This system
is responsible for the real-time adjustment of needle trajectories
during brachytherapy, ensuring high precision in targeting and
treatment delivery. The aspects related to the instrumentation
Figure 5D, modelling Figure 5B, and control Figure 5C of the
Cobra robot have been the subject of further developments and
previous studies (Dhaliwal et al., 2019; Belarouci et al., 2022) and
Dhaliwal et al. (2021a).

This subsystem includes includes two main components:

• AI-based Prediction Model: At the foundation lies an AI-based
prediction model that analyzes real-time organ motion (See
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FIGURE 5
Block diagram of the patient + The control architecture of CoBra robot is composed of four main parts. (A) Represents the main contribution of the
paper using AI-based prediction model and adaptive optimisation algorithm for adaptive control of the needle. (B–D) represent modelling, control and
instrumentation respectively and they have been the subject of previous studies (Dhaliwal et al., 2019; Dhaliwal et al., 2021a; Belarouci et al., 2022). (E)
Represents the organ in the patient body and its interaction with the system.

FIGURE 6
The CoBra system combines multiple components, including a 5-DoF parallel robot as a needle guide, a BT module, an MRI scanner, and an MR
camera. The patient in this case an animal (dog) is positioned in a lithotomy position and given sedation while being supported. The CoBra system’s
architecture allows for tele-operation using a joystick from the control room, utilizing the MRI console and a graphical interface for robot control.

Figure 2) that can be extracted from MRI data to anticipate
the movement of the prostate. The dataset of positions was
extracted directly from the MRI machine itself, which has the
capability to segment the prostate and extract its posture but in
cases where the MRI machine does not have the capability to

perform this segmentation automatically, various methods can
be applied to the image, such as those detailed in (Comelli et al.,
2021). This model uses a prediction horizon of the next time
step, which corresponds to 1

r
s given the MRI image rate of r

images per second (in our case r = 8). This short-term horizon
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FIGURE 7
Calibration phase to determine the coordinates of the needle tip in the MRI frame. (A) 3D reconstruction of pre-operative scans (B) needle tip
coordinates based on MRI imaging (C) Placement of needle in the centre of the grid.

FIGURE 8
Kinematic transformation chain to calibrate the robot in the MRI coordinate system based on the imaging of the dog lying inside the scanner bore in
lithotomy position.

allows for precise real-time adjustments by forecasting the
prostate’s immediate future position.

• Adaptive Optimisation: Leveraging the predictive model’s
output, the adaptive optimisationmodule calculates the optimal
needle insertion points. By doing so, it ensures efficient coverage
of the cancerous area while minimising tissue damage and the
number of needle insertions.

This section contextualizes the adaptive control system’s
role within the complex network of processes and technologies

involved in it, highlighting its critical function in enhancing
treatment outcomes.

2.3.1 Study hypotheses
Throughout the course of this study, several key hypotheses have

been posited to guide the development of the predictive model and
optimization framework. These are enumerated as follows:

1. Prostate Rigidity: It is postulated that the prostate is
a rigid body during the brachytherapy procedure. This
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assumption underpins the algorithmic management of all
movements—translational and rotational—across the six
degrees of freedom characteristic of rigid body dynamics.
The notion of rigidity simplifies the complex nature of
prostate motion, streamlining predictive modeling by focusing
on the essential aspects of spatial maneuverability without
deformation complexities:
• Translation along the x, y, and z-axes.
• Rotation about the x, y, and z-axes.

2. Needle Interaction: We assume the influence of the
brachytherapy needle on prostate motion is minimal.
Mathematically, this is represented as:

Δp ≈ 0, Δθ ≈ 0 (2)

where Δp denotes the change in the prostate’s position vector and
Δθ denotes the change in the prostate’s orientation vector due to the
needle insertion.

These hypotheses are foundational to the design of our adaptive
optimization algorithm and the AI-based predictive model. They
allow for a more tractable problem space and a focused approach to
enhancing the precision and efficacy of brachytherapy (or biopsy).

2.3.2 Prostate motion AI-based prediction model
In brachytherapy for prostate cancer, the Prostate Motion AI-

based Prediction Model focuses on translational and rotational
movements of the prostate, overlooking deformations. Advanced
time series forecasting models are crucial for precise organ
movement tracking during such medical procedures.

Using a dataset of real motion data from 162 patients introduced
in (Taillez et al., 2021) (the patients accepted the use of the
motion for scientific research), with each patient monitored over
five sessions (see Figure 10), the model is designed to capture
the stochastic nature of prostate movement during therapeutic
procedures.

