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Bridging vision and touch:
advancing robotic interaction
prediction with self-supervised
multimodal learning

Luchen Li* and Thomas George Thuruthel

Department of Computer Science, University College London, London, United Kingdom

Predicting the consequences of the agent’s actions on its environment is a
pivotal challenge in robotic learning, which plays a key role in developing higher
cognitive skills for intelligent robots. While current methods have predominantly
relied on vision and motion data to generate the predicted videos, more
comprehensive sensory perception is required for complex physical interactions
such as contact-rich manipulation or highly dynamic tasks. In this work, we
investigate the interdependence between vision and tactile sensation in the
scenario of dynamic robotic interaction. A multi-modal fusion mechanism
is introduced to the action-conditioned video prediction model to forecast
future scenes, which enriches the single-modality prototype with a compressed
latent representation of multiple sensory inputs. Additionally, to accomplish
the interactive setting, we built a robotic interaction system that is equipped
with both web cameras and vision-based tactile sensors to collect the dataset
of vision-tactile sequences and the corresponding robot action data. Finally,
through a series of qualitative and quantitative comparative study of different
prediction architecture and tasks, we present insightful analysis of the cross-
modality influence between vision, tactile and action, revealing the asymmetrical
impact that exists between the sensations when contributing to interpreting the
environment information. This opens possibilities formore adaptive and efficient
robotic control in complex environments, with implications for dexterous
manipulation and human-robot interaction.

KEYWORDS

predictive learning, self-supervised learning, physical robotic interaction, information
fusion and compression, multi-modal sensing

1 Introduction

In contemporary neuroscience, it has beenwidely acknowledged that humans rely on the
predictive processing (PP)mechanism to perform complex interaction tasks (Friston, 2005).
When perceiving and interacting with the dynamic physical and social surroundings, the
brain builds and maintains internal predictive models based on sensorimotor signals, from
basic predictions of the agent’s own actions (i.e., active inferences) to high level perceptual
inference that predicts the outcomes of the external world (Köster et al., 2020). In order to
generate adaptive and appropriate behaviors in the highly variable and uncertain real world,
the internal models are continuously updated by comparing the incoming sensory signals
with the predictions to minimize the error (Nagai, 2019).
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Therefore, themultiple sensory signals play a key role in building
the agent’s interaction perception. While vision is considered in
public thinking to dominate perceptual experience, other sensation
can also be pivotal in certain situations. Neurophysiology studies
have proven that instead of functioning in isolation, different human
sensory modalities are interconnected (Stein and Meredith, 1993;
Shams and Kim, 2010). For example, visually impaired individuals
may recognize shapes through auditory sensory substitution
(Amedi et al., 2007), and touch sensing can complement vision
in object processing tasks with its shared object representation
(James et al., 2007). This integration and cross-modality influence
of different sensing modalities are also essential for multi-sensory
predictive learning, which can be observed in early cognitive
development of humans (Nagai, 2019).

In robotics, it is also a fundamental challenge to accurately
predict the consequences of the agent’s actions on its environment,
especially in real-world physical interactions characterized with
increasing complexity and stochasticity. In light of the advancements
in deep learning and computer vision, the robotic interaction
tasks are commonly performed with video prediction models
based on deep neural networks (Oprea et al., 2020), which has
been widely applied in autonomous driving, visual servoing
manipulation and grasping, etc. Many works leverage Long Short-
Term Memory (LSTM) networks to effectively extract temporal
dependencies in the observed video sequences for prediction of
future frames (Srivastava et al., 2015; Lotter et al., 2016). In addition,
video predictive models conditioned on action received broader
applications, such as reinforcement learning (Escontrela et al., 2024;
Lenz et al., 2015), motion planning (Sarkar et al., 2019; Zang et al.,
2022), etc.

Driven by the development of sensor technologies, an increasing
academic interest shifts to tactile sensing for its crucial role
in more adaptive, robust and dexterous robotic manipulation.
Compared to vision that contributes to broad scene understanding
and initial localization, tactile feedback excels in providing
contact details during interaction such as textures, contact
forces, mass, stiffness, and other invisible physical properties
(Yousef et al., 2011). Therefore, a number of studies work on
learning tactile-based predictor for various uses, including slip
control (Dong et al., 2019; Donlon et al., 2018; Nazari et al., 2023;
Zhang et al., 2023), pose estimation (Bauza et al., 2019; 2023;
Kelestemur et al., 2022), in-hand manipulation (Yang et al., 2023;
Lepert et al., 2023; van Hoof et al., 2015), etc.

However, the aforementioned approaches based on single
sensory modality may lead to restricted perception capabilities
and increasing prediction error. Therefore, inspired by the multi-
modal cognition system for human, some researchers investigate
the combination of vision and touch through cross-modality
translation. Lee et al. (2019) proposed a conditional generative
adversarial networks to generate realistic translation between
material texture image and vision-based surface tactile information.
Li et al. (2019) achieved cross-modality prediction between
vision and touch through a ResNet based adversarial learning
framework, which aims to synthesize plausible sensory signals from
another sensation. Other attempts have been made to utilize the
integrated visuo-tactile representation for object recognition and
classification (Falco et al., 2017; Sun et al., 2016; Castellote López,
2023). Nevertheless, the exploration of vision-tactile integration in

robotic interaction is still in its infancy. While the aforementioned
studies are mainly conducted in static scenarios, predictive models
that are able to capture the connections between vision and touch
in the dynamic settings of physical interactions have not been
sufficiently investigated.

This work aims to explore the interconnection and cross-
modality influence between vision and tactile sensation in the
scenario of dynamic robotic interactions. While visual feedback
contains global perception about the semantic and geometric
properties of the scene, it also comes with the inherent limitations
with occlusions and lighting variations. Likewise, tactile sensation
provides insights into texture, pressure, deformation, and other
contact-related local information, but it may be inferior in
general object localization. These two sensing modalities may
complement each other towards more comprehensive sensory
perception required for complex physical interactions. Therefore,
we introduce a multi-modal fusion mechanism into the well-
known video prediction architecture Convolutional Dynamic
Neural Advection (CDNA) model (Finn et al., 2016), which is
specifically designed for predicting the visual outcomes of robotic
manipulations through pixel-level motion modelling. By revising
the model to accommodate both vision and tactile sensation, we
investigate the cross-modal connection between them through a
series of prediction tasks within the context of robot-object physical
interaction, where the predictive model is supposed to capture
the dynamic transformation between the frames over timesteps,
given the known robot action and vision-tactile information. We
believe the insightful results reveal potential in advancing robotic
perception in interactive tasks such as dexterous manipulation,
deformable object manipulation and human-robot interaction, etc.

