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Visuo-dynamic self-modelling of
soft robotic systems
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Mechanical Engineering, University College London, London, United Kingdom, 3Department of
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Soft robots exhibit complex nonlinear dynamics with large degrees of freedom,
making their modelling and control challenging. Typically, reduced-order
models in time or space are used in addressing these challenges, but the
resulting simplification limits soft robot control accuracy and restricts their
range of motion. In this work, we introduce an end-to-end learning-based
approach for fully dynamic modelling of any general robotic system that does
not rely on predefined structures, learning dynamic models of the robot directly
in the visual space. The generated models possess identical dimensionality to
the observation space, resulting in models whose complexity is determined by
the sensory system without explicitly decomposing the problem. To validate
the effectiveness of our proposed method, we apply it to a fully soft robotic
manipulator, and we demonstrate its applicability in controller development
through an open-loop optimization-based controller. We achieve a wide range
of dynamic control tasks including shape control, trajectory tracking and
obstacle avoidance using a model derived from just 90 min of real-world data.
Our work thus far provides the most comprehensive strategy for controlling a
general soft robotic system, without constraints on the shape, properties, or
dimensionality of the system.

KEYWORDS
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Introduction

Building computational models that prescribe the relation between actuator input
and robot motion is vital for robot control. These computational models can range
from geometric kinematic models to fully dynamic ones. Soft robotic devices pose
an imposing modelling challenge due to their nonlinear dynamics, high degrees of
freedom and time-variant material properties (Iida and Laschi, 2011; Rus and Tolley,
2015; George Thuruthel et al., 2018a; Della Santina et al., 2023). Currently, reduced-order
models, whether derived analytically or constructed using data-driven approaches,
are employed to model and control these systems (George Thuruthel et al., 2018a;
Tabak, 2019; Della Santina et al., 2023). Given the variations in their design and
actuation methods, a universal modelling framework for these systems, however, has yet
to emerge.

A common strategy for the modelling and control of soft robots is to restrict their
motions to a quasi-static regime. This permits the development of kinematic models
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centered around their stable states, greatly simplifying themodelling
challenge. The Constant Curvature (CC) model is the one such
commonly derived kinematic model for cylindrical soft robots,
where each section of a soft robot can be represented by the arm
length, curvature and its angle (Camarillo et al., 2008; Webster
and Jones, 2010; Mutlu et al., 2014). Higher dimensional models
with increased accuracy have also been proposed. These include
the variable Constant Curvature (Mahl et al., 2013; Mahl et al.,
2014) (VCC), the Piece-wise Constant Curvature (PCC) (Hannan
and Walker, 2003; Li et al., 2018), the Spring-Mass-Damper model
(Zheng, 2012), the Cosserat Rod (Renda et al., 2012; Renda et al.,
2014), beam-theory models (Camarillo et al., 2009) and Finite
Element models (FEM) (Duriez, 2013; Goury and Duriez,
2018). Some of these models can be extended to incorporate
dynamic properties. For instance, fully dynamic models have been
developed using the CC assumption in several works (Kapadia
and Walker, 2011; Falkenhahn et al., 2014; Kapadia et al., 2014;
Falkenhahn et al., 2015). Likewise, kinematic models grounded in
PCC principles have found applications in tasks such as impedance
control during interactions with unstructured environments
(Della Santina et al., 2018). They have also been employed in
scenarios involving Model Predictive Control (Spinelli and
Katzschmann, 2022), while Cosserat Rod models have been utilized
for sliding mode control (Alqumsan et al., 2019).

Analytical models of these soft robots are constructed using
simplified assumptions about their deformation, which can lead
to disparities from real-world scenarios, especially when the soft
robot’s structure and design change. To tackle this limitation,
learning-based methods offer a solution by directly training
models specific to each individual robot system. Several static
controllers that directly learn mappings from the task space
coordinates to the actuator space have been proposed, with
different strategies for learning the ill-defined inversemapping (Rolf,
2012; Giorelli et al., 2013; Giorelli et al., 2015; George et al., 2017).
Similarly, task-space dynamic models can also be directly learned
for open-loop control (Thuruthel et al., 2017; Satheeshbabu et al.,
2019) or closed-loop dynamic control (George Thuruthel et al.,
2018b; Gillespie et al., 2018; Haggerty et al., 2023). Regardless of
whether the approach is analytical or learning-based, and whether
it focuses on static or dynamic modeling, all these techniques
significantly reduce the complexity of the state-space to make
modeling feasible. While such models excel in task-space control,
especially with feedback, they are not sufficient for more general
control tasks.