The architecture of choice is a Convolutional Neural Network-
Long Short-Term Memory (CNN-LSTM) model shown in Figure 9.
This method harnesses the spatial feature extraction capabilities of
CNNs from MRI sequences and the temporal pattern recognition
prowess of LSTMs. CNNs excel in identifying hierarchical patterns
in spatial data, making them ideal for interpreting medical
images such as MRI scans. On the other hand, LSTMs are
adept at capturing long-term dependencies in sequential data,
allowing the model to understand the temporal dynamics of
organ movement (Keerthana et al., 2023).

The spatial-temporal data, encapsulating the 3D prostate
posture at time t, is denoted as Xt. Accurate real-time
tracking of the prostate’s movement is crucial in precision
medicine. Recent advancements in deep learning, particularly
CNNs, have shown promise in enhancing the precision
of real-time image-guided therapies for prostate cancer,
indicating the potential of these technologies in improving
treatment outcomes (Chrystall et al., 2023).

The predictive model is formally expressed as:

Xt+1 = CNN− LSTM(Xt,Xt−1,…,Xt−n) (3)

where Xt = {xt,yt,zt, rollt,pitcht,yawt} represents the prostate
posture at time t and n represents the number of previous time
steps taken into account for predicting the next prostate’s posture.

The training process involves the minimization of the Mean
Squared Error (MSE) between the predicted and actual positions
and orientations of the prostate’s center of gravity:

minMSE =min 1
N

N

∑
i=1
(X(i)t+1 − X̂

(i)
t+1)

2
(4)

where X̂(i)t+1 represents the predicted position and orientation, X(i)t+1
represents the true position and orientation at time t+ 1 and N
denotes the total number of observations in the dataset used for
training the model. This optimization criterion ensures that the
model provides the most accurate real-time predictions of prostate
motion, which are critical for adjusting the needle trajectory during
the brachytherapy procedure, thereby enhancing the precision and
safety of the treatment.

2.3.3 Path planning adaptive optimisation
Traditional biopsy (or brachytherapy) methods use a grid

allowing only parallel needle insertions, often necessitating
multiple insertions for comprehensive prostate coverage as
shown in Figure 3A. However, this fails to consider the prostate’s
dynamic nature and potential movement. To overcome this,
the MPEP (Minimum Perineum Entry Points) approach
introduced in Lakhal et al. (2023) minimizes insertions while
maximizing tumor targeting.TheCoBra template grid (CTG) guides
needle paths under varying angles, adapting to prostate motion for
more accurate targeting.

This study builds on the MPEP concept, factoring in dynamic
prostate positioning to refine the adaptive optimization process. The
aim is to optimally reduce needle insertions while ensuring precise
targeting, considering prostate motion.

As illustrated in Figure 4, each needle trajectory is characterized
by a target tumor point and an entry point. Here, the term
“path” refers to the needle’s trajectory through the human body,
originating from an entry point and terminating at a target point.
Consequently, a complete treatment comprises N paths to address
all N designated target tumors within the prostate. The problem can
be mathematically formulated in the following manner.

Let I f represent a finite set of N target points P f , and Ie denote
a finite set of Ne entry points Pe, chosen from the grid. A treatment
requires N paths to address N target tumors in the prostate, meaning
a viable solution is a finite set of N feasible paths PeP f such that P f ∈ I f
and Pe ∈ Ie. It is important to note that a single entry point may be
used to reach multiple target points. The challenge lies in identifying
themost efficient combination ofN feasible pathsPeP f thatminimizes
the number of entry points used, thereby also minimizing the robot’s
travel distance within the prostate during treatment while taking into
consideration the movements of the prostate.

The adaptive control segment, depicted in green in Figure 5,
is based on an Artificial Intelligence (AI)-driven prediction model
that utilizes real-time Magnetic Resonance Imaging (MRI) data.
This innovative model forecasts the future position of the prostate,
denoted as Pfuture, by analyzing both the current and past observed
positions, symbolized as Pcurrent and Ppast, respectively:

P(t+1)f = f (P
(t)
f ,P
(t−1)
f ,…,P

(t−k)
f ) (5)
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FIGURE 9
CNN-LSTM motion prediction model.

where P(t+1)f represents the predicted future position of the prostate
at time t+ 1, f is the function implemented by the AI-based model
encapsulating the dynamics of prostatemotion, andP(t−k)f ,…,P

(t)
f are

the observed positions from time t− k to t, with k being the number
of time steps considered for prediction.