The contributions of this work are as follows. In this article,
we present a novel advancement in the predictive learning of
robotic interaction by enhancing the Convolutional Dynamic
Neural Advection (CDNA) framework into a multi-sensory action-
conditioned prediction model. The primary sensory input is
combined with the auxiliary sensory input in the latent space
before fed into the prediction modules, which complements the
single-modality prototype with more comprehensive perception
information. A series of multi-modal fusion architectures have been
tested to optimize the model’s capability to assimilate information
across vision and tactile sensation to assist the investigation into
the cross-modal connection. In addition, the compressed multi-
modal representation in the latent space is valuable for applications
beyond prediction tasks, which could be leveraged in control
systems to develop more efficient and adaptive control strategies.
Compared to the static analysis between vision and touch in
Lee et al. (2019); Li et al. (2019), our work focuses on connecting
the multiple sensory inputs in a more dynamic setting. We build
a robotic system to collect the vision-tactile pairs along with
the action data during robot-object interaction tasks, specifically
involving a combination of sliding and rolling motions. This
process generates a multi-modal robotic interaction dataset that
includes sequences of both vision and tactile sensory information,
along with the corresponding robot position configurations. As
there lacks sufficient open dataset for robot interaction that
contains sensing modality beyond vision (Dasari et al., 2019), the
proposed dataset could be beneficial to future study towards
more enriched robotic perception with complex and dynamic
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environments. We present a series of comparative studies to
explore the interconnection between vision and touch during
robotic interaction predictions, performing experiments under
various sensory combinations (single modality vs. vision-tactile
integration) and different environmental conditions (limited vision
vs. full vision) to investigate how these factors influence prediction
accuracy and the robustness of the model. Both qualitative and
quantitative analysis are presented to evaluate the performance.
Through predictions of one sensory input conditioned on another
sensation, we reveal the asymmetrical influence that vision and
touch exert on each other.These findings highlight the distinct roles
these sensory modalities play during interactions, as well as the
synergistic effect that emerges when they are combined. In addition,
as another significant factor in interaction, the impact of robot
action data is also evaluated, which reveals the mutual relationship
between the sensory observations and the environment’s dynamics.

2 Materials and methods

2.1 Problem formulation

The objective of our work is to investigate the connection
between the multi-modal sensory inputs in the predictive learning
of robot interaction dynamics. Our prediction model is based on
the Convolutional Dynamic Neural Advection (CDNA) framework
proposed by Finn et al. (2016), which is originally designed for
action-conditioned video prediction. By introducing a multi-modal
fusion mechanism, we expand the vision-to-vision prediction into
more comprehensive prediction tasks that aim to predict future
frames (either vision or tactile) of a robot’s interaction with its
environment utilizing a combination of vision (V), tactile (T)
and action (A) data. Here we present the formulation of tactile-
conditioned vision prediction, the same thing also applies to tactile
prediction conditioning on vision.

Given (i) a set of past vision frames Vt−m+1:t = {Vt−m+1,…,Vt},
where t is the current timestep andm is the number of context frames
considered during prediction and (ii) a set of conditioning frames
of tactile Tt−m+1:t+n = {Tt−m+1,…,Tt+n} and action At−m+1:t+n =
{At−m+1,…,At+n}, where n is the number of future frames to be
predicted, the prediction model F can be defined in Equation 1:

F(V t−m+1:t,T t−m+1:t+n,At−m+1:t+n;θ) = V̂ t+1:t+n (1)

where V̂ denotes the predicted vision sequences, and θ
represents the parameter of the predictive model.

Therefore, the objective function L aims to minimize the pixel-
wise difference between the predicted and actual future vision
frames over the n time steps as detailed in Equation 2:

L =min
i=t+n

∑
i=t+1

D (V̂i,Vi) (2)

where D is the loss function that measures the discrepancy
between the prediction and ground truth in pixel space. In our work,
we choose mean squared error (MSE) loss: L = ‖V̂i −Vi‖

2.

2.2 Multi-modal sensor fusion for robotic
interaction prediction

2.2.1 Model overview
The overview architecture of the predictive model in this

work is illustrated in Figure 1. The Convolutional Dynamic Neural
Advection (CDNA) framework is chosen as the baseline model
from which our multi-modal prediction system is built from, the
auto-encoder structure of which enable the model to work in
a self-supervised paradigm, using unlabeled raw sensor data to
learn the dynamics about robotic physical interaction. Here we
present the architecture of tactile-conditioned vision prediction.
For tactile prediction conditioned on vision data, we switch
position of these two modalities while remaining the rest of
the framework. The predictive model consist of three main
modules: (i) individual modality modules that extract distinct
features from the vision, tactile and action sensory input into
the latent space. (ii) multi-modal sensory fusion module that
learn a compressed shared representation based on the latent
features in different modalities. (iii) CDNA-based prediction
module that performs motion prediction by modelling pixel-wise
transformation over time.

2.2.2 Individual modality module
The individual modality modules aim to encode the raw sensory

inputs into latent features through deep neural networks, during
which the high-resolution spatial data is compressed into the more
compact latent representations. This data compression technique
effectively captures the underlying patterns of the input data, as
well as reducing the computational costs during the model training
(Mahendran andVedaldi, 2015; Han et al., 2015).More importantly,
the sensory data of different modalities are mapped into a shared
latent space, which facilitates the subsequent multi-modal fusion.