The central concept of this research is to acquire dynamic
sensorimotor models directly within the visual domain through
a self-supervised process (as illustrated in Figure 1). This enables
us to develop a task-agnostic dynamic model without any prior
knowledge or assumptions about the robot morphology and
dynamics. This visual simulator bears similarities to the notion of
a body schema in cognitive sciences (Figure 1A), though it lacks
the multimodal aspects necessary for self-recognition, as discussed
in prior research (Rochat, 1998; Sturm et al., 2009; Hoffmann et al.,
2010). In the field of robotics, there has been a growing interest
in data-driven self-modeling techniques, ranging from kinematic
modeling, exemplified by joint configuration estimation for in-hand
manipulation (Hang et al., 2021), to more intricate 3-D full-body
models (Chen et al., 2022). There is also a great depth of study in

imitation learning or behaviour cloning, that avoids the need of
an explicit model (Zhang, 2018; Ito et al., 2022; Wang et al., 2022;
Chi, 2023). In our earlier work, we demonstrated the development
of static shape controllers for soft robots using a self-modeling
approach (Almanzor et al., 2023). This study introduces a learning-
based method to comprehensively model the full dynamics of
general robotic systems, eliminating the need to confine the robot’s
state-space within a small finite region. No prior knowledge
about the robot structure, dynamics, or dimensionality of the
state-space is required, making the approach highly generalizable
to any robotic system that is observable and acts on a fixed
background setup.

Given the observed visual space of a generic soft robotic system
Ψ ∈ ℝD, the unknown state-space of the soft robot x ∈ ℝM and the
control input u ∈ ℝN, the forward dynamics can bewritten as:

ẋ = f (x,u) + ηi
Ψ = h (x,u) + ηo

Where both f and h are modeled non-linear functions and η
represents unmodeled noise.

For a general soft robotic system, the state-space dimensions are
much larger than the input space and is unknown (M > N). Full
observability is challenging to be guaranteed using a data-driven
method; however, as the dimensionality of the observation space
increases the more likely we obtain full observability (as D/M≫ 1).
In that case, the visuo-dynamic mapping can be obtained in the
discrete form shown below:

xi+1 = f (xi,ui)

Ψi+1 = h(xi)

Where the subscripts i, i+ 1 represent the variables evaluated at
these respective discrete time intervals. In the above, we have chosen
f and h such that the output function h is only a function of the
state-space variable.

The shown visuo-dynamic mapping is a transformation from a
low dimensional input space [N = 6, for the experimented STIFF-
FLOP manipulator (Fraś, 2015)] to a high-dimensional output
space (D = 128× 128), with recursive feedback. We hypothesize that
this mapping can be learned efficiently with a long short-term
memory (LSTM) Generative Decoder architecture (Figure 2A).
long short-term memory networks (LSTMs) are a type of gated
Recurrent Neural Networks (RNNs), which conditions the value
of weights on the context via the use of gates and a memory
state (Goodfellow et al., 2016). These transform the efferent control
signals {ui}Ti=0 to a time dependent latent space, here modeled to be
{xi}Ti=0, effectively approximating f as a function f̂ . This dynamic
system approximation is guaranteed to be feasible for RNNmodels,
as confirmed by Schäfer et al. (2006) Upscaling of this latent space
to the shape variables {Ψi}Ti=0 is done using a probabilistic generative
model (Ng and Jordan, 2001), such as a variational autoencoders
(VAEs) (Kingma and Welling, 2013), together with a transpose
convolutional neural network (tCNN) decoder (Dumoulin and
Visin, 2018), which together attempt to approximate g as ĝ . VAEs
have a continuous and smooth latent space, making them well
suited for the given task and has better generalization capabilities
(Kingma and Welling, 2013). It is also hoped that the Gaussian
generativemodel is capable of modelling small white noise observed
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FIGURE 1
Visuo-dynamic self-modelling and control pipeline (A). The system first learns a forward dynamics model in the visual space using efferent action
signals and afferent visual feedback (B). The forward model is then used to plan control sequences within an optimization process (C). The soft robotic
manipulator, STIFF-FLOP, used for experimental validation. Elephant image obtained from URL https://timesofindia.indiatimes.com/videos/amazing-
but-true/this-baby-elephant-loves-to-play-with-its-trunk/videoshow/88415981.cms

in the training data, and provide a smoother average for the
model functions. Once the visuo-dynamic model is learned, any
optimization-based controller can be employed to generate the
control policy. The reference trajectories can be provided in the
visual space directly or transformed to the visual space using camera
calibration data.

An open-loop MPC controller controller architecture is
used–effectively performing simple trajectory optimisation (see
Figures 1B, 3). This minimises the error between a set of target
shapes {Ψdes,i}Ti=0 and predicted shapes with the model {Ψ̂i}

T
i=0

by varying the control input {ui}Ti=0. A dual annealing global
optimiser (Xiang et al., 1997) is used for optimisation purposes,
and the optimised control inputs are sent to the real robot. As an
open loop method, this approach is prone to disturbance errors,
previously written as the unmodeled noise ηi and ηo. Through
a controlled experimental setup, disturbances can be minimised
therefore allowing for the validity of the proposed method.