Given a set of target points {P f1
,P f2
,…,P fn
} and a set of entry

points {Pe1 ,Pe2 ,…,Pem}, where n andm indicate the number of target
and entry points respectively, the terms in the cost function are
defined as follows:

minC = αR+ βD− λE (6)

where:

• The term R represents the total distance between each entry
point and its corresponding target point. For each path i froman
entry point Pei to a target point P f i

, the distance di is calculated.
The sum of all such distances is R:

R =
N

∑
i=1

d(Pei ,P f i) (7)

• The term D is the sum of the total distance from the predicted
target positions to the entry point. For a predicted target
position P̂ f i

and an entry point Pei :

D =
N

∑
i=1

d(P̂ f i
,Pei) (8)

• The term E is the number of selected entry points used in the
procedure. If an entry point Pej is used for any target point P f i

,
it is included in the count:

E = |{Pej :∃P f i
suchthatPej isusedtoreachP f i}| (9)

• α weights the total distance R, A higher α value emphasizes the
need to reduce the overall travel distance during the procedure,
which can be crucial for minimizing tissue damage.

• β modulates the impact of the sum of distances from the
entry points D to the predicted target positions. A higher β
emphasizes minimizing these distances, thereby tailoring the
prediction to favor shorter paths from the entry points to the
predicted target positions.

• λ is introduced to equalize the scale between quantities that
inherently differ in nature, such as a count of entry points
(E)and the other distances.

The optimization problem formulated in this study is inherently
nonlinear and constrained, encompassing both continuous and
combinatorial aspects.Thenonlinear nature arises from the complex
dynamics of prostate movement and the associated prediction
model, which influence the path optimization. It is a constrained
problem, as it requires adherence to specific clinical and anatomical
limitations, such as the feasible insertion points and paths that
needles can take.

Furthermore, the objective function, integrating distance metrics
and entry point counts, introduces a combinatorial challenge in
selecting the optimal set of entry and target points tominimize overall
procedure impact while maximizing accuracy. This combination
of factors categorizes the optimization as a complex, multi-faceted
challenge suitable for advanced computational techniques and
heuristic approaches to find effective solutions.

2.3.4 Dynamic entry points optimization and
selection algorithm

Algorithm 1 shows the steps for the adaptive optimisation
procedure, it is designed to dynamically optimize the selection of
entry points for real-time therapeutic interventions. This method
leverages predictive modeling combined with a cost-efficient search
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1:procedure OPTIMIZEENTRYPOINT ({Pf1
,Pf2
,…,Pfn
},

{Pe1 ,Pe2 ,…,Pem}, f, α, β, λ)

2:    Initialize time t = 0

3:    Load predictive model f

4:    Initialize active targets list with

{Pf1
,Pf2
,…,Pfn
}

5:    while active targets not empty do

6:      Use f to predict P
(t+1)
f

for each active

target point

7:      Initialize best entry point as null

8:      Initialize minimum cost to ∞

9:      for each entry point Pej do

10:        Initialize distance cost Rj = 0

11:        Initialize deviation cost Dj = 0

12:        Initialize a list of reachable target

points from Pej

13:        for each target point P
(t+1)
fi

in active

targets do

14:           if P
(t+1)
fi

is reachable from Pej then

15:              Add P
(t+1)
fi

to reachable list

16:              Compute distance cost for this

path Rij

17:              Compute deviation cost for this

path Dij

18:              Add Rij to Rj

19:              Add Dij to Dj

20:           end if

21:        end for

22:        Compute entry point usage cost Ej = λ×

numberofreachabletargetsbyPej

23:        Compute total cost for Pej as Cj =

αRj +βDj +Ej
24:        if Cj < minimumcost then

25:          Update minimum cost to Cj

26:          Update best entry point to Pej

27:        end if

28:      end for

29:      Implement path from best entry point to

its reachable target points for t+1

30:      Remove the reached target points from

active targets

31:      Increment t

32:      Update f with latest MRI data

33:    end while

34: end procedure

Algorithm 1. Dynamic Entry Point Selection based on Motion Prediction
and Cost Optimization.

strategy, ensuring both high accuracy and operational efficiency in
clinical settings.

Theprocessbeginswithaninitializationphasewherethepredictive
model f is loaded, and a list of active target points is prepared based on
the initial set of target points.Themodel f is responsible for predicting

the positions of target points at the next time step t+ 1, using posture
data. This prediction is crucial as it allows the algorithm to adjust its
strategy based on the anticipated motion of the prostate, which can
vary significantly from one patient to another.