Given the vision and tactile frame at the previous timestep
Vt−1 ∈ ℝ256×256×3 and Tt−1 ∈ ℝ256×256×3, latent features are
extracted by the corresponding encoders for each modality,
formulated as Equation 3:

fT,t−1 = ET (Tt−1)

fV,t−1 = EV (Vt−1)
(3)

where ET, and EV denote the encoders with respect to vision
and tactile.

As illustrated in Figure 1, both ET, and EV are constructed
with stacked layers of CNNs and Convolutional Long Short-
Term Memory (Conv-LSTMs). Followed by the ReLU activation
layers, the CNNs mainly serve to compress the feature as well
as extract the spatial information from the frames. Compared to
the standard LSTM architecture, the Conv-LSTMs employed in
the model replace the internal fully connected gate operations
with convolution, which can capture both temporal dynamics and
spatial dependencies within the sequential data (Shi et al., 2015).
To reduce the computation burden of the model, ET employs a
lighter architecture of Conv-LSTMs (two layers with 32 and 64
filters respectively) than EV(four layers with 32, 32, 64 and 64 filters
respectively), which is sufficient as the tactile sensory fulfill its
complementary role in the vision prediction tasks. After encoding,
both vision and tactile features are compressed to the same spatial
size of 64× 32× 32.
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FIGURE 1
Architecture of the prediction model: vision and tactile data are encoded through a attached Conv-LSTM based network. The multi-modal fusion
module combines the vision, tactile and reshaped action data in the latent space, which consists of a layer of Conv-LSTM and an attention mechanism.
The prediction is based of the CDNA mechanism, which models pixel-wise transformation with a series of transformation kernels. (A) Model overview:
here the architecture of the tactile-conditioned vision prediction model is presented, which is applicable to the tactile prediction as well. (B) Details of
the building blocks: the Conv-LSTM layer is followed by layer normalization to stabilize the training. The outputs of both convolution and transposed
convolution are activated by the Rectified Linear Unit (ReLU) functions.

2.2.3 Multi-modal sensory fusion module
While both vision and tactile data are represented as image

sequences, there is still inherent modality difference between them.
In latent space, the compressed feature for each modality contains
the distinct characteristics of the original sensory source, and simple
concatenation is insufficient to obtain complementary information
capture the complementary information they provide.Therefore, it is
crucial to use a proper fusionmechanismwhich is able to resolve the
heterogeneity as well as efficiently extract the correlation between
vision and touch. Figure 2 illustrated the internal framework of
the multi-modal fusion module, which takes the latent values of
vision and touch as input to learn a shared representation of
two sensory modalities, as well as combining robot action data
to form the integrated features for prediction. The vision and
tactile data are concatenated in the channel dimension before fed
into a layer of Conv-LSTM followed by a cross-modality attention
block. Compared to simple concatenation, the use of Conv-LSTM

reserves the spatial-temporal dynamics of the integrated data, which
is crucial for handling the sequential data. In addition, we use
the Convolutional Block Attention Module (CBAM) that generates
attention maps along both the channel and spatial dimensions
before multiplied with the input (Woo et al., 2018). The attention
mechanism applied to the combined vision-tactile features enhances
the model performance as it allows the model to selectively focus on
the information that is more relevant to the formulated prediction
problem, enablingmore effective representations of themulti-modal
features. Unlike vision and tactile data, the raw data of robot action
is a 1-dimension vector that contains six position values related to
the end-effector. Therefore, preprocessing is required to match the
unaligned sensory data in different domains. The action data is first
expanded to contain two extra dimensions as the vision-tactile data.
Then the reshaped action data is broadcasted across the spatial extent
of the vision-tactile feature map before concatenation in the channel
dimension (which is achieved by replicating the action values along
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FIGURE 2
Architecture of the multi-modal sensory fusion module: the latent features of the vision and tactile sensation are concatenated along the channel
dimension before fed into two layers of Conv-LSTM that extract the spatial and temporal dynamics from the combined features. An attention block is
incorporated to reweigh the feature values, thereby enabling the model to prioritize the most relevant information for accurate prediction. To integrate
robot action information, the raw action data is reshaped and broadcasted across the spatial extent of the vision-tactile feature map, ensuring an
aligned and cohesive representation for further processing and combination.

the newly introduced dimensions to ensure compatible size with the
vision-tactile features).The combined feature is then fed in to aCNN
layer to be reweighted with learnable coefficient.

2.2.4 Convolutional dynamic neural advection
(CDNA) based prediction module

Originally proposed by Finn et al. (2016), the CDNA-based
prediction module explicitly models the pixel motions between
frames through a set of transformation kernels. Compared to
video prediction approaches that either reconstruct the entire
future frames from scratch or focus on the implicit internal
state (Srivastava et al., 2015; Mathieu et al., 2015; Oh et al., 2015),
CDNA provides a more efficient and accurate motion prediction,
especially in robotic manipulation tasks with deterministic motion
patterns. As illustrated in Figure 1, the output of the multi-modal
fusion module fc,t−1 is fed into two network branches, one is for
predicting a set of transformed vision frames based on the previous
frame and the learnable transformation kernels, the other is for
generating the corresponding masks that weight the impact of
different transformation estimations on the final prediction. In order
to generate the transformation kernels, the combined feature fc,t−1 is
fed to a fully connected layer denoted as FC before being reshaped
into the desired dimensions, as detailed in Equations 4, 5:

Kn = reshape(FC( fc,t−1)) (4)

K′n = Kn

∑Kn
(5)

where Kn, n = 1,2,⋅,N, denotes the transformation kernels, each
kernel is of size m×m (in this work, N = 10 and m = 5), K′n is the
normalized kernels.

The normalized kernels are then applied to the previous vision
frame Vt − 1 to predict a set of transformation images for each pixel
(x,y), as shown in Equation 6:

Jnt (x,y) = ∑
i∈(−m,m)

∑
j∈(−m,m)

K′n (i, j)Vt−1 (x− i,y− j) (6)

where Jnt , n = 1,2,⋅,N denotes the transformation images.
On the other hand, the masks that weight the transformation

images Ξc, c = 1,2,⋅;,N+1, are obtained by applying a channel-
wise softmax to the output of another branch of the network,

which contains Conv-LSTMs interspersed with deconvolutional
layers. The original input vision frame is appended into the
transformation images to match the extra mask channel that
corresponds to static background. Therefore, the final predicted
vision frames V̂ t is obtained by compositing the masks and
transformed images using Equation 7:

V̂t =∑
c

̂Jct ⊙Ξc (7)

where c denotes the channel and ⊙ refers to the element-wise
multiplication.