In this work, we present a comprehensive experimental analysis
of the learned visuo-dynamic model and the controller using
the STIFF-FLOP manipulator. Learning performance is assessed
through metrics like mean-squared loss, visual alignment of
predicted and actual shapes, and oscillatory behaviour analysis.
Control performance is evaluated across objectives including static
and dynamic shape control, constrained manipulation, and obstacle
avoidance. The system’s adaptability is verified via generalizability
tests involving hand-drawn shapematching and precise tip tracking.
The results underscore the approach’s robustness in tackling complex
control scenarios, emphasizing its wide-ranging applicability.

Materials and methods

Stiff-flop design

The soft robot employed in this study is the STIFF-FLOP
robotic manipulator (Fraś, 2015; Abidi, 2018), a versatile design
inspired by biomimicry, particularly drawing inspiration from
structures observed in the elephant trunk and the octopus
arm. These inspirations were specifically chosen for their
inherent adaptability, flexibility, and agility to engage with
unstructured environments. The primary intended application
of the STIFF-FLOP is in minimally invasive surgery, where
intrinsic safety and dexterity, including elongation, omni-
directional bending, and stiffness variation, are of paramount
importance.

In this work, a miniaturised version of the STIFF-FLOP arm has
been developed, which consists of two 59 mm robotic segments.The
total diameter of the robot’s arm is 11.5 mm, maintaining a central
cavity to permit the completion of surgical tasks. The fabrication
details of this robot are reported in Almanzor et al., 2023. The
two-segment STIFF-FLOP robotic manipulator is pneumatically
driven via six 1 mm silicone pipes. To elaborate, each robotic
segment has six actuation chambers, while two adjacent chambers
are connected as one pair. The pressure in each of these chamber
pairs is individually controlled, offering a high level of motion
versatility and safe interaction capabilities, as demonstrated in
Figure 1C.Themaximumoperating gauge pressure of the robot is set
as 150 kPa.
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FIGURE 2
Network architecture and learning performance (A). The neural network architecture that maps from actuator inputs to output image predictions. The
low dimensional actuator data is passed through a time-dependent LSTM RNN network before being placed through a probabilistic generative model
and a transpose CNN upscaler that transforms the data into the required high dimensional spatio-temporal image sequences. (B) Qualitative
comparison of the predicted and training data. (C) Overlayed visualisation of the robot’s motion capabilities. (D) Comparison of predicted and real data
for two step-inputs. (E) Relative stiffness and damping factor estimates for the two-step inputs.

Robot setup

The STIFF-FLOP is configured to hang upside-down from a
wooden platform. It is pneumatically powered with the help of
six SMC 6L/min pneumatic regulators, each capable of operating
at a maximum output of 500 kPa. These regulators are connected
to a constant 150 kPa gauge pressure source, which ensures that
the entire system operates within the safe operating range of
the STIFF-FLOP, thereby avoiding any undue risk to the robot’s
structural integrity. The dimensions of the robot platform are
20 × 20 cm, with the robot placed in the middle. These dimensions
allow the robot to hang freely from the top and traverse the whole
environment constrained only by the maximum input pressures.
Figure 2C visually demonstrates the range of motion of the robot by
superposing various poses.

The pneumatic regulators are powered by a Rapid SPS-9602
power supply delivering 24 V to the connected network. The
regulators feature an input range from 0 to 10 V and are
linked to a MC Measurement Computing USB-3103 digital-to-
analogue converter (DAC) device. This device receives digital

voltage values from a MATLAB code executed on a nearby
laptop, offering direct control over the manipulator’s operation.
The MATLAB code imposes a 3 V maximum limit on the
applied input, corresponding to a 50 kPa pressure limit from
the system.

For the purposes of data collection and subsequent deep
visual analysis, a Logitech BRIO Webcam is used. This camera
is capable of capturing 4K resolution images and is equipped
with an autofocus property. The camera is secured in a fixed
position using clamps to ensure that the data gathered retains
the same perspective and orientation throughout the experiment.
Although no depth layer is measured, the model still gains
some 3D information from small brightness variations as well
as the STIFF-FLOP’s texturing and colour scheme. For instance,
identifying the white colored tip of the robot (in contrast to its
black body) can easily determine whether it is pointing forwards
or backwards.

The communication between the MATLAB program and the
STIFF-FLOP is done via MATLAB, sending six voltage signals
within the range of 0–3 V to the robot, simultaneously recording
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FIGURE 3
Control architecture and error calculation (A). Optimization based control architecture. (B) Otsu thresholding (Otsu, 1979) for minimising noise and
brightness. (C) Mean-squared error calculation from two images.

each signal transmitted. The camera captures the manipulator’s
motion in response to the given voltage signals.

The duration of this communication loop—transmitting voltage
inputs to the robot and receiving image output—sets the sampling
rate for the data. Although this rate can fluctuate due to noise and
variances in the I/O transfer protocols, it averages around 30 Hz,
meaning each loop takes approximately 33.3 ms to complete. This
communication speed sets the limit for how rapidly input can be
altered within the robot, and subsequently, a limit on the maximum
speed of the dynamics.

