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It has been proven that robot-assisted rehabilitation training can effectively
promote the recovery of upper-limb motor function in post-stroke patients.
Increasing patients’ active participation by providing assist-as-needed (AAN)
control strategies is key to the effectiveness of robot-assisted rehabilitation
training. In this paper, a greedy assist-as-needed (GAAN) controller based on
radial basis function (RBF) network combined with 3 degrees of freedom (3-
DOF) potential constraints was proposed to provide AAN interactive forces of
an end-effect upper limb rehabilitation robot. The proposed 3-DOF potential
fields were adopted to constrain the tangential motions of three kinds of typical
target trajectories (one-dimensional (1D) lines, two-dimensional (2D) curves
and three-dimensional (3D) spirals) while the GAAN controller was designed
to estimate the motor capability of a subject and provide appropriate robot-
assisted forces. The co-simulation (Adams-Matlab/Simulink) experiments and
behavioral experiments on 10 healthy volunteers were conducted to validate
the utility of theGAANcontroller. The experimental results demonstrated that the
GAAN controller combined with 3-DOF potential field constraints enabled the
subjects to actively participate in kinds of tracking taskswhile keeping acceptable
tracking accuracies. 3D spirals could be better in stimulating subjects’ active
participationwhen compared to 1D and 2D target trajectories. The current GAAN
controller has the potential to be applied to existing commercial upper limb
rehabilitation robots.
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Assist-as-needed (AAN), 3-DOF potential field, radial basis function (RBF) network,
human-robot interaction, rehabilitation robot
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1 Introduction

Stroke is one of the leading causes of long-term disability in
adult persons worldwide (Veldema and Jansen, 2020). Accordingly,
there is a growing demand for treatments of limbmotor dysfunction
in post-stroke patients. Nevertheless, due to the surge in the
number of patients in the past decades, there is a rising demand
for labor-intensive rehabilitation treatments, which has posed a
significant burden on the national healthcare system (Johnson et al.,
2019). To address this issue, robot-assisted training has become
an important alternative in rehabilitation treatment. Rehabilitation
robots can provide long-term and repetitive training sessions,
customize different rehabilitation tasks according to the severity of
a patient’s injury. Robot-assisted rehabilitation has become one of
the important avenues to help post-patients restore their impaired
limb functions and return to the community (Banala et al., 2010;
Abdollahi et al., 2014; Ambrosini et al., 2017).

The control policies of rehabilitation robots can be divided
into passive, assistive, and resistive modes (Kwakkel et al., 2008;
Dalla Gasperina et al., 2021). Different from passivemode, the assistive
and resistive modes require active participation of a patient in
rehabilitation exercises. Previous literature has shown that for partially
muscle-injured patients, the intrinsic drive of patients’ subjective
movement intentions can generate plastic changes in the corresponding
neural areas of the brain (Cauraugh and Summers, 2005; Stinear et al.,
2008). Active patient participation is considered a crucial factor in
fostering neural plasticity and facilitating movement recovery during
rehabilitation treatment (Carr and Shepherd, 2010). To enhance
patients’ engagement in rehabilitation training, an assist-as-needed
(AAN) control strategy has been proposed. In the AAN policy,
the controller not only tracks the target position but also adjusts
the assisting torque based on a patient’s training performance
(Taherifar et al., 2018; Zhong et al., 2020). With the AAN control
scheme, the patients are able to independently perform prescribed
tasks, and the rehabilitation robot can provide assistance only when
deemednecessary.TheAANcontroller aims toofferminimal assistance
andmotivate a patient’smaximumactive participation, accelerating the
patient’s recovery process.

Prior studies have introduced AAN features into different
rehabilitation robot control systems using different strategies (Asl et al.,
2018; Asl et al., 2019; Lin et al., 2020). Emken et al. adopted a motion
adaptation model to drive an adaptive robot controller, incorporating
a spontaneously motivating forgetting factor to reduce assistance
(Emken et al., 2007). Xiao et al. proposed an adaptive PID controller
basedon radial basis function (RBF)neural network (namedRBF-PID)
to improve the trackingperformance (Xiao et al., 2023).Theparameters
of PID were updated by Jacobian matrix and RBF network using the
movement errors between a patient’s healthy and the affected sides. For
the estimation of a patient’s motor capability, the Gaussian RBF neural
network has been extensively employed due to its property of universal
approximation to any function (Girosi and Poggio, 1990). Since the
motor capability of a patient with neurological injury may different
in different workspace areas due to individual factors (e.g., fatigue, or
spasms, etc.), the Gaussian RBFmethod was used with the assumption
that the patient’s motor capability was directly related to the motion
displacements of the rehabilitation robot (Sanner and Kosha, 1999).

It has been showed that an adaptive controller with Gaussian RBF
was designed for the control of rehabilitation robot (Wolbrecht et al.,

2008). To ensure a subject’s continuous active participation in the
rehabilitation training, Wolbrecht et al. introduced a forgetting law
to reduce the robot’s assistive force when the tracking error was
below a certain threshold, effectively forgetting the previous estimation
of motor capability. But this method had its limitations due to
the interference from the forgetting factor. Ali Utku Pehlivan and
colleagues proposed a minimal AAN control algorithm which could
independently determine a subject’s motor capability at each moment
using a Kalman filter (Pehlivan et al., 2016). However, the minimal
AAN controller was constrained by the mechanical structure, and the
computational complexity increased exponentially with the increase in
mechanical degrees of freedom.

During rehabilitation training, the patients always tried to rely on
the rehabilitation robot to provide asmuch assistive force as possible to
complete the training task, inevitably leading to slackness and affecting
the effectiveness of rehabilitation training (Reinkensmeyer et al., 2007).
Nevertheless, based on the before-mentioned AAN control strategies
(Li et al., 2022; Yang et al., 2023),when the rehabilitation robot detected
a decrease of a patient’s exerted force, it was not able to determine
whether the decrease was resulted from the objective lack of motor
capability or subjective slackness. To solve this problem, Luo et al.
proposed a greedy assist-as-needed (GAAN) algorithm, which could
assess a subject’s motor capability by updating the weight vector of the
RBF network (Luo et al., 2019). The GAAN control strategy enabled
the RBF network to gradually learn the maximum force exerted by a
patient over time. Recently, Pezeshki et al. (2023) presented an adaptive
optimal control strategy to promote patients’ participation bymodeling
the interactive problem as a two-player non-zero-sum game.