2.3 Experiment setup

In order to accomplish the predictive tasks of interaction,
we build a robotic system with multi-modal perception,
as shown in Figure 3. Here we describe the hardware setting of
the system, the data collection procedure, and the vision-tactile
dataset of robot-object interaction built for training and testing the
model that will be elaborated in the next section.

2.3.1 Hardware setting
As illustrated in Figure 3, a Universal Robots UR5 robot arm is

equipped with a 3D-printed end-effector to automatically interact
with the objects. A webcam is set up with support at the side of the
arm to capture videos of interaction scenes. In addition, we mount
a tactile sensor called DIGIT (Lambeta et al., 2020) to the holder on
the end-effector for collecting the raw tactile sequences. DIGIT is an
optical-based tactile sensor that captures fine details of the contact
surface at high spatial resolution that surpasses other types of tactile
sensors, such as resistive-based (Choi, 2010; Kim et al., 2009; Zhang
and Miki, 2010), capacitive-based (Lee et al., 2008), piezoelectric-
based sensors (Zhang et al., 2006; Noda et al., 2006; 2009), etc. The
surface of DIGIT is a soft, transparent silicone gel that deforms
upon contact, underneath which is a camera that captures the
deformation patterns of the gel with an array of LEDs illuminating
the sensing field.This specific design allowsDIGIT to generate three-
channel tactile images about the texture and geometry of the contact
surface, which benefits the multi-modal fusion of vision and touch
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FIGURE 3
Experiment setup: the interaction system consists of a UR5 robot arm that is equipped with a DIGIT tactile sensor to collect the contact information. A
webcam is set aside to capture the visual scene of the physical interactions. The graphs on the right show the details of the 3D-printed end-effector
and the sample images of the vision-based tactile sensor.

by avoiding the obstacle in developing network architectures caused
by the modality difference. Additionally, compared to another type
of vision-based tactile sensor Gelsight (Yuan et al., 2017), DIGIT
provide a more compact and low-cost solution with a trade-off
in resolution and sensitivity. However, with an image resolution
of 640∗480 sufficient for prediction tasks and greater ease of
integration in the robotic system, DIGIT is the optimal choice
for our work.

2.3.2 Data collection
The UR5 robot arm is connected to a PC device and controlled

through the URScript in Python. During the data collection, the
robotic system is designed to perform a series of straight-line object
interaction trials. To accomplish this, the initial position of the end-
effector is adjusted to allow the contact surface of the tactile sensor
to be close above the object, and then the robot arm is controlled
to move horizontally along either X or Y-axis for a certain distance
in each trial. In this way, there is continuous contact between the
tactile sensor and the object, providing efficient physical interaction
throughout the motion of the robot. We collected the synchronized
data of vision, tactile and action at a sample rate of 20 frames
per second, in which both vision and tactile data are stored as
image sequences, and the action data used in this work is the
real-time position of the robot arm’s end-effector at each sampled
time step.

2.3.3 Object interaction dataset
The dataset consists of 250 interaction trials of different objects,

including screws of 100 trials, ball with distinct textures in three
sizes (50 trials each size). In the tasks explored, the robot interacts
with objects by applying forces that induce both sliding and rolling
motions. The interactions are carefully controlled to ensure they are
conducted in a contact-rich manner, maintaining consistent contact
between the gel surface of the tactile sensor and the object. Due
to the relative motion between the robot and the object, combined

with the complex dynamics involved, these interactions provide
an ideal setting for investigating multi-modal sensing. In such
scenarios, relying on a single modality may not fully capture the
critical aspects of the interaction, highlighting the importance of
integrating multiple sensory inputs. Each trial contains 40 frames
of synchronized vision, tactile and action data (position of the end-
effector), in which the vision and tactile frames are preprocessed
into RGB images with a size of 256 × 256 × 3. In order to augment
the data with diversity, the position of the webcam has been moved
in different trials to generate a diverse viewpoint. In addition, the
motion parameters (velocity, acceleration, distance) that control
the movement of the robot arm and the initial contact points are
adjusted in different trials to create a more diverse set of interaction
scenarios.

2.3.4 Screw interaction subset
For experiments in this work, a subset of the above object

interaction dataset has been used for computation efficiency,
which contains 60 interaction trials of screws. The screw dataset
has been split into a training dataset of 40 trials, a validation
dataset of 15 trials and a test dataset of 5 trials. Each trial
within the dataset has been trimmed into a series of sequences
with 15 frames, generating sufficient samples for training
the model.

3 Results

In this section, we aim to evaluate the impact of integrating
multi-modal sensory input during physical robot interactions with
objects, investigating the cross-modality connection and influence
between vision and touch in the scenario of robotic predictive
learning. Therefore, based on the experiment setup introduced
in 2.2, we perform a series of prediction trials that compare the
proposed multi-modal prediction system with baseline models that
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remove certain sensation. More specifically, we compare the tactile-
conditioned vision prediction models with its tactile-excluded
counterpart to investigate the significance of tactile sensation.
Same experiments are conducted for tactile prediction model
conditioning on visual sensing. In addition, the contribution of
action data is also explored by comparative analysis between the
aforementioned models and their non-action counterparts. Both
qualitative and quantitative evaluation are conducted to provide
more comprehensive insights.

3.1 Implementation details

We test the models on the aforementioned screw interaction
dataset, which contains 60 interactive trials, each of which consists
of 40 frames of synchronized vision, tactile and action data. Each
interactive trials are divided in sequences of 15 frames, generating
1,500 interaction sequences in total. Before fed into the model, the
vision and tactile images are resized to ℝ256×256×3. The Models are
developed and trained in PyTorch onNvidia RTXA1000GPU’s with
an initial learning rate of 0.001.