To obtain training and validation data, a motor babbling
algorithm is employed.This algorithm randomly selects a new input
as well as the time to reach this new input, which is varied between
1 and 5 s, well above the sampling rate of the communication path.
Given enough such samples, the collected data can comprise a broad
range of dynamic motions with clear temporal dependencies while
avoiding very fast chaotic motion that would result from changes in
lower time scales.

Post-data collection, the recorded inputs and corresponding
outputs are resampled to the average frequency of 30 Hz using linear
interpolation, justified by the rapid average communication loop
speed. Additionally, the images are processed by cropping to focus
on the STIFF-FLOP, converting to grayscale to eliminate redundant
color information, and downsizing to 128× 128 pixels to reduce
computational demand and memory footprint for the subsequent
neural network training. The data is trained on a machine equipped
with an Intel(R) Core(TM) i9-10900KF CPU with 3.70 GHz clock
speed and an NVIDIA RTX 3080 Ti GPU. Network models are
trained and tested on a Python environment using PyTorch with
CUDA enabled.

Network architecture and training

The neural network architecture we employ first passes the
actuator input data through an LSTM network positioned between
two deep feedforward networks (Figure 2). In an effort to further
enhance noise resistance and improve interpolation properties, a
generative model setup analogous to a Variational Autoencoder
(VAE) is integrated into the model. Following the LSTM, the
feedforward network splits into two networks, with their outputs
connected to aGaussian generativemodel. One network predicts the
mean, and the other predicts the standard deviation for the sampler.
The resulting sample is then directly rearranged into image format
via reshaping.

The generated low-resolution image then passes through a
tCNN decoder, which upscales it into the required grayscale
128× 128 form. During predictions, the probabilistic model is
turned off, with the mean feedforward layer output taken directly
into the decoder. This modification ensures that control predictions
from the model are completely deterministic, although retain the
advantages of a VAE during training.

An MSE loss function was used with an Adam optimiser with a
learning rate 10–3 (See Table 1). Normalisation anddropoutwere not
used, and backpropagation through time (BPTT) was truncated to a
maximum of 250 time points. Approximately 30 min were required
to complete 2,500 epochs. The results demonstrate a potential for
scalable implementation with larger datasets.

For the main training process, 4 temporal sequences comprising
36,000 data points each (36,156 data points after resampling) were
gathered for the training dataset using motor babbling. A separate
sequence of 3,000 data points (3,058 post-resampling) was collected
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TABLE 1 Model training parameters.

Training epochs 6,000

Data sampling rate 30 Hz

Learning rate 0.001

BPTT truncation 300 time points

Final loss 0.01

Time for training 80 h

Number of training data points 4 batches of 36,156 time points

Number of validation data points 1 batch of 3,058 time points

Data points per sub-batch 150 time points

Final validation loss 0.0204

for validation purposes. To concentrate the model’s training on
the robot’s motion, the background was obstructed with a wooden
board, thereby eliminating extraneous visual information. The
model was then trained for a total of 6,000 epochs on the collected
data, a process that took roughly 80 h to complete. Truncated BPTT
used 300 frames of truncation while operating on data in sub-
batches of 150 time points for lower memory requirements. The
training parameters used in the preliminary testing for the final
model were repeated for the final training.

Controller design

In this work we employ a trajectory optimization algorithm for
generating the control inputs. An optimization routine estimates
the optimal input sequence ûi to achieve an output Ψi for the real
system ( f ,h) using the forward dynamics model ( f̂ , ĥ), estimated
here using statistical machine learning approaches.

The controller calculates the optimal control inputs over a
defined prediction horizon T, aiming to minimize a cost function.
This cost function typically represents the discrepancy between the
predicted outputs Ψ̂ and the desired setpoints Ψdes, along with
constraint penalties. In an open-loop setup, the control cycle is
finished by applying the optimised inputs to the real system. The
inclusion of a feedback term to close the loop would allow this
process of optimisation to continuously repeat with time, adapting
to changing conditions and disturbances.

Closed-loop feedback is dependent on the implementation of
suitable hardware for shape capture, as well as a generally more
complex controller design. An open-loop system is far simpler to
implement, only requires one optimisation step, and is completely
independent of the real system’s behaviour. However, the latter also
implies that an open-loop controlled system has lower robustness to
disturbances and model uncertainties.

Although operating on continuous systems, controllers are
limited to discrete signals, constrained by the sampling rate between
these and the system.The optimisation operates on a number of free

input variables (maximum of NT, ui ∈ ℝN for 0 ≤ i < T), attempting
to find the input sequence that best matches the target. The target
may be a shape at a specific time point (Ψdes) or a sequence of desired
shapes at varying time points (Ψdes,j). At every optimisation step, a
cost function is calculated that matches Ψdes,j to the actual Ψ̂j and
return a scalar score. For the ideal cost function, a lower cost implies
better shape matching.