After the initialization, the core of the algorithm operates in
a loop that continues until all target points have been successfully
reached or the procedure is deemed complete. Within this loop, the
algorithm performs a greedy search to determine the most cost-
effective entry point for each prediction cycle. For each entry point
Pej , the algorithm compute the associated cost. Once these costs are
computed, the entry point with the lowest total cost is selected, and
the corresponding path is implemented.

After selecting and implementing the best path for the
current time step, the algorithm removes the reached target
points from the list of active targets. The time variable t is then
incremented, and the predictive model f is updated with new
posture data from the MRI images to reflect the latest anatomical
positioning.

2.3.4.1 Complexity analysis
The iterative approach detailed in Algorithm 1 is designed to

dynamically select optimal entry points in real-time therapeutic
interventions. The timing of the algorithm is primarily a function
of the number of target points {P f1

,P f2
,…,P fn
} and entry points

{Pe1 ,Pe2 ,…,Pem}. Each iteration involves predicting future positions,
evaluating potential paths, and selecting the optimal path based on
a cost function.

Given the real-time requirements of clinical interventions,
particularly in procedures involving organ motion such as prostate
treatments, the response time of the algorithm is crucial. The time
complexity of the algorithm per iteration can be approximated as
O(m× n), wherem is the number of entry points and n is the number
of active targets. This complexity arises because each entry point
is evaluated against each predicted target position to compute the
associated costs R, D, and E.

Despite the dependence on the number of target points, the
timing of this approach does not pose a problem for the latency
requirements for several reasons:

1. Predictive Modeling Efficiency: The predictive model f used
in the algorithm is designed for quick execution, leveraging
recent advances in real-time data processing and machine
learning.This ensures that the prediction step does not become
a bottleneck.

2. Parallel Processing Capabilities: Modern clinical systems
equipped with parallel processing capabilities can handle the
computations for multiple paths simultaneously, significantly
reducing the real-time computational burden.

3. Greedy Selection Strategy: The greedy approach to selecting
the best entry point by minimizing the total cost Cjensures
that once a path is deemed optimal at a given step, no further
extensive calculations are needed for that iteration, enhancing
responsiveness.

Therefore, although the timing analysis indicates a linear
dependency on the number of targets, the impact on latency is
mitigated by the efficiency of the predictive model, the capability for
parallel processing, and the nature of the greedy selection algorithm.
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These factors ensure that the algorithm meets the stringent latency
requirements of real-time medical procedures.

3 Results

3.1 Training and testing environment

3.1.1 Dataset description
The dataset for training the Prostate Motion AI-based

Prediction Model comprises around 42,822 motion data
distributed on 162 patients undergoing radiotherapy. Each patient’s
prostate motion was recorded over five (or six) sessions with
approximately of 50 postures per session per patient, resulting in
a comprehensive dataset that captures a wide array of movement
patterns. The recorded data specifically includes the 3D prostate
posture (See Figure 10, providing the spatial-temporal sequences
necessary for the predictive modeling.

The distribution of the prostate posture include a mean distance
from the origin computed for positional coordinates (Xc,Yc,Zc) of
2.505mm, with a standard deviation of 2.070mm, ranging from0.0 to
17.645mm. This provides an indication of the spatial spread relative
to the origin.

The orientation data represented through angles
(Rollc,Pitchc,Yawc) shows distinct distributions. The mean roll
angle is nearly zero −0.0018 with a standard deviation of 0.882,
and it ranges between −3.8 and 4.0, indicating balanced rotational
movements around the longitudinal axis.The pitch angle has a slight
negative mean −0.132, a standard deviation of 1.858, and exhibits
a broader range from −10.01 to 9.44, reflecting more significant
variability in tilt movements. Finally, the yaw angle, describing
rotation around the vertical axis, has a mean of 0.046, a standard
deviation of 0.813, and extends from −4.8 to 4.4, showing moderate
variation in directional orientation.

These movements are due to: Firstly, respiration which
leads to regular and predictable movements of the prostate.
As the diaphragm contracts and relaxes, it causes the pelvic
organs, including the prostate, to shift slightly both vertically and
anteroposteriorly. This effect is generally consistent across sessions
but can vary slightly between individuals based on their respiratory
rate and depth.

Secondly, less predictable but natural movements are due to
gastrointestinal activities, such as the passage of gas, which can cause
transient shifts in the position of the pelvic organs.Thesemovements
are typically minor but must be accounted for in the predictive
modeling of prostate motion.