Currently, the feasibility of GAAN control was verified on an
upper limb end-traction rehabilitation robot with linear motion
trajectories in a 2D plane. Tamantini et al. proposed a tunnel
and back wall strategy to constrain the motions of different
straight trajectories in 3D Cartesian space (Tamantini et al., 2023).
Meanwhile, the existed researches adopted a unified control strategy
to adjust a robot’s motion trajectories and enable the robot
to interact with the physical environment (Khansari-Zadeh and
Khatib, 2017; Feng et al., 2022). The unified control strategy could
generate expected trajectory and control constraints using non-
parametric potential functions and dissipative fields according to
different rehabilitation tasks, and ensure the stability of robot-
assisted rehabilitation training. Therefore, inspired by these studies
on robot-assisted rehabilitation, it is essential to investigate that
whether theGAANcontrol strategy can be effectively used for three-
dimensional robot-assisted training tasks based on 3-DOF potential
field constraints, since so far it has not been quantitatively evaluated
on a rehabilitation robot.

In thispaper, a3-DOFpotentialfield-constrainedGAANcontroller
was proposed. The GAAN controller was designed by combining an
AAN controller composed of RBF networks and a greedy algorithm to
monitor the exerted forces of a subject and provide appropriate robot-
assisted forces. The GAAN controller was tested with three types of
typical training trajectories (one-dimensional lines, two-dimensional
curves and three-dimensional spirals) via an end-effect upper limb
rehabilitation robot.Theproposed 3-DOFpotential fieldswere adopted
toconstrainthetangentialmotionsof threekindsof trainingtrajectories.
The effectiveness of the GAAN controller was verified both in
the co-simulation (Adams-Matlab/Simulink) and subjects’ behavioral
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FIGURE 1
Diagram of 3-DOF upper limb end-effect rehabilitation robot (UERR) and the greedy assist-as-needed (GAAN) control framework. (A) Structure
diagram. (B) Coordinate sketch-map and (C) The control framework of GAAN controller.

experiments. The outcomes indicate that the GAAN controller can be
extended to kinds of three-dimensional robot-assisted rehabilitation.

2 Materials and methods

2.1 Upper-limb end-effect rehabilitation
robot

A 3-DOF upper-limb end-effect rehabilitation robot (UERR),
consisted of two sets of symmetrical robotic arms, was adopted to
evaluate the performance of the GAAN controller. The two robotic
arms had symmetrical structure, and each arm was composed of a
base, two links, three motors, and an end-effector handle. Motors
were equippedwith angle encoders for joint anglemeasurement, and
a three-dimensional force sensor was embedded at the end-effector
handle to collect force data during human-robot interactions. In
current study, according to the handedness of a subject, only one
robotic arm was adopted to perform the human-robot interactive

task every time. The structure, coordinates and control framework
of the GANN strategy are shown in Figures 1A–C, respectively.

2.2 Dynamic equations of UERR

The dynamic equation for the patient and robot system
was given by:

M(q) ̈q+C(q, q̇)q̇+G(q)q+ f(q̇) = τ+ J(q)TFh

where q = [q1,q2,q3]
T is thematrix of three joint angles,M(q) ∈ R3×3

denotes the inertia matrix, C(q, q̇) ∈ R3×3 represents the Coriolis and
centrifugal matrix, G(q) ∈ R3×3 is the gravity matrix, f(q̇) ∈ R3 is
the friction torque matrix, and τ ∈ R3 represents the control torque
matrix applied by the motors, Fh ∈ R3 is the vector of forces applied
by the patient on the end effector of the robot, and J(q) ∈ R3×3 is the
robot Jacobian matrix related with the joint angles. The Lagrangian
method is employed in this paper to derive the matrices M, C, and
G. The Stribeck friction torque model (Bo and Pavelescu, 1982) is
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utilized to identify the friction term f(q̇). The definition of the robot
additional coordinates is shown in Figure 1B.

2.3 Greedy assist-as-needed (GAAN)
controller

2.3.1 The control framework of GAAN
The key to AAN control lies in determining the optimal level of

robotic assistance.This assistance should not be toominimal, in case
it may result in significant tracking errors due to insufficient motor
capability of some patients. Whereas, excessive assistance should be
avoided to prevent a patient complacency and passive engagement in
rehabilitation training (Pezeshki et al., 2023). Therefore, in order to
provide appropriate robotic assistance and simultaneously activate
a patient’s active participation, a GAAN controller was proposed,
which mainly included two modules, i.e., an impedance controller
module that was used to aid patients in completing movements
and reducing tracking errors, and a Gaussian Radial Basis Function
(RBF) network module that was used for modeling a patient’s motor
capability and enabling GAAN control through a greedy-updating
algorithm.

In the GAAN control, a patient user was required to perform
a predefined human-robot interactive task by controlling the handle
(i.e., end-effector) of the robot.The output force from the handle was
mapped to the joint torque of the robot using the Jacobian matrix.
The output force from the handle is represented as follow:

Fr = Fi − αFm

where Fr represents the force provided by the robot in the end-
effector space. Fi and Fm denote the assistive force from the
impedance controller and the predicted force from a patient,
respectively, as will be detailed in the following text. α is a scaling
factor called challenge level that adjusts the task difficulty, weighting
the forces exerted by the robot and the patient, and determining the
level of assistance provided by the robot. Increasing the value of α
will result in a decrease in the robot’s assistance level and an increase
in the challenge level for the patient’s task, and vice versa.

Rehabilitation robot controllers typically employ a
combination of impedance control and feedforward
compensation (Ghannadi et al., 2018). The impedance controller
is defined as follow:

Fi = Ks(xd − x) −Bdẋ (1)

J(q)TFi = τi

where x and xd represent the actual position and desired position
of the robot’s end-effector, and ẋ denotes the velocity. Ks and Bd
are the stiffness and damping of the robot’s impedance controller,
respectively. τi ∈ R3 donates the torque produced by impedance
controller in joint space.