In the context of images, the shape comparison involves
identifying whether two images representing the robot’s
configuration are similar. Althoughmultiple techniques are available
to measure image similarity, the images to be predicted are simple
enough for mean squared error (MSE) to be reasonably appropriate
in image comparison. To ensure that background effects are
negligible, and the focus of the image comparison is on the robot’s
shape, the background of the image is kept controlled as a constant
throughout the data collection and testing. Eq. 1 defines the MSE
cost between two images I and J:

CMSE (I, J) = ∑
i
∑
j
(Iij − Jij)

2 (1)

The optimiser’s role is to find an appropriate set of inputs such
that ∑jC(Ψdes,j,Ψ̂j) is minimised. However, high-dimensionality of
image data, in addition to its non-linearity, may lead to numerous
local minima in the overall cost function. A global optimiser avoids
getting stuck at a local minimum by performing a wider search.
Here we use dual annealing, or generalised simulated annealing
(GSA), a powerful optimization algorithm inspired by the principles
of thermodynamics, specifically the annealing process used in
metallurgy (Xiang et al., 1997).

The most general optimisation for a shape change of T s with
a 30 Hz sampling rate has 30T× 6 = 180T input variables to be
optimised. This can quickly become very large, greatly increasing
the time to optimisation. A more time-efficient alternative to this
general model is to constrain the inputs to follow a piecewise linear
form. In this setup, only a few n inputs at given time points are
optimised by the controller, with the values of other inputs being
determined via linear interpolation, or set constant at the end of
the motion. Note that if n = 30T, then this approach reverts to the
original general input form. More complex motions require a larger
value of n to achieve better optimisation by allowing greater freedom
to the input form.

Any control motion is started with the robot at its rest position
and zero applied input. The predictions, however, show some
transient behaviour at the beginning due to the presence of zero
initial hidden states (state and memory). To cancel this effect, every
control motion is first begun by appending 100-time steps of zero
input prior to the start of control, allowing the transients to decay.
A possible alternative to this method would be to run the model for
a zero input and obtain the values of the hidden states following the
decay of the transient, which can then be set as the new initial states.
Since the tests to be performed are not dependent on high speed
operations, the faster former solution is employed.

Although the background is constant, there is still the presence
of noise due to lighting and model imperfections. To reduce the
effect of these during optimisation, Otsu’s method for thresholding
(Otsu, 1979) is applied to the images prior to comparing them with
MSE (Figure 3). This automatic thresholding algorithm transforms
the recorded images into binary data (black and white), removing
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FIGURE 4
Oscillatory analysis of robot motion. The average pixel brightness at the robot’s half length point is measured for its final configuration after an
impulse/step. This is plotted for both real and model motions, with the table on the right providing the estimate for both stiffness and damping factors
at each configuration.

the effect of small noise from the aforementioned sources in
most of the pixel brightness range (except around the threshold
point, which is a small region). Switching the VAE in the model
during optimisation may also help in improving robustness to noise
during control.

Although the long sequence LSTM network allows long-time
effects such as hysteresis to play a role in the modelling, its effect
is minimised in control by testing simple short motions spaced by a
few minutes. This allows each motion to be tested against the model
independently of previous tests.

Results

Training performance

The visuo-dynamic network is trained using four distinct
video sequences, each spanning a duration of 20 min and recorded
at a frequency of 30 Hz. A reduced validation dataset, around
2 min long, is employed to evaluate the effectiveness of the
trained network. The loss function employed for both training
and validation is the mean squared error (MSE) loss between
the predictions generated by the model and the real image data.
For context, instances where the average loss values between
images remain below the threshold of 0.05 are indicative of
satisfactory accuracy. Throughout the training phase, the average

loss stabilizes at approximately 0.01, while the average validation
loss converges around 0.02. Visual analysis indicates a tendency for
the model’s predictions to exhibit higher errors in estimating the
tip configuration. Consequently, shape errors primarily manifest in
these specific regions, as demonstrated in Figures 2B, D.