3.1.1 Evaluation metrics
The quantitative evaluations are performed using two metrics.

Mean Absolute Error (MAE) is used to measure the discrepancy
between the predicted frames and the ground truth at the pixel
level. The other metric is Structural Similarity (SSIM) that evaluates
changes in structural information, luminance, and contrast between
the predicted and actual images (Wang et al., 2004). The SSIM
index given by Equation 8 can vary between −1 and 1, where a value
of 1 indicates perfect similarity:

SSIM (x,y) =
(2μxμy + c1)(2σxy + c2)

(μ2x + μ
2
y + c1)(σ

2
x + σ2y + c2)

(8)

where x and ydenote thewindowed sections of the predicted and
actual images, respectively; μx and μy are the average pixel values; σ

2
x

and σ2y refer to the variances;σxy denote the covariance; c1 and c2 are
constants used to stabilize the division.

3.2 Architecture comparison

In order to optimize the multi-modal sensory fusion, three
architectures of the fusion modules are evaluated: (a) simple
concatenation between vision and tactile data; (b) apply a layer
of CNN after concatenation; (c) the proposed architecture in
2.3.3 that employs Conv-LSTM as well as a multi-modal attention
mechanism. The architectures are tested on a subset of the screw
interaction dataset, which contains 30 interaction trials and are
divided into a training, validation and test set with 18, 8 and
4 trials respectively. Table 1 shows the quantitative results of
different architecture in the tactile-conditioned vision prediction
task, including the average MAE and SSIM over the prediction
horizon of 14 time steps.

Table 1 shows that while the use of CNN improves the model
performance, the proposed model equipped with Conv-LSTM and
attention mechanism performs best over the whole prediction time

TABLE 1 Average tactile-conditioned vision prediction performance of
different fusion architecture: baseline 1 refers to fusion through simple
concatenation, baseline 2 refers to fusion with CNN. The proposed
fusion mechanism outperforms the baseline models in terms of both
MAE and SSIM scores.

Model Baseline1 Baseline2 Proposed model

MAE↓ 0.0143 0.0141 0.0123

SSIM↑ 0.9677 0.9663 0.9687

Bold values indicate the best performance for each metric across the models compared.

range.Therefore, the following evaluations are implementedwith the
proposed fusion architecture.

3.3 Hyper-parameter selection

As stated in 2.1, the prediction of future frames is based on
the current frame and a set of context frames. In implementations,
the model performs sequential prediction by using the frame from
the previous time step as its input, and then iteratively generating
predictions for multiple future frames. The context frames are
introduced during the training process, but not for validation and
testing. Given a specific number of context frames N, the prediction
of the first N frames is based on the ground truth data, while
the prediction afterwards will take the predicted results as the
input.Therefore, the number of context frames is a hyper-parameter
that might affect the performance of the model. Table shows the
performance of models trained with various selection of context
numbers in tactile-conditioned vision prediction task, the screw
subset used in 3.2 serves as the training dataset in this case as well.

It can be observed in Table 2 that the prediction performance
peaks with 4 context frames. While the employment of historic
frames assist the model in capturing the temporal dynamics, they
might also cause overfitting beyond certain point. Therefore, we
have selected the contextual frames of 4 in the training stage,
which not only ensures the production of reasonable results but also
grants the model sufficient autonomy for independent inference,
achieving a balance between providing adequate historical context
and maintaining the model’s predictive capabilities.

3.4 Action-conditioned interaction
prediction combining vision and tactile

3.4.1 Tactile-conditioned vision prediction
In this section, we explore the action-conditioned vision

prediction of physical robot interaction with the inclusion of
tactile sensation, which is supposed to complement the system’s
perception with contact-related local information. Figure 4 shows
the qualitative results over time steps, the error maps between
ground truth and predicted frames are calculated to obtain a more
explicit observation of the discrepancy. It can be seen that prediction
quality of the visual scene degrades over time. While the model
manages to predict the motion clearly in the first few frames,
the results become blurry as the uncertainty increases over the
time range.

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2024.1407519
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Li and Thuruthel 10.3389/frobt.2024.1407519

TABLE 2 Average tactile-conditioned vision prediction performance of models with different number of context frames: the prediction performance
over both MAE and SSIM metrics improves with the increasing context frames, and the context frame number of 4 is selected to be used in this paper
considering the total sequence length.

Number of context frames 1 2 3 4 5

MAE↓ 0.0512 0.0265 0.0173 0.0123 0.0135

SSIM↑ 0.8691 0.9304 0.9571 0.9687 0.9623

FIGURE 4
Qualitative results of tactile-conditioned vision prediction over long time horizon, the ground truth and predicted frames are shown at every three time
steps from t+1 to t+13, the last row depicts the error map that show the prediction error more explicitly.

From the error map, it can be observed that the prediction error
is more salient at the edge of the moving robot and object, while
the static background is more accurately constructed. In addition,
the blur occurs across the location gap between the ground truth
and prediction, which indicates the model’s effort in capturing the
dynamics of the system.This blurring effect, especially noticeable in
the direction of movement, underscores the model’s partial success
in recognizing and following the correctmotion trajectory.However,
it also reflects the model’s limitations in precisely rendering the
motion details over long time steps, resulting in a less clear depiction
of dynamic interactions within the scene.

Figure 5 depicted the quantitative prediction performance over
long time horizon, in which the MAE and SSIM at each time step
are compared between the vision prediction models with different
complementary sensation. It is noteworthy that the impact of robot
action data is also evaluated. Compared to sensory inputs such as
vision and touch, action data reveals how specific interventions can
alter the state of the environment, which is essential to gaining
insight into the dynamics of cause and effect.The action-conditioned
model with tactile sensation seems to perform slightly worse than
its single-modality counterpart. While the two models produce
results at similar level during the early stages, their performance gap
increases over time.This is an intriguing outcome as tactile sensation
is typically expected to enhance the model performance, especially

in scenarios involving contact interactions, However, it could be
reasonable due to several factors.