In order to modeling a patient’s motor capability, the patient’s
motor capability was generally assumed to directly related to his/her
position in a task space (Wolbrecht et al., 2008). The Gaussian RBF
network was often adopted tomodel a patient’s motor capability due
to its good properties for approximating arbitrary functions (Girosi
and Poggio, 1990). Different from previous studies that modeled a

patient’s instantaneous power using RBF networks (Pehlivan et al.,
2014), during rehabilitation training in the task space, the patient’s
maximum exerted force will be progressively fitted using a Gaussian
RBF network, as shown in the formula:

fm =Φ
Tω

Φ = [g1 g2 g3……gn]
T

where fm is the magnitude of predicted force of a patient, Φ is an
n × 1 vector containing radial basis functions. ω is a n-dimensional
weight vector and can be updated by a greedy-updating algorithm
(see 2.3.2). n is the nodes of RBFs along a motion trajectory, and
to balance prediction accuracy and computational complexity, the
number of RBFs is set to 20. gi represents the ith Gaussian RBF. The
Gaussian RBF is defined as:

gi = exp(
−(x− μi)

2

2σ2
)

where μi is the center of the ith Gaussian RBF, x is the current value
of a patient’s position, and σ is a scalar constant that determines the
width of Gaussian RBFs. According to empirical experiments, the
value of σ is set as d/√2n, where d is the distance between the centers
of the 1st and 20th radial basis functions.

2.3.2 Greedy-updating algorithm based on RBF
network

A patient’s maximum force over time was fitted through a
Gaussian RBF network and then was used to update the GAAN
controller. Calculation of the RBF network’s weight parameters can
be divided into two parts, i.e., initialization and iteration. As the
network update is related to the weight vector of the previous
task, it is essential to obtain the initial weight vector of the RBF
network. Hence, before the training begins, a patient was required to
undergo training with only the baseline controller, so that the initial
kinematic data and corresponding exerted force were recorded in
real-time. Then, the recorded data was used to determine the initial
weight vector for the RBF network based on least squares method.

H =
[[[[[

[

g1,1 g1,2
g2,1 g2,2

⋯
g1,m
g2,m

⋮ ⋮ ⋱ ⋮
gn,1 gn,2 ⋯ gn,m

]]]]]

]

T

F = [Fs1Fs2Fs3…Fsm]
T

ω0 = (HTH)−1HTF

whereH is ann×mmatrix containing the time series of theGaussian
RBF network, wherem and n denote the time series and the number
of nodes, respectively. F is the time series of an m × 1 vector, Fsm
collected by the force sensor at the operation handle, where m
represents the moment in time, and fm is the data value of the force
sensor at that moment. Since fm = ΦTω, the pseudo-inverse matrix
(H)TH−1HT of matrix H is used to obtain ω. We obtain ω0 as the
initial weight vector of the RBF network.
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When ω0 is obtained, the weight vector ω is updated based on
the following gradient descent algorithm

∆ω = λ
t

∑
0
Lt

t

∑
0
max(0,Fst − Fmt)ΦT

t

Lt = {
1, i f Fst > Fmt

0, i f Fst ≤ Fmt

ωk+1 = ωk +∆ω

where λ is the learning rate, t is the sampling point in the task
cycle, k is the task number, ∆ω is the average gradient over a task
cycle, ωk and ωk+1 are the weight vectors for the current and next
tasks, respectively. Lt is a binary variable, the value is determined by
comparing themeasured value of the force sensor with the estimated
value from the RBF network. If Fst is greater than Fmt, it indicates
that the output of the RBF network is less than the maximum force
exerted by the patient. Therefore, the weight vector needs to be
updated to increase the output of the RBF network. Otherwise, when
Fst is less than Fmt , it means that the patient should have the ability
to exert greater force.Therefore, the control will maintain the weight
vector to challenge the patient and encourage he/she to exert greater
active force. Since the output of the RBF network is only updated
in the increasing direction, the proposed robot-assisted strategy is
called GAAN control. Moreover, if the patient occasionally reduces
their exerted force due to relaxation or other subjective reasons, the
GAAN controller will not misjudge a decrease in their functional
ability, and it will not immediately increase robotic assistance.

2.3.3 Projection module
It is widely known that the routine robot-assisted upper-limb

rehabilitation tasks usually needs to be performed in 3D workspace.
Thus, it is imperative to design a projection module to facilitate the
RBF operation within a 3D workspace. The specific process is: first,
the projection module obtains vector V1 by determining the start
and end points of an interactive task; second, inputs the current
position point and calculates the difference with the start point to
obtain vector V2, and next derives the projected x as the input to
RBF network using Equation 2. Meanwhile, we obtain the predicted
force Fm of a patient using Equation 3.

x = V1 ·V2 (2)

Fm = V1 · fm (3)

2.4 3-DOF potential fields in 3D workspace

Thepotential field was designed to prevent themotion trajectory
deviating from the corresponding target trajectory. In current study,
the potential field was applied to provide a predefined normal
constraint force towards the target trajectory. The virtual potential
field is designed as follows:

Uniformly sample N points from the designed expected
trajectory:

Dp = {pir}
N
i=1

where pir ∈ R
3 represents the position information of the end effector

at the ith point in Cartesian space, i.e., a 3D column vector. Dp
denotes the discrete dataset of the expected trajectory at the end-
effector.

Setting up the task space potential energy:
When a patient deviates from the expected trajectory, we expect

the potential field to provide normal constraint forces, and the
deviation error is linearly positively correlated with its normal
constraint force. Inspired by Hooke’s law, we integrate the virtual
spring force over distance to obtain the potential energy for each
sampled point in the task space:

φi(p) = φi0 +
1
2
Ki(p− pir)

T(p− pir) ∀iϵ1…N (4)

where, the potential energy φi(p) for each point in the task space,
with respect to the sampled points pir, is determined by p and pir.
φi0 is a scalar value, representing the initial potential energy at
each sampled point. For a specific point p, there is a virtual spring
between p and pir , and the attraction of pir to point p is given by
Ki(p− pir). Through integration, the elastic potential energy at point
p is 1

2
Ki(p− pir)

T(p− pir). Therefore, the farther the point p from pir,
the higher the elastic potential energy becomes, which aligns with
the expected effect.