A more detailed investigation of the dynamical accuracy of
the model is performed via a study of the oscillatory properties
of both the model and the real robot. This examination centres
on the determination of the relative stiffness and damping ratio
across varied robot configurations. These values are estimated for
two different step input configurations (see Figure 2D) by tracking
the brightness changes of the image at a particular point in the
robot near the final configuration. The calculated properties are
given in Figure 2E. It can be seen that although the final predicted
configurations are very similar, the learned model seems to have
lower stiffness estimates, indicating possible model mismatch at
higher frequencies. Given that the sampling rate for data acquisition
is 188.4 rad/s (30 Hz), we expect by the sampling theorem to
have all frequencies less than about 94.2 rad/s to be represented
by the data. Since an RNN is always capable of representing the
dynamic behaviour below this frequency (Schäfer et al., 2006), it is
hypothesised that either data acquisition methods can be further
refined to reflect on oscillatory information, or that more fine-
tuned training is required to learn this information, which is left
for further study. An in-depth description of this experiment is
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FIGURE 5
Control performance (A). The optimization based control architecture used in this study. (B) Static control tests: A single final target is given to the
optimiser, which chooses a 3-s ramp input to a set of 6 final actuator values that achieve an optimal match between the target and prediction at the
last frame. The test is repeated three times, with the overall real and predicted trajectories plotted (time progression colourised with a jet colourmap,
red to violet), in addition to the final 6 optimal actuator values. The final frame solution (red) is overlayed with the target (cyan), with matching pixels in
black. (C) Dynamic control tests: Optimiser is given 5 shape targets at specific time points. The solution at each of the relevant time points (red) are
overlayed with the targets (cyan), with matching pixels in black. Trajectories for the whole motion are illustrated (time progression colourised with a jet
colourmap, red to violet). Optimal inputs are plotted for each of the target time points. (D) Generated motions with actuator constraints. Top: Dynamic
targets from (C) with the 6th actuator disabled. Solutions (red) overlayed with the targets (cyan). Bottom: Static control with actuators limited to half of
its maximum limit. Chosen target identical to Shape 2 in (B). Comparison between free and constrained maximum inputs are plotted.

given in Figure 4, which shows the point at which the brightness
change is measured and plots it with time, allowing for a graphical
estimation of the oscillatory properties. Note that these tests have
been performed in quick bursts, spaced by long time intervals as to
reduce the effects of hysteresis on the motion.

Shape tracking experiments

The control framework utilized in this study leverages the
acquired visuo-dynamic model and an optimization algorithm
to generate open-loop trajectories, as illustrated in Figure 5A.
In this process, a global optimization algorithm is employed
to determine the optimal actuator inputs over time, with the
objective of minimizing a scalar quantity dependent on our control
goals. This global optimization procedure utilizes a dual annealing
approach (Xiang et al., 1997), with its core focus on minimizing

the mean squared error (MSE) error function between the model-
generated predictions and the target values. The targets are defined
as sequences of desired shapes for the robot’s image at specific
time points. In general, a qualitative assessment of the matching
between images can be performed by observing the results directly.
Nevertheless, such approach is not very scientific and we decide
to use the mean squared error between target images and physical
robot motion as a quantitative measure of tracking accuracy, as
described in prior sections. To mitigate the influence of lighting and
background noise, Otsu thresholding (Otsu, 1979) is applied to both
the real images and the target images before computing the MSE.

The initial set of control assessments examines the controller’s
capacity to achieve a fixed target shape during a 2-s control period
(refer to Figure 5B). This evaluation places primary emphasis on
achieving a static alignment of the ultimate shape, with the trajectory
being of secondary significance. A visual examination of Figure 5B
reveals a satisfactory alignment in the overall 2D shape, though there
are slight deviations in the 3D positioning of the tip.

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2024.1403733
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Marques Monteiro et al. 10.3389/frobt.2024.1403733

FIGURE 6
Method generalisability (A). Hand-drawn targets. Left: A static test where the target image shape is to be reached in a time span of 3 s. Final solution
(red) is overlayed with target (cyan). The MSE (relative to final target) variation with time is also plotted for both the model and real motions. Right: A
dynamic test where 4 hand-drawn targets are to be reached in sequence within the same motion. Trajectory illustrated for both real and predicted
motions, time progression colourised with a jet colourmap, red to violet. Final solution (red) is overlayed with target (cyan). MSE (relative to next target
in time) variation with time for both model and real motions is also plotted. (B) Tip tracking. Left: Simple dynamic target, where tip is demanded to go
from left to right. Solution and MSE (relative to next target in time) variation with time plotted. Right: Periodic dynamic motion. MSE (relative to next
target in time) plotted for 3 cycles of the same targeted motion. Illustrations of the targets, as well as the solutions (target in cyan, solution in red) and
trajectories (time progression colourised with jet colourmap from red to violet) for the first cycle, are given. (D) Obstacle control. Left: Static control
with box obstacle in path. Final prediction and real trajectories illustrated (time progression colourised with jet colourmap from red to violet). Final
matching, with cyan target and red solution also displayed. Variation in optimisation error is plotted for both the optimal inputs, with and without the
constraint. Right: Precision static control, tip required to fit in between two vertically separated walls without collision. Final prediction and real
trajectories illustrated (time progression colourised with jet colourmap from red to violet). Final matching, with cyan target and red solution also
displayed. Variation in objective error (MSE with added obstacle penalties) is plotted for both real motion and model prediction. Steps in the objective
error plot for real motion indicate collisions.