Although patients are not under full anesthesia, their organ is
fixed to remain as still as possible. Sudden movements are rare but
can occur; however, these are typically quick and isolated incidents
that do not significantly impact the overall dataset. The robustness
of the AImodel is designed to accommodate these rare deviations by
focusing on the more predictable and consistent movement patterns
driven by natural physiological processes.

3.1.2 Hardware environment
The training and development of the CNN-LSTM model were

conducted on a personal laptop. The specifications of the hardware
environment are as follows:

• Processor: AMD Ryzen 7 7745HX,
•Memory: 32GB RAM,
• Graphics Card: NVIDIA RTX 4070.

3.1.3 Software environment and trainning
strategy

The software environment used for developing and training the
CNN-LSTM model includes the following:

• Programming Language: Python 3.8
•Deep Learning Library: Keras
• Visualization Tool: Matplotlib

The dataset used for training the CNN-LSTM model consisted
of patient data, which was split into training, validation, and test sets
based on the number of patients.This approach ensures that the data
from any single patient is only present in one of the sets.

•Data Split: The data was divided as follows:
• Training set: 70% of the patients
• Validation set: 10% of the patients
• Test set: 20% of the patients

3.2 Training and validation performance

The model’s performance was evaluated and compared to
multiple baseline methods in Table 1 using Mean Squared Error
(MSE) as the loss function, which quantifies the average squared
difference between the estimated values and the actual value. The
CNN-LSTM model achieved a best MSE of approximately 1.44,
indicating a high level of accuracy in the prediction of the prostate’s
center of gravity.

The complete training time amounted to approximately
1 min/epoch, this training phase involved multiple epochs
of learning to ensure the model accurately captures the
dynamic movements of the prostate across different sessions
and patients.

Inference time, or the time it takes for the model to predict
future prostate positions once trained, was optimized to meet the
real-time requirements of therapeutic procedures. On average, the
model achieved an inference time of 50 m per prediction. This rapid
response rate ensure a real time performance in clinical settings
(especially in MRI based environment).

The graph in Figure 11 illustrates the learning curve of the
model, with the x-axis representing the number of epochs and the
y-axis representing the MSE. The plot shows the trend of decreasing
MSE as the number of epochs increases, both for training and
validation datasets.

3.3 Adaptive optimisation result

We establish α as the base parameter with a value of 1, setting
the reference scale for the total distance R between each entry
point and its corresponding target point. To prioritize accuracy in
reaching the predicted target positions, β is set to 1.5, emphasizing
the importance of adhering to the predicted posture. λ is adjusted
to match the order of magnitude of the distances, set to a value

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2024.1416662
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Smahi et al. 10.3389/frobt.2024.1416662

FIGURE 10
Posture prediction and error metrics for patient 1 Session 2. The figure shows actual (blue) vs predicted (orange) values for Roll, Pitch, Yaw (in degrees),
and X, Y, Z coordinates (in millimeters) on the left. Prediction errors for these metrics are displayed on the right.

that equates its scale with that of the distances, approximately in the
order of 100.This setting ensures a balanced influence of the number
of entry points on the cost function, maintaining a proportionate
impact alongside the distance components.

To effectively evaluate our approach, we utilize two
straightforward metrics: the number of needles used during the
procedure and the coverage percentage. The coverage percentage
assess the treatment effectiveness. It is calculated as follows:
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TABLE 1 Comparative table of various methods with MSE values.

Method Mean squared error (mm2) Inference time(ms)

Linear Regression 5.19 9

Polynomial Regression 4.11 16

MLP 3.94 28

RNN 3.51 39

LSTM 2.37 41

CNN-LSTM 1.44 50

The bold values represent the best values for each column.

FIGURE 11
Training and validation MSE of the CNN-LSTM model.

Coverage Percentage = (
Number of Target Points Successfully Reached

Total Number of Target Points
)

× 100 % (10)

This formula provides a clear measure of how well the
target areas are treated, reflecting the proportion of the intended
treatment area that is actually reached by the end of the procedure.
Comparing thesemetrics across different scenarios helps us evaluate
the adaptive optimization algorithm compared to a traditional
static approach.

The results of the adaptive optimization algorithm have been
quantitatively assessed against both the traditional static approach
and a dynamic method without prediction (where β = 0) across
ten different procedures (different movement scenarios from the
patients dataset), as illustrated in Figure 12.