After obtaining φi(p), we introduce a weighting operator to
control the influence of pir on point p. We use a Gaussian kernel
function to calculate the potential energy weights from point p to
the N sampled points:

wi(p) = e
− 1

2(σi)2
(p−pir)

T(p−pir)
 ∀iϵ1…N

where σi determines the influence range of each sampled point and
needs to be determined based on the specific rehabilitation task.
Generally, we choose σi so that at least 5% of the sampled points are
within a distance of 1− σi from each center pir.

Normalize wi(p), we obtain w̃i(p):

w̃i(p) =
wi(p)

∑
j
wj(p)
 ∀iϵ1…N

Multiplying w̃i(p),φi(p) then summing up, yields the total
potential energy for each point in the task space:

ℵp =∑
i
w̃i(p)φi(p)

According to the principle of minimum energy, regardless of the
state of the substance, it tends to transition towards the state with
the lowest potential energy. Therefore, the negative gradient of the
potential energy −∇ℵp is calculated:

−∇ℵp =∑
i

1
(σi)2

w̃i(p)(φi(p) −ℵp)(p− pi) − w̃i(p)Ki(p− pi) (5)

In specific rehabilitation tasks, the potential field mainly serves
as a constraint in the normal direction. In the direction of motion,
the robot-assisted force is calculated by the RBF network.Therefore,
on the sampling dataset Dp, we expect the gradient of the potential
field γi to be zero. To achieve this, it is necessary to optimize the
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FIGURE 2
Diagram of a 3-DOF potential constraints and application of the
robot-assisted force on a three-dimensional (3D) target trajectory. A
and B are the starting and end points of the target tracking trajectory. E
and F are the two different actual points of the end-effector of UERR at
different tracking positions, and EP and FP are the respective projection
points on the target trajectory, respectively. ET is the reference point of
the point E on the target trajectory. EEP and ETEP are the deviation
error and tracking error of the tracking movements, separately.

potential field parametersφi0.This optimization can be formulated as
solving a convex optimization problem, with the formula as follows:

minJ(θ) = 1
N

N

∑
i=1
‖∇ℵp(pir;θ) + γ

i‖2

where, θ represents a vector composed of φi0 , i.e., θ =
[φ10,φ

2
0,φ

3
0…φN0 ]. Meanwhile, φi0 andγ

i are yield to the following
conditional constraints:

0 ≤ φi0 ∀iϵ1…N

γi = 0 ∀iϵ1…N

In practice, the potential field constraints are designed according
to specific target trajectories. In 3D workspace, the potential field
is applied to provide normal constraint force perpendicular to the
real-time motion direction a tracking movement, while the GAAN
controller provides assisted force in the tangential direction of a
tracking movement, see the details in Figure 2.

2.5 GAAN controller based on 3-DOF
potential field constraints

In current study, the proposed GAAN controller based on 3-
DOF potential field constraints aims to provide appropriate robotic

assistance to the patients in 3D workspace. As shown in Figure 1C,
the GAAN controller was constructed through a feed forward term,
consisted of gravity compensation and friction compensation, as well
as an output Fp from the potential energy field, an output Fi from the
impedance controller and predicted force Fm forming a feedback term.
Fp was obtained by multiplying the gradient of the potential energy
field −∇ℵp from Equation 5 by the mapping factor P. All the forces
were computed in task space, and finally the forces weremapped to the
joint space of the robotic arm through Jacobimatrix.The implement of
potential field-based constraint and robot-assisted force is illustrated
in Figure 2. For a specific interactive task, when the actual motion
position (E) deviated the reference position (ER) on a target trajectory,
the deviation distance between the actual motion position (E) and its
projectionpoint(Ep)onthetargettrajectorywasdefinedasthedeviation
error, and the offset distance along the target trajectory between the
projection point (Ep) and the reference position (ER) was regarded as
thetrackingerror,respectively.Accordingly, thepotentialfieldconstraint
was proportionally applied along the deviation vector (FFp) in the form
of a virtual spring force using Equation 4, and the robot-assisted force
was exerted via GAAN controller along the tangential direction of the
tracking movement, separately.

Three kinds of typical (linear, curvilinear, and spiral) potential
field-constrained target trajectories were adopted to test the
performance of the GAAN controller. The formula of the linear,
curvilinear, and spiral trajectories are separately shown in
Equations 6–8. Where x, y and z are the coordinates of the target
trajectories in the base coordinate system, Xref is a parameter
between the range of 0–1, 0 and 1 correspond to the start point
A and end point B of a target trajectory, respectively.

{{{
{{{
{

x = 0.753− 0.861Xre f

y = −0.15− 0.613Xre f

z = −0.06+ 0.325Xre f

(6)

{{{{{
{{{{{
{

x = 0.753− 0.861Xre f

y = −0.15− 0.613Xre f

zt = −1+ 2Xre f

z = 0.13827ezt − 0.1109

(7)

{{{{{{{{
{{{{{{{{
{

t = 2πXre f

x = 0.753− 0.861Xre f + 0.1 sin(t)
y = −0.15− 0.613Xre f + 0.1 sin(t)
zt = −1+ 2Xre f

z = 0.13827ezt − 0.1109

(8)

2.6 Statistical analysis

All data were analyzed using IBM SPSS STATISTICS 23.0.
Statistical tests (Kolmogorov-Smirnov) indicated that the data
were not normally distributed and therefore non-parametric tests
(cruskal-wallis rank sum tests) were employed to evaluate the
statistically significant differences. Kruskal-Wallis H test was
adopted to measure the significant influences of the training
trajectory (linear, curvilinear, spiral) and challenge level (α = 0, α =
0.5 and α = 1) on the tracking error blocks or the interactive force,
respectively. A further pairwise comparison was measured with
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Nemenyi test (coding rank method) when requested. Moreover,
for a certain factor (training trajectory or challenge level), Mann-
Whitney U test was used to further examine the intra-group
significance of the dependent variables if necessary. A p-value less
than 0.05 was considered statistically significant.