To start with, the interaction setting of robotic-object interaction
in our experiment is relatively simple, where the motion of the
system is predictable anddeterministicwith predefined robot action.
In addition, there is no obvious slippage at the contact surface,
which could impair the variability of tactile sensation that contribute
to more complex manipulation tasks. Therefore, given the current
setting, the visual scenes coupled with the action data specifying
the movement commands could sufficiently capture the dynamics
of the interaction, which dominates over the impact of tactile
information.

Compared to tactile sensation, action data exert more impact on
the prediction performance. It can be observed from the line plots
that the single-modality vision prediction without action produces
the worst outcome in terms of both MAE and SSIM, which is
greatly improved by the inclusion of action data. This observation
offer valuable insight into the dynamics of learning and prediction.
Since action data contains direct information related to the active
motion intentions of the robot, its inclusion can greatly reduce the
uncertainty in prediction. In our interaction settingswhere the robot
pushes objects in a single direction, action data can provide critical
information of the intended direction, which allows the model to
produce more accurate predictions.
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FIGURE 5
Quantitative evaluation of tactile-conditioned vision prediction over the long time horizon:the line plots illustrate the performance comparison
between models with different sensation combination, including the tactile-conditioned vision prediction model (red line), single-modality baseline
model (blue line), and their counterparts without action data (yellow/purple line). The graph on the left shows the MAE value of each model over 14
time steps, indicating the prediction accuracy. And the graph on the right compares the Structural Similarity Index Measure (SSIM) of the models.

It can be observed in both MAE and SSIM plots that the best
performance of all models is achieved at time step 4, which is
aligned with the results presented by Finn et al. (2016). Since the
initialization of the prediction model is influenced by the utilization
of context frames (which is 4 in this paper) during training, it
is plausible that the contextual information enables the model
to capture the short-term temporal dependencies more effectively
within the range of the contextual frames, which results in the peak
prediction performance.

Table 3 compares the average prediction performance of vision
prediction with different sensation combination over the full
prediction horizon of 14 time steps, providing an overall evaluation
of the models’ capability. While the action-conditioned model
outperformsothersensationconditions, thetactile-conditionedmodel
without action performs worst in terms of both average MAE and
SSIM. The comparison between single-modality vision prediction
without action to its tactile-conditioned counterpart indicates that the
inclusion of tactile in the absence of action guidance could introduce
additional complexity instead of improvement to the prediction
problem. This is in line with the aforementioned analysis that the
impact of tactile sensation in simple and deterministic interactive
setting could be impaired in contrast with the critical role of action
data in enhancing the prediction accuracy.

To further investigate the cross-modality influence betweenvision
and touch in more specific scenarios, we conduct prediction tasks
under occlusion conditions. This involves blocking the contact areas
between the robot and objects in the interaction videos to simulate
circumstanceswith limitedvisual information.Actiondata is excluded
to eliminate additional influencing variables. Figure 6 presents the

qualitative results over time steps, with the occluded sequences shown
in thefirst rowandpixel-wise differencemaps for the tactile-enhanced
and single modality models displayed in the third and fifth rows,
respectively. Consistent with previous findings, an increase in blur
is observed over time for both models. However, in contrast to the
relatively uniform blur distribution in experiments with full vision
access, the occlusion scenarios show more significant mismatches
aroundthecontactareas,highlightingtheimpactofrestrictedvisionon
prediction performance.Under this condition, while severe distortion
occurstotheinteractingobjectsusingsinglemodalitymodel, thetactile
enhanced model demonstrates a superior ability to restore the shapes
of objectswithin the occluded areas, which indicates that the inclusion
of tactile sensationcompensates for themissingvisual informationand
provides crucial contact details.

The progressive quantitative results illustrated in Figure 7
highlight the complementary effect of tactile sensory input when
vision is impaired. The tactile-enhanced model consistently
outperforms its single-modality counterparts across the entire
prediction horizon, as evidenced by both MAE and SSIM metrics.
And the increasing performance gap over time aligns with the
qualitative results shown in Figure 6, where the benefits of tactile
sensing is more significant in the later stage of prediction, displaying
robustness over long time horizon. Additionally, the model
conditioned on tactile data produce better results under occlusion
than with fully available vision. This surprising phenomenon
indicates that while tactile sensing may bring extra noises under
simple interaction settings like straight-line pushing, it plays a
crucial role in robotic perception in challenging scenarios with
vision loss. As found in previous research, tactile sensing can
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TABLE 3 Average vision prediction performance with different sensation integration conditions.

Model Vision prediction
(without action)

Vision prediction Tactile-conditioned
vision prediction (without

action)

Tactile-conditioned
vision prediction

MAE↓ 0.0159 0.0128 0.0332 0.0135

SSIM↑ 0.9606 0.9699 0.9456 0.9661

Bold values indicate the best performance for each metric across the models compared.

FIGURE 6
Qualitative results of vision prediction under occlusion: The first row shows the processed vision data with blocked contact area. Predictions with and
without tactile sensation are shown at every three time steps from t+1 to t+13, the 3rd and 5th row shows the error map with pixel-wise difference
between the prediction and the ground truth.

become the primary source of information when visual input is
compromised, enhancing overall system perception with its high
sensitivity to detecting pressure and texture variation (Zou et al.,
2017).This ability of tactile sensors to provide detailed and localized
feedback becomes particularly valuable in scenarios where visual
data is insufficient or occluded.

On the contrary, there is performance degradation for the
vision-only model when occlusion occurs, as illustrated by both
MAE and SSIM curves. Vision-based models rely heavily on
the availability of clear and comprehensive visual input for
accurate perception and prediction. To this end, the loss of
essential information about the environment and object interactions
may introduce increased uncertainty, leading to limited inferring
capability. While the interaction system moves as a cohesive unit in

straight-line movement, there is relative motion at the contact point
between the robot and objects, the deprived information of which
brings difficulty to the single-modality prediction. This limitation
underscores the challenges faced by single-modality visual models
in scenarios where vision is impaired.