Our dynamic approach with prediction provides a slight
reduction in the average number of needles 6.5 compared to
7.3 for the dynamic method without prediction and 8.25 for the
static approach. Additionally, the average coverage performance
for the dynamic method with prediction is around 95.25%, while
the static approach marked an average performance of 90.06%,
and the dynamic method without prediction achieved 82.7%. This

improvement is due to the adaptive trait that reacts to the motion of
the prostate and changes in position.

The significance of these results is supported by statistical
testing. The t-test between the static approach and the dynamic
approach with prediction yielded a t-statistic of 6.47 and a p-value
of 8.75× 10−9, indicating a highly significant difference favoring the
dynamic approach with prediction. Similarly, the t-test between the
dynamic method without prediction and the dynamic method with
prediction yielded a t-statistic of 3.26 and a p-value of 9× 10−4,
again demonstrating a statistically significant improvement with the
dynamic approach with prediction.

Overall, the dynamic approach demonstrates an average
improvement of 12.72%,with some scenarios reaching up to 15.59%.
Although in some instances the dynamic approach selects a higher
number of needles compared to the static one, this leads to a
significant gain in coverage of target points.

In summary, the adaptive optimization approach has proven
to be more efficient and effective than both the static approach
and the dynamic method without prediction. It ensures optimal
needle usage and excellent coverage, which are critical for successful
brachytherapy outcomes. Future work will focus on expanding the
application of this approach to other procedural contexts and further
refining the algorithm to enhance its decision-making capabilities.
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FIGURE 12
Performance comparaison between static and adaptive approaches.

4 Discussion

4.1 Key points and critics

The adaptive optimization approach demonstrates
advancements over static methods, primarily due to its real-time
predictivemodeling and dynamic optimization, which have resulted
in fewer needles used and high coverage.

The reduction in the number of needles used not only enhances
patient comfort but is also indicative of the precision and efficiency
of the predictive model. Fewer entry points reduce the risk of
infection and tissue damage, which are critical considerations in
clinical settings.

Furthermore, the high coverage rate achieved by our approach
ensures that the treatment is comprehensive, addressing most
if not all cancerous tissues effectively. This is particularly
significant as it directly correlates with the success rate of the
treatment.

Key points of the adaptive approach include:

• Needle Efficiency: Fewer needles are used in the dynamic
approach, reducing patient discomfort and complication
risks.

• Target Coverage: High coverage is consistently achieved,
highlighting the method’s precision.

• Procedural Advantages: Resource utilization and potential
reductions in procedure time suggest improved surgical
workflow efficiency.

In terms of outlier scenarios where predictions are taken by
surprise and the error margin is high, an expert intervention can
be implemented to stop the procedure or deactivate the predictive
approach thus potentially offering better management of such
outliers compared to traditional methods.

The approach, however, is based on assumptions that merit
further evaluation:

• Prostate Movement: The model’s restriction to translational
and rotational movements may not capture all prostate
behaviors.

• Needle Impact: The assumed negligible needle impact on
prostate movement may vary between patients.

• Unpredictable Movements: The model does not currently
account for abrupt, irregular movements.

• Inference Time: The model’s inference time could be further
optimized for instantaneous surgical response.
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In conclusion, the dynamic approach not only upholds the
standards of traditional interventions but also introduces significant
improvements in handling, efficiency, and outcomes, making it
a valuable addition to the field of surgical interventions for
prostate cancer.

4.2 Conclusion and future work

This research enhances prostate minimally invasive
interventions by introducing a method that combines real-
time movement data with predictive modeling to optimize the
procedure. Unlike traditional approaches, our dynamic method
with prediction reduces the average number of needle entry
points to 6.5 from 8.25, improving procedural efficiency. The
effectiveness of this method is demonstrated by its high coverage
performance of 95.25% compared to the static method’s 82.7% and
the dynamic method without prediction’s 90.06%. The dynamic
method without prediction, while not as efficient as the predictive
model, still shows significant improvements over the static approach,
reducing needle entry points to 7.3 and achieving a coverage
performance of 90.06%.

A key component of this approach is an AI algorithm
that uses data to predict prostate positions enabling real
time adjustments to the plan for better accuracy and fewer
needle insertions. Additionally incorporating the CoBra
template grid optimizes needle placement. Streamlines
the process.

In summary this dynamic optimization strategy represents
an advancement in path planning greatly improving treatment
outcomes and paving the way, for wider clinical use.

Future efforts should focus on refining this optimization
algorithmand integratingmore robust predictivemodels specifically
integrating the needle impact on the prostate posture as well as
some basic deformations to further improve the efficacy of medical
treatments in precision-critical scenarios.
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