3 Simulation validation

3.1 Co-simulation setup

A co-simulation (Adams-Matlab/Simulink) system was
conducted to verify the theoretical feasibility of the GAAN
controller based on 3-DOF potential field constraints. The control
framework was established based on Matlab/Simulink with the
numerical model exported from ADAMS software. Specifically,
the virtual prototype (illustrated in Figures 1A, B) was imported
to ADAMS, where the mechanical and physical environments,
such as gravity, mechanical friction, impact forces and limitations
were pre-configured according to requirements. With the control
plugin in ADAMS, a numerical model, denoting the dynamics of
the exoskeleton, could be exported as aMatlab/Simulink compatible
module. With a sampling time of 1 ms, the stimulation model was
able to accept the control signals generated by the control blocks
and return the angular positions and velocities to Adams, displaying
the simulation of the robot arm model in real-time.

In ADAMS, we set the material as aviation aluminum with
the density of 2,730 kg/m3 and the gravity constant as 9.8 kg·m/s2,
separately. The coulomb friction was applied to each joint where
the static and dynamic friction coefficients were 0.3 and 0.12,
respectively. The initial angles of each joint were [0°, 0°, 30°], and all
the initial angular velocities were uniformly set to 0 rad/s. In order
to simulate small scale disturbances in the stimulation environment,
the disturbance signal was selected with a mean of 0 and a variance
of 0.01 Gaussian signal, sampling at 20 Hz.

3.2 Simulation of potential field constraints

3.2.1 Stimulation protocol
This simulation experiment was performed to simulate the

constraint effects of the two levels of potential field constraints on
the three types (linear, curvilinear, and spiral) of target trajectories.
A reciprocating tracking task was conducted five times to verify the
difference of the strong and weak potential field constraints. Two
endpoints of the target trajectories were predefined according to the
physical structure of UERR and pre-experimental tests of the subjects,
where the joint angle coordinates corresponding to endpoints A and
B were [0°, 0°, 30°] and [−86.8°, 5.2°, 28.9°] in the joint space of the
UERR, respectively. The parameters of the strong and weak potential
fields are K = 0.4 N/m, σ = 0.034, γ = 0, andK= 0.2 N/m, σ = 0.034, γ =
0, respectively. A PID controller (P = 300 N/m,D= 12 Ns/m, I = 0) was
adopted to simulate of a patient’s force applicationon the end-effector of
UERR.The reciprocal tracking speed of the controller for three types of
target trajectories was uniformly set at 0.16 m/s. In addition, in order to
simulate the irregular jitter of patients with neurological injuries during
the tracking movement, a Gaussian disturbance force with a random
direction and a mean value of 0 and a variance of 0.6 is applied to the

end-effector of UERR and synchronously allocated to the respective
joints of the robotic arm through inverse kinematics solution, with
the updated rate of 1 Hz.

3.2.2 Stimulation results
The constraint effects of the two levels of potential fields on

the three types (linear, curvilinear, and spiral) of target trajectories
are shown in Figures 3, 4. For three types of target trajectories
(black color), Figure 3 illustrated that the deviation errors with weak
constraint (red color) were obviously greater than those with weak
constraint (green color), respectively. Furthermore, the dynamic
deviation errors of the three types target trajectories over the five
times of reciprocatingmovements are displayed in Figure 4. It can be
clearly shown that for linear and curvilinear trajectories, the average
deviation errors (28.3 ± 20.7 mm and 13.9 ± 8.3 mm) with weak
constraint were evidently bigger than those (4.5 ± 3.7 mm and 4.7 ±
3.6 mm) of the strong constraint (p < 0.001) (Figures 4A, B), while
the difference (17.8 ± 14.2 mm and 12.9 ± 7.6 mm) with weak and
strong constraints in spiral trajectory tend to reduce despite with
significant difference (Figure 4C).

3.3 Simulation of impedance controller

3.3.1 Stimulation protocol
This simulation experiment was performed to simulate

the tracking ability of the proposed impedance controller. A
reciprocating tracking task on three types (linear, curvilinear, and
spiral) of target trajectories was carried on three times to verify the
performance of the impedance controller.The impedance controller
was defined by Equation 1, where its stiffness and damping were Ks
= 260 N/m and Bd = 10 Ns/m. Variation of minimum jerk trajectory
Xd was adopted to quantify the tracking ability of the impedance
controller

Xd = d ∗ [10 ∗ (
t
T
)
3
− 15 ∗ ( t

T
)
4
+ 6 ∗ ( t

T
)
5
]

where, Xd is a minimum jerk trajectory of the three types of target
trajectories. T represents the one-way cycle time of 5 s, a cycle time
of a reciprocating movement is 10 s.d represents the actual tracking
displacement of a target trajectory, which is uniformly set as 796 mm
in current stimulation experiment.

3.3.2 Stimulation results
The tracking effects of the impedance controller are shown

in Figures 5, 6. The Figure 5 displayed that for three kinds of
target trajectories, the controller maintained good dynamic tracking
performances. In addition, the Figure 6 illustrated that the maximal
tracking errors occurred mostly in the conversion time of the
reciprocating movements, which were 5.9, 6.1 and 13.8 mm on
linear, curvilinear and spiral trajectories, respectively. On the whole,
the tracking error on spiral trajectory was significantly greater than
those of the liner and curvilinear trajectories (p < 0.001).

3.4 Simulation of GAAN controller

3.4.1 Stimulation protocol
Thissimulationisdesignedtoverifytheeffectivenessoftheproposed

GAANcontroller.We assumed that the initial output of the RBF neural
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FIGURE 3
Stimulation demonstration of two levels of 3-DOF potential constraints (twice of forward and backward movements) on three kinds of typical [(A)
linear, (B) curvilinear and (C) spiral] target trajectories (black color). Red and green curves indicate the weak and strong constraints, respectively.