The next control test focuses on shape control within dynamic
motions.The test illustrated in Figure 5C seeks to realize a sequence
of target shapes spaced at 1-s intervals. The trajectory and motion
planning now assumes a more important role, with the optimiser
presented with the problem to manipulate input magnitudes at each
designated time point (assuming a linear interpolation between
these instances), to minimize a single scalar value that is a sum
of the cumulative tracking error. The optimized inputs, illustrated
at the bottom of Figure 5C, illustrate this modulated control
strategy. Notably, the average MSE for all images remains below
0.25, indicative of good numerical accuracy. Visual comparison
between the target and actual shapes (Figure 5C) reveals satisfactory
alignment, albeit with persistent challenges in tip matching. It is
important to note that one source of error in this experiment arises

from the multi-objective optimization, where reducing the error for
one target may lead to an increase in error for the other as the
optimiser gets stuck in a local minimum, or the change between
the dynamic shapes is infeasible and the optimiser minimises the
MSE by worsening the shape match with some of the shapes.
By using a global optimiser, we reduce the chances of such a
scenario and increase the probability of an even target scaling in
the error minimisation, although the infeasibility of the dynamic
motion remains.

Moving forward, we delve into the analysis of control
performance when additional constraints are introduced into the
optimization problem. In Figure 5D, we visually represent these
constraints, taking into account two distinct scenarios. The first
scenario aims to replicate situations where the physical robot
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experiences damage to one or more actuators, resulting in one of
the inputs remaining inactive. For the sake of brevity, we arbitrarily
choose input 6 for the following tests. The goal here is to optimize
shape matching while adhering to predefined constraints. Notably,
as shown in Figure 5D (top), there is a noticeable improvement
in aligning shapes that were previously less reliant on the 6th
input. Knowledge of the STIFF-FLOP’s manufacturing shows that
the 6th actuator has a large impact on the shape of the bottom
module of the robot. This is clearly evident in Figure 5D, where
shape errors primarily manifest at the tip. In the second scenario
(illustrated in Figure 5D, bottom), the constraint necessitates the
robot to achieve a static shape transformation to the “Shape 2”
target within a 2-s timeframe, with each input limited to half of its
maximum capacity. While an exact shape match is not achieved, the
constrained outcome exhibits substantial alignment in orientation,
accompanied by a comparably low mean squared error (MSE) as
observed in the unconstrained test. The numerical values presented
in Figure 5D indicate that the unconstrained values of inputs 2,
5, and 6 are restricted due to the imposed constraint, with input 6
being predominantly inactive. Actuators 1 and 3 experienceminimal
alterations, whereas actuator 4 undergoes a significant increase in
voltage. This variation underscores the effectiveness of both the
optimizer and the model in navigating the input space to identify
alternative optima for this specific test scenario.

For all our previous tests, all the target robot shapeswere sourced
from the training or validation data. Expanding the scope of this
investigation involves allowing the user to prescribe the desired
robot shape, a notion particularly exemplified through hand-drawn
renderings. By subjecting the robot to control targets composed
of hand-drawn shapes, both static and dynamic control scenarios
are tested (as illustrated in Figure 6A). Hand-drawn targets offer
a heightened degree of shape diversity, yet the intrinsic challenge
lies in matching such arbitrary shapes with the robot’s motion
constraints. Hence, the controller’s aptitude for achieving feasible
shapes that best match the designated targets becomes important.

Like before, the robot is first tasked with attaining a static
target shape within a 2-s interval. Our results show reasonable
alignment between the target and the achieved configuration,
alongside a low static MSE. Note that now the mean squared errors
are also affected by the background of the drawn image, which
for certain cases can affect the desired user shape. The dynamic
control domain unveils more intricate dynamics, exemplified by
robust shape correspondence with targets at 0.5, 2, and 3-s marks,
while demonstrating poorer alignment at the 1-s mark. It is
evident that purely looking at the MSE values do not provide a
good understanding about the tracking performance. The process
occasionally leads to shortcuts taken by the optimizer to prioritize
pixelwise alignment at the expense of shape fidelity—a behaviour
expected from our simple loss function, that warrants refinement
for better performance. A method to ignore the background of the
image is also required for a smoother, consistent loss curve. Potential
solutions for this could involve utilizing the model’s latent space
representation, which automatically achieves this (Figure 7).

Furthermore, the incorporation of hand-drawn targets
introduces possibilities for more conventional control tasks like
tip tracking. In the next test, we modify the target to focus on
tip tracking, permitting the controller to adapt the rest of the
robot’s configuration to optimally align with the desired tip target.

Figure 6B illustrates outcomes for both a straightforward dynamic
tip motion and a more intricate tip-tracking trajectory. The former
demands the tip to traverse from right to left within 1 s, yielding
satisfactory shape matching. Notably, the hand-drawn targets lack
direct constraints on the robot’s 3Dmotion, thus allowing the target
to be achieved in diverse 3Dorientations. It is noteworthy that for the
2-s target, the solution orients the robot backwards—an illustrative
demonstration of this flexibility. The observation further reveals
that while a minimum in MSE is achieved at the required 2-s mark,
subsequent deviations occur along with oscillatory behaviour as the
robot converges toward its steady state. This specific observation
demonstrates the controller’s capacity to exploit transient dynamics
to minimise errors.