3.4.2 Vision-conditioned tactile prediction
In this section, we explore the vision-conditioned tactile

prediction of physical robot interaction with the inclusion of
vision sensation. While the inclusion of tactile sensation into
vision prediction yields negligible improvement, as discussed
in previous section, the reverse scenario—enhancing tactile
prediction with visual information, might be different due to the
inherent modality difference between vision and touch. Hence,
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FIGURE 7
Quantitative evaluation of tactile-conditioned vision prediction under occlusion: the line plots illustrate the performance comparison between
tactile-conditioned vision prediction model (red line) and single-modality baseline model (blue line), both of which excludes action data and are
employed with blocked visual input. The dotted lines are their counterparts with full vision access. The graph on the left shows the MAE value of each
model over 14 time steps, indicating the prediction accuracy. And the graph on the right compares the Structural Similarity Index Measure (SSIM) of
the models.

we investigate how visual data, characterized by its expansive
and contextual information of the scene, complements the more
localized tactile feedback.

Figure 8 shows the qualitative prediction results over time,
comparing the action-conditioned tactile predictionmodel with and
without the inclusion of vision sensation. The vision-based tactile
sensor produced tactile images that visualize the deformation of
contact surface which locates the contact position of the interaction
objects. Rows 3 and 5 of the figure display the predicted frames
overlaid with a mask representing the discrepancy from the ground
truth.Thismask highlights areas where the prediction deviates from
the actual frame by a pixel value exceeding a specified threshold.

The result indicates a decline in prediction accuracy for both
models over time, characterized by blurring and a lag in object
position relative to the ground truth. However, incorporating
visual data significantly enhances the prediction performance,
especially in terms of the robustness across extended time sequences.
An analysis of the progressively depicted predictions in rows
2 and 4 of Figure 8 reveals that the model augmented with visual
information generates more plausible predictions that more closely
align with the ground truth both in terms of clarity and color
saturation. In addition, to facilitate observation, the predictions
of both models have been masked according to varying pixel-
wise error thresholds. In the initial phase of the time horizon,
while the vision-enhanced model yields highly accurate prediction
with negligible masked error over the threshold of 15 pixel value
(15 out of 255), significant errors are evident in the vision-only
predictions with a higher threshold of 20. As time progresses,
the discrepancy between the vision-enhanced prediction and the
ground truthmainlymanifest at the leading edge ofmoving features.
In contrast, the masked error in non-tactile vision prediction
become more widely-distributed, affecting the entire scope of the
tactile image.

Figure 9 depicted the quantitative prediction performance
over long time horizon, in which the MAE and SSIM at each

time step are compared between the tactile prediction models
with different complimentary sensation. The vision-enhanced
tactile prediction model yields a superior prediction performance
than other models in terms of both MAE and SSIM, which
indicates that the integration of visual information plays a
pivotal role in enhancing the quality of tactile predictions. In
addition, the vision-enhancedmodel also demonstrates outstanding
long-term prediction stability, exhibiting milder degradation in
performance across the extended temporal horizon.In contrast,
the MAE for the other models escalates sharply with time,
underlining the enhanced reliability of the vision-enhanced
approach. Similarly, the vision-enhanced tactile prediction model
rapidly achieves SSIM scores above the 0.95 threshold, presenting
efficient prediction in the short term. For long-term prediction,
the slower declining rate also indicates that visual information
contributes significantly to maintaining structural fidelity
over time.

The single-modality tactile prediction with action data produces
worse predictions compared to its counterpart excluding the action
data. However, when combined with visual sensation, the action-
conditioned model performs better than the non-action one.
This may be caused by the role of visual data in providing a
broader contextual understanding of the interactive scene that tactile
sensation lacks. In physical interaction tasks, the visual modality
captures the spatial dynamics and interactions that are crucial for
interpreting the implications of actions. When tactile prediction
models are deprived of this context, action data alone would be
insufficient to accurately anticipate future states. Instead, it may lead
to an overemphasis on the direct physical consequences of actions,
without accounting for the larger environmental context, resulting
in poorer predictions. Conversely, when visual information is
present, it can effectively contextualize the action data, enabling the
model to make more informed predictions about how actions will
affect the tactile sensory inputs. This suggests a synergistic interplay
between vision and action data in tactile prediction, where vision
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FIGURE 8
Qualitative results of vision-conditioned tactile prediction over long time horizon, the ground truth and predicted frames are shown at every three time
steps from t+1 to t+13, the 3rd and 5th row shows the predictions masked with pixel-wise difference between the prediction and the ground truth
above a specific threshold.

provides the necessary framework for action data to bemeaningfully
incorporated.

Table 4 compares the average prediction performance of tactile
prediction with different sensation combination over the full
prediction horizon of 14 time steps, in which the vision-enhanced
tactilepredictionmodeloutperformsthetactile-onlypredictionmodel
either with or without action data in both evaluation metrics. And
the action-conditioned model enhanced by vision yields the lowest
MAE and Highest SSIM, which suggests its overall prediction’s high
structural and textural consistency with the ground truth.

In conclusion, the inclusion of vision sensation into tactile
prediction models is crucial to improves the system’s cause-effect
understanding and perception during physical robot interaction. And
a cross-modality influence has been found between vision and action
in tactile prediction, indicating the multiple sensations are deeply
intertwined with the environment dynamics during interaction.

4 Discussion

It has been commonly acknowledged that humans rely on the
predictive learning of multi-modal sensorimotor signals to perform
complex interaction tasks in the dynamic physical world, this is

bionically based on the nature of human cognition where sensations
such as vision and touch are highly intertwined. In this work, we
aim to explore the synergy and cross-modality influence between
vision and tactile sensory inputs in robotics. Our goal is to enhance
the predictive learning of physical robot interaction through the
integration of multiple sensing modalities, which is essential for
developing the next-generation of intelligent robotic systems with
more advanced perception and manipulation capabilities in the
complex real-world setting. To this end, we introduce amulti-modal
fusionmechanism into the well-known video prediction framework
Convolutional Dynamic Neural Advection (CDNA) (Finn et al.,
2016), based on which we conduct a series of interaction prediction
experiments involving robot-object interaction tasks using different
combination of sensory input. The quantitative and qualitative
evaluation of the prediction performance provide valuable insights
into the connection between vision and touch in the robot’s
understanding of cause-and-effect relationship during physical
interaction. In addition, the scope of this work is not restricted
within vision and touch like other related studies, but is extended
to include action data that reveals the system dynamics into
investigation. This inclusion of action distinguishes our work from
static analysis of vision-tactile fusion, uncovering the complexity of
dynamics underlying the motion.
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FIGURE 9
Quantitative evaluation of vision-conditioned tactile prediction over long time horizon: the line plots illustrate the performance comparison between
models with different sensation combination, including the vision-conditioned tactile prediction model (red line), single-modality baseline model (blue
line), and their counterparts without action data (yellow/purple line). The graph on the left shows the MAE value of each model over 14 time steps,
indicating the prediction accuracy. And the graph on the right compares the Structural Similarity Index Measure (SSIM) of the models.