FIGURE 4
The dynamic deviation errors of two levels (weak/strong) of potential constraints on three types [(A) linear, (B) curvilinear and (C) spiral] of target
trajectories over five times of stimulation reciprocating (forward and backward) movements.

network at each position point was 10N in the task space. Three levels
of applied forces (i.e., 7N, 10N and 13N) added pseudorandom noise
(mean ± variance = 0 ± 0.01) with an updated rate of 50 Hz were
adopted to stimulate a patient’s force application during the robot-
assisted rehabilitation exercises. The linear reciprocating tracking task

with the tracking displacement of 796 mm (see details in 3.3) was
performed ten times to test the performance of the GAAN controller.
The output values of the RBF neural network relative to the respective
applied forceswere recorded to examine the control performance of the
GAAN controller.
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FIGURE 5
Demonstration of stimulation tracking effects of the impedance controller on the three types (linear, curvilinear and spiral) of target trajectories.

FIGURE 6
The dynamic stimulation tracking errors of the impedance controller on (A) linear, (B) curvilinear and (C) spiral trajectories, respectively.

3.4.2 Stimulation results
The greedy AAN effects of the GAAN controller

are shown in Figure 7. Based on the initial output force of 10N,
it can be clearly shown that across the whole tracking displacement,
the output values of the RBF network were 0 for applied force 7N,
10.3N for applied force 10N and fluctuations around 13N for applied
force 13N, respectively.The overall output values of the RBFnetwork
indicate that the proposed GAAN controller was able to learn the
applied forces, and only provide the appropriate force (difference
between the applied force and the initial output force of the RBF

network) when the applied force higher than the initial output force
of the RBF.

4 Experiment validation

In order to further determine whether the GAAN controller
can motivate a patient’s active participation and provide appropriate
assistance in the robot-assisted rehabilitation training task. A
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FIGURE 7
The greedy assist-as-needed stimulation effects of GAAN controller based on a linear trajectory (tracking displacement of 800 mm). Force_7N,
Force_10N, and Force_13N are the three levels of stimulated (applied) force, and the RBFTm_7N, RBFTm_10N, and RBFTm_13N are the corresponding
output forces of the GAAN controller, respectively. RBFInit is the initial output threshold of the GAAN controller.

FIGURE 8
Display of UERR-based experimental platform.

battery of human evaluation tests were performed via the UERR-
based experimental platform.

4.1 Experimental platform

The UERR-based experimental platform, consisted of a host
computer system, real-time control system and UERR-based robotic
arm, was adopted in current study. The host computer system was

employed to run the Simulink programs and show an HRI interface
used for guide the human-robot interactive tasks.The real-time control
system was used to communicate between the host computer system
and the UERR. Both the state information of the robotic arm and
the master commends from the host computer could bi-directionally
transmitted using industrial control computer (IPC)with a Bus coupler
via TCP/IP and EtherCAT communication. The UERR-based robotic
arm was adopted to execute kinds of robot-assisted interactive tasks
with the sampling rate of 1000 Hz, as shown in Figure 8.
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FIGURE 9
Experimental demonstration of two levels of 3-DOF potential constraints (twice of forward and backward movements) on (A) linear, (B) curvilinear and
(C) spiral trajectories (black color). Red and green curves indicate the weak and strong constraints, respectively.

FIGURE 10
The dynamic deviation errors of (A) linear, (B) curvilinear and (C) spiral trajectories under two levels (weak and strong) of potential constraints across
10 subjects.

4.2 Subjects

10 healthy volunteers (6 males and 4 females, age 21–25 years)
was recruited to participate in current study. All experiments are
approved by the Ethics Committee of Ningbo Institute of Materials
Technology and Engineering, Chinese Academy of Sciences. All
subjects were shown the experimental procedure and provided
informed consent before participation.

4.3 Experimental protocol

The objective of the human-robot interactive experiment was
to verify that the current GAAN controller can promote subjects’
active participation and provide appropriate assistance in the
robot-assisted rehabilitation exercises. In the experiment, each
subject was asked to conduct a robot-assisted reciprocating tracking
movement on three types (linear, curvilinear, and spiral) of target
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FIGURE 11
Approximation of RBF networks and the actual measurement about the interactive forces on the end effector of the robot based on linear, curvilinear
and spiral target trajectories, respectively. ‘Actual’ and ‘RBF_output’ represent the actual force applied by a subject and the corresponding RBF networks
output, respectively. Figures (a1), (b1), and (c1) denote the measurements are in forward (A–B) movements, and Figures (a2), (b2), and (c2) are denote
the measurements are in backward (B–A) movements, respectively.

FIGURE 12
Trends of average interactive forces of subjects (N = 10) against the trial numbers of forward (A–B) and backward (B–A) movements. A first-order linear
function is used to fitting the relation between the average force and trial number. Figures (a1), (b1), (c1) present the results of linear, curvilinear and
spiral trajectories in forward (A–B) movements, respectively. Figures (a2), (b2), (c2) present the results of linear, curvilinear and spiral trajectories in
backward (B–A) movements, respectively. α = 0, α = 0.5 and α = 1 represent three kinds of task challenge levels.
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FIGURE 13
Average tracking errors of subjects (N = 10) on three kinds of target trajectories with three levels of task challenge levels (α = 0, α = 0.5 and α = 1). ‘A-B’
and ‘B-A’ signify the forward and backward movements, respectively. ‘∗ ’ and ‘∗ ∗ ’ represent the significant difference with the significance level less
than 0.05 and 0.01, respectively.

trajectories, under visual guidance of virtual reality (VR). Similar
to the stimulation experiment, a reciprocating tracking movement
included forward-and-backward displacements along the target
trajectories of the robotic arm. Every subject was required to
complete a reciprocating movement within 10 s, and a 3 s-break
interval was given between the two forward and backward travels
to avoid the fatigue effect. In order to verify the consistency of the
results, all the control parameters were set the same as those in
stimulation experiment (see details in Simulation validation). In view
of different control abilities of the subjects in reciprocating tracking
task, two RBF networks, independently trained with individual data,
were used to model a subject’s motor capability in forward and
backward movements, respectively.

Before the formal experiment, a preliminary experiment was
performed to obtain the initial weight vectors of RBF networks,
where the robotic device only adopted the baseline controller
to provide the assistance, and the subject was required to apply
his/her active force normally. The real-time position, velocity, and
interactive force of the UERR were obtained and the initial weight
vectors of RBF networks were determined with the least square
method. During the formal experiment, each subject was asked
to conduct three groups of reciprocating tracking task with three
kinds of challenge level (α = 0, 0.5, 1) and the identical impedance
controller. Each group of tracking task involved 10 sets of forward-
and-backwardmovements. During the experiments, the subjects did
not know the corresponding value of α, and the three groups was
carried on in a randomorder.Thewhole experiment for each subject
lasted about 1.5 h.

4.4 Experimental results

Figures 9A–C shows an example of the constraint effects with
two levels of potential fields on the three types (linear, curvilinear,
and spiral) of target trajectories. It can be clearly showed that
with two sets of forward and backward movements, the deviation
errors with weak constraint were obviously greater than those with
weak constraint, respectively. Furthermore, the dynamic deviation
errors of the three types target trajectories over the 10 times of
reciprocating movements are displayed in Figure 10. It can be
clearly shown that for linear and curvilinear trajectories, the average
deviation errors (48.8 ± 13.3 mm and 445.1 ± 12.7 mm) with weak
constraint were evidently bigger than those (18.6 ± 6.4 mm and 13.5
± 3.4 mm) of the strong constraint (p < 0.01) (Figures 10A, B), while
the difference (40.9 ± 12.9 mm and 25.9 ± 10.8 mm) with weak and
strong constraints in spiral trajectory tend to reduce despite with
significant difference (Figure 10C).

Figure 11 shows the RBF estimated interactive forces and the
actual interactive forces on three types (linear, curvilinear and
spiral) of target trajectories. It was observed that the trends of the
force across the tracking displacement were significantly different
between the forward (A-B) and backward (B-A) movements.
For the forward (A-B) and backward (B-A) movements, the
RMSEs between RBF estimated force and actual force were 0.35
(Figure 11a1) and 0.34N (Figure 11a2) on linear trajectory, 0.36 N
(Figure 11b1) and 0.36 N (Figure 11b2) on curvilinear trajectory
and 0.41 N (Figure 11c1) and 0.38 N (Figure 11c2) on spiral
trajectory, respectively.
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FIGURE 14
Average interactive forces of subjects (N = 10) on three kinds of target trajectories with three levels of task challenge levels (α = 0, α = 0.5 and α = 1).
‘A-B’ and ‘B-A’ signify the forward and backward movements, respectively. ‘∗ ’ and ‘∗ ∗ ’ represent the significant difference with the significance level
less than 0.05 and 0.01, respectively.

Figure 12 shows the trends of the interactive force on three
types (linear, curvilinear and spiral) of target trajectories with three
levels of challenge levels (α = 0, 0.5, 1) over the sequential tracking
(forward (A-B) and backward (B-A)) movements. With the increase
of the tracking trials, the interactive forces based on three levels of
challenge levels displayed consistent upward trends in the forward
(A-B) movements and downward trends in the backward (B-A)
movements, separately. For challenge levels α = 0, α = 0.5 and α
= 1, the upward slopes of the force trend were 0.379, 0.297, and
0.008 on linear trajectory, 0.380, 0.307, and 0.077 on curvilinear
trajectory, and 0.275, 0.176, and 0.009 on spiral trajectory, in the
forward (A-B)movements, respectively. Accordingly, the downward
slopes of the force trend were −0.080, −0.276 and −0.366 on linear
trajectory, −0.095, −0.234 and −0.382 on curvilinear trajectory, and
−0.046, −0.193 and −0.524 on spiral trajectory, in the backward
(B-A) movements, respectively.

Figure 13 shows the average tracking errors on three types
(linear, curvilinear and spiral) of target trajectories with three kinds
of challenge levels (α = 0, 0.5, 1) in forward (A-B) and backward
(B-A) movements. The Kruskal-Wallis H test illustrated that there
was significant difference between the forward (A-B) and backward
(B-A) movements (p < 0.01), but not differences displayed among
the three types of tracking trajectories. For challenge levels α = 0,
α = 0.5 and α = 1, two kinds of tracking errors in A-B and B-A
movements were 11.9 ± 1.4 mm and 16.6 ± 2.2 mm, 10.1 ± 1.0 mm

and 17.4 ± 1.7 mm, and 12.1 ± 1.2 mm and 18.5 ± 2.3 mm on linear
trajectory, 9.0 ± 1.9 mm and 12.1 ± 1.9 mm, 8.1 ± 1.8 mm and 16.5
± 2.9 mm, and 9.6 ± 2.1 mm and 16.5 ± 2.0 mm on curvilinear
trajectory, 11.7 ± 1.8 mmand 10.4 ± 2.7 mm, 10.2 ± 2.8 mmand 15.2
± 2.1 mm, and 10.5 ± 1.3 mm and 17.2 ± 2.2 mmon spiral trajectory,
respectively.TheMann-Whitney U tests further indicated that there
were significant differences of the two kinds of tracking errors in A-
B and B-A movements (p < 0.05) with exceptions of the two paired
groups (curvilinear and α = 0, spiral and α = 1).

Figure 14 shows the average interactive forces on three types
(linear, curvilinear and spiral) of target trajectories with three kinds
of challenge levels (α = 0, 0.5, 1) in forward (A-B) and backward (B-
A) movements. The Kruskal-Wallis H test displayed that there were
significant differences between the forward (A-B) and backward
(B-A) movements (p < 0.01), and among the three types of target
trajectories (p < 0.01), respectively. For challenge levels α = 0, α = 0.5
and α = 1, two kinds of interactive forces in A-B and B-Amovements
were 7.8 ± 0.4N and 6.2 ± 0.3N, 10.7 ± 0.9N and 8.5 ± 0.8N, and
12.8 ± 1.1N and 10.2 ± 1.1N on linear trajectory, 8.7 ± 0.3N and 8.3
± 0.5N, 11.3 ± 0.9N and 10.3 ± 0.7N, and 14.2 ± 1.2N and 13.2 ±
1.1N on curvilinear trajectory, 10.8 ± 0.5N and 10.6 ± 0.7N, 13.9 ±
0.8N and 13.0 ± 0.7N, and 16.8 ± 0.7N and 16.7 ± 1.6N on spiral
trajectory, respectively. The Mann-Whitney U tests further showed
that there were significant differences of the two kinds of interactive
forces in A-B and B-Amovements on linear trajectory (p < 0.01) and
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FIGURE 15
The average outputs of forward (A-B) and backward (B-A) RBF networks across 10 subjects on three kinds [(A, B) linear, (C, D) curvilinear and (E, F)
spiral] of target trajectories with three levels of task challenge levels. ‘A-B’ and ‘B-A’ signify the forward and backward movements, respectively. 'Init'
represents the initial RBF networks and ‘α = 0’, ‘α = 0.50’ and ‘α = 1’ represent three levels of task challenge levels, respectively.

two paired groups (α = 0 and α = 0.5) on curvilinear trajectory (p <
0.05), respectively.