TABLE 4 Average tactile prediction performance with different sensation integration conditions.

Model Tactile prediction
(without action)

Tactile prediction Vision-conditioned
tactile prediction
(without action)

Vision-conditioned
tactile prediction

MAE↓ 0.0330 0.0339 0.0291 0.0237

SSIM↑ 0.9479 0.9453 0.9544 0.9626

Bold values indicate the best performance for each metric across the models compared.

The quantitative and qualitative results of tactile prediction
with different sensory combination reveal several invaluable insights
into the synergy between vision, tactile and action inputs.
The inclusion of visual sensation into action-conditioned tactile
prediction yields superior performance to other models, which
underscores the significance of visual sensing in providing broader
scene comprehension that complement the more localized contact
information of tactile data. In addition, the synergy between
vision and action has been uncovered by a seemingly counter-
intuitive observation, where the action data fails to enhance the
performance of tactile prediction in the absence of visual inputs.
This entanglement between action and vision is comprehensible as
the vision data provides the contextual information of the overall
interaction scene that complement the interpretation and utilization
of action data for the robotic perception system. Therefore, our
enhancedmulti-modal predictionmodel of physical robot interaction
successfully develops the inner connection between vision, tactile
and action, which aligns with human cognition, opens up new
possibilities towards more comprehensive robotic perception systems
that enable more intelligent and adaptive interaction with the
environment.

Alternatively, the results of vision prediction provide a more
complicated scenario, where the inclusion of tactile sensationmakes
negligible impact on the predictability of the model, producing
outcomes even slightly less accurate than the single-modality vision
prediction model. There is reasonable possibility that the simple
interaction setting of straight-line robot-object interaction account
for the impaired significance of tactile data, especially in presence
of action data that provide more direct motion information. While
the tactile sensation excels in offering necessary contact information
during complex manipulation tasks such as in-hand manipulation,
in current tasks, the lack of complex relative movement between
the robot and object restricts its efficient involvement in prediction.
The experiments with occluded vision verify this explanation to
some extent, in which the introduction of impaired vision around
critical contact area brings different results. While the vision model
produces distorted inference over time, the tactile-enhanced model
demonstrated superior performance under occlusion conditions.
The integration of tactile sensory input compensates for the loss
of visual data, providing detailed and localized feedback about
the object’s properties and interactions. Tactile sensors are highly
sensitive to variations in pressure and texture, enabling the model
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to maintain accurate predictions even when visual information
is partially or entirely occluded. This sensitivity is particularly
advantageous in scenarios where precise physical interactions are
critical, such as tool-use inmedical applications. Additionally, action
data also plays a crucial role in enhancing the prediction accuracy in
scene estimation, which reflects the synergetic effect of integrating
environment dynamics with overall visual context.

It is noteworthy that the asymmetric results between vision and
tactile prediction implies the inherent modality difference between
vision and touch, despite the influence of experiment setting. Vision
provides broader contextual information from a global perspective,
which facilitates the anticipation of interactions across the entire
observed scene. Tactile sensing, in contrast, yields high-resolution
local contact information critical to immediate interaction details,
such as texture, pressure, and temperature.Therefore, in the scenario
of interaction prediction, while vision can easily complement tactile
with its rich spatial information, tactile sensing may not always
enhance vision predictions to the same extent. This limitation can
arise because tactile data, with its focus on immediate, localized
contact information, may not provide additional predictive value
for the broader, visually observable dynamics of an interaction.
However, tactile can complement the limitations of vision in certain
case, such as self-occlusion in manipulation and control tasks
with limited light resource. It is estimable that with more efficient
multi-modal fusion mechanism, the integration of tactile sensation
can lead to more adaptive and dexterous manipulation system.
Therefore, in future work, more generalised and effective multi-
modal perception system should be developed to accommodate
efficient cross-modal integration.

5 Conclusion

In this work, we presented an enhanced predictive model of
physical robot interaction thatachieves integrationofvisionandtactile
sensation, aiming to investigate the connection between multiple
sensory input. To evaluate the model, we developed a robotic system
for object interactive tasks, which is equipped with comprehensive
sensory inputs, including recorded visual scene and vision-based
tactile sequences. A robot-object interaction dataset containing
250 trials with different object was created to store synchronized
data of vision, tactile feedback, and robot actions. Through both
qualitative and quantitative analysis, the proposed vision-enhanced
tactile prediction model produced promising result that underscores
the cross-modality influence between different sensation. And the
superior performance of tactile-conditioned vision prediction model
under partial occlusion reveals the complementary effect between
vision and touch. Additionally, the role of action in complementing
prediction performance was also evaluated.

Our thorough analysis provides insightful information
regarding the nature of interdependence and modality differences

between vision and touch. Consequently, this work opens the
possibilities towards more intelligent robotic perception system that
narrows the gap between artificial agents and human recognition.

In future work, the proposed model could be integrated with
state-of-the-art control mechanisms such as reinforcement learning,
which enablesmore adaptivemanipulation in complex and dynamic
physical settings through efficient multi-modal representation.
Furthermore, the promising results in tactile prediction open
avenues for future research in physical interaction, such as tool-
use in robotic surgery, automation in healthcare, etc. In conclusion,
our work demonstrates the potential of multi-modal sensory fusion
in enhancing the robotic perception during physical interaction,
which presents promising prospect for innovation and application
in diverse fields.
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