In order to further confirm that the subjects’ active participation
can be encouraged by the GAAN controller, the average outputs
of the forward (A-B) and backward (B-A) RBF networks across
the subjects are presented in Figure 15. The results showed
that based on linear, curvilinear and spiral trajectories, the
overall trends of the RBF force in forward (A-B) movements
(Figures 15A, C, E) were evidently different those in backward (B-
A) movements (Figures 15B, D, F). As the challenge level orderly
increased from α = 0, 0.5 to 1, the forward (A-B) and backward
(B-A) RBF forces were larger than the respective initial RBF
outputs and increased over the tracking displacements accordingly.
Since the weight vectors of RBF networks only updated when
the motor capability of subjects was more than the outputs of
RBF networks, the increasing trends of RBF forces reflected the
improvement of the subjects’ active effort. Therefore, the subjects’
active participation was indeed stimulated with the task challenge
provided by RBF networks.

5 Discussion

This study presents a novel GAAN controller based on 3-
DOF potential constraints for the upper limb rehabilitation training
of the patients with limb dysfunction. The GAAN controller is
designed to estimate the motor capability of a subject and provide
appropriate robot-assisted forces by combining an impedance
controller and RBF networks. The appropriate assistance for
participants was implemented from two aspects. The robot-assisted
forces corresponding to workspace position are regulated based
on the functional capability approximated by RBF networks.
Synchronously, the assisted forces are influenced by the target
task and the task challenge level, which is modified according
to the task performance of subjects. Distinguished from the
general kind of AAN controller (e.g., an improved PID controller
(Xiao et al., 2023)), the greedy strategy is implemented by timely
updating a subject’ motor capability model, which stimulates
the subject to keep continuous active participation. Thus, the
GAAN controller can promote the subjects’ active engagement
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during training exercises, and thus improving the outcome of
rehabilitation therapy (Luo et al., 2019).

To verify the utility of the proposed GAAN controller on UERR,
three types (linear, curvilinear and spiral) of target trajectories
with two levels of 3-DOF potential constraints and three kinds
of task challenge levels were adopted to validate the performance
of the proposed GAAN controller. The co-simulation (Adams-
Matlab/Simulink) experiments indicated that the GAAN controller
maintained good tracking ability (Figures 5, 6) and GAAN ability
(Figure 7). Furthermore, the results of Figure 11 showed that the
RBF estimated interactive forces could accurately estimate the actual
measured interactive forces.The influence of different task challenge
levels (α = 0, 0.5 and 1) on the interactive forces and the RBF forces
were investigated in the forward and backwardmovements. It can be
showed that as the number of training trials increases, the average
interactive forces of subjects gradually increases (Figure 12), and
the higher challenge levels correspond to higher interactive forces
and RBF forces (Figures 12, 15). It indicates that a relatively higher
challenge level provided by the GAAN controller can enhance the
subjects’ active participation during the training process.

Moreover, the tracking errors of a target trajectory can provide
important reference to the effect of a patient’ rehabilitation training.
Luo et al. and Tamantini et al. both proposed robot-assisted control
strategies, the target trajectories adopted in their studies are one-
dimensional straight movements in task space (Luo et al., 2019;
Tamantini et al., 2023). Pezeshki et al. presented an adaptive optimal
control strategy to promote patients’ participation (Pezeshki et al.,
2023), the target trajectory in the study was a two-dimensional
circular curve.Therefore, the average tracking errors and the average
interactive forces based on three types (linear, curvilinear and
spiral) of target trajectories with three kinds of challenge levels
were calculated to verify the performance of the GAAN controller.
The results showed that there were no significant differences of
the average tracking errors among the linear, curvilinear and spiral
trajectories (Figure 13). It is probably that the tracking tasks with
current target trajectories are not challenge enough for healthy
subjects. It is also worthy of further study in post-stroke patients. In
addition, Figure 14 illustrated that there were significant differences
of the average interactive forces among the linear, curvilinear
and spiral trajectories, respectively. It can be interpreted that the
relatively complex target trajectories (e.g., curvilinear and spiral)
required the subjects put much more efforts to fulfill the tracking
movements, while maintaining undifferentiated tracking errors.

From the above results, it can be concluded that the proposed
GAAN controller has the potential to be directly applied to the
commercial rehabilitation robots. Although the experimental results
demonstrate that the 3D spiral trajectory is superior to the 1D or 2D
trajectory, it still needs to combine more 3D target trajectories with
VR training scenarios to achieve the optimal rehabilitation training
effect. In the future, the above conclusions should be verified from
two aspects: 1) integrating the GAAN algorithm into other 7-DOF
bilateral rehabilitation robots; 2) Recruit more post-stroke patients
to further validate its effectiveness.

6 Conclusion

A GAAN controller based on 3-DOF potential field constraints
was proposed to provide AAN interactive forces via a 3-DOF
EURR. Co-simulation experiments and behavioral experiments on
10 healthy volunteers are carried out to verify the effectiveness of the
GAAN. It was verified by experiments that: 1) the proposed GAAN
controller indeed enhances the subjects’ active participation during
the training process; 2) Compared to 1D linear and 2D curvilinear
trajectories, 3D spiral trajectory enables the subjects devote much
more efforts to tracking task, stimulating subjects to keep continuous
active participation. The focus of future work will be introducing
psychological and physiological measurements to further determine
the subjects’ active participation in rehabilitation training.
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