We now extend our tip tracking experiments to cyclic motions,
where the robot’s tip sways from left to right, over multiple cycles
(Figure 6C). The MSE variation over time aligns mostly with the
periodic nature of each cycle (period of 3s), indicating near-perfect
periodicity in predictions without decay over time. We also observe
a limit-cycle-like convergence of the motions within one cycle for
both the learned and real systems.

The conceptual foundation laid by the hand-drawn control
approach readily accommodates the establishment of a system for
generalizedobstacleavoidance. Inthecontextofrobotcontrol,obstacle
avoidance is pivotal for trajectory planning and can be extrapolated
to a range of higher-level constraints in generalized systems. One
test involved directing the robot to navigate around a hand-drawn
box object while following a trajectory toward a final shape. Any
overlap between the robot’s black pixels [determined through Otsu’s
thresholding (Otsu, 1979)] and theobstacle area results in a substantial
MSE cost penalty. As a consequence, the optimizer must chart a
trajectory that avoids the obstacle.The outcomes of this evaluation are
depicted in the left portion of Figure 6D. It is discernible that the robot
adeptly employs its full range ofmotion capabilities to circumvent the
obstacle, even though the predictions are all in 2D. The optimization
error plot highlights how the error between the current and desired
shapes evolves with time, revealing that the imposition of constraints
leads to trajectories with higher error compared to unconstrained,
constraint-free trajectories.

The next obstacle avoidance test challenges the robot to align
its tip between two vertically spaced walls, resembling a cross-
sectional view of a cylinder, for instance (see Figure 6D, right). The
modeled predictions exhibit commendable behavior; however, in
the real-world test, collisions with the non-existent walls become
evident. Similar to the initial test, collisions incur a cost penalty,
resulting in spikes within the objective function value for the real
scenario—observable in the plot in Figure 6D, right. The model’s
intrinsic uncertainties regarding tip behavior emerge as a significant
source of error in precision fitting tasks, with underestimations in tip
length and position contributing to inaccurate collision predictions.

Throughout Figure 6, the prediction data has a lower MSE
than the real data and hence predicts better control. The target
shapes for these curves are all given by real robot shapes, and
hence are prone to variations in local brightness. The MSE with
the model, which is an average with the training data, will
therefore be non-zero at the same robot shape due to these local
pixel variations. Nevertheless, the shapes of the curves are very
similar, suggesting that the overall target shapes are indeed being
tracked. Better metrics than the MSE would improve the current
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FIGURE 7
Display of intermediate transpose CNN layers. Last layer has one grayscale channel, obtained via the transpose convolution of the previous 4 channel
layer. The layer before that (antepenultimate) has 8 channels. The robot’s shape is only clearly observable in only two of the channels in the previous
layers, indicating a potential overdesign of the network for robot motion prediction.

method by better normalising the trained images through more
complex filtering.

Model accuracy experiments

The model uses a long short-term memory (LSTM) model to
represent the dynamics of the system. Suchmodels are characterised
by their ability to retain necessary information for long periods of
time, while “forgetting” other aspects that are less important for the
motion. Although normal recurrent neural networks are capable
of replicating this behaviour, the specific inclusion of a memory
gates in the LSTM architecture has been demonstrated to improve
their training properties. Nevertheless, we can use the memory
property of the system to test its decay to steady state, as given in
Figure 8. Here we initialise the steady state of the network with a
random value for many iterations at zero input, and test the time
to decay to the stationary initial state. The MSE with respect to the
stationary state results are plotted in the graphs at the bottom of
Figure 8, which suggest an average decay rate of around −2.49 s−1.
This result indicates that in the motion data provided, current time
points are dependent on about 1.84 s of data prior to the time
point on average, which is the time taken for a 99% MSE drop.
This provides insight on the real robot’s memory properties and
allows us to further optimise computational resources when using
backpropagation through time (BPTT) in the model to match the
system’s requirements and properties.

One important property of non-linear systems such as the tested
soft robot are the existence of limit cycles. We test this property on
our model and compare it to the real robot by providing the system

with oscillatory inputs, superposed with Gaussian noise (identical
for both real and model predictions) in the first few seconds of the
motion. Figure 9 demonstrates the results for the real system and the
prediction, plotting the MSE to the noiseless cyclic motions. Each
cycle is given by a single 360° of the plot.We note that both plots tend
to zero MSE after the noise is removed at around 5s of the motion,
which is expected from the decay property of the system. We clearly
observe some difference between the real and prediction limit cycles
during the noise action, with the prediction cycle being much more
symmetric.This can be attributed to the averaging action of themodel
and included variational auto-encoder setup, which leads to smoother
behaviour in the action of noise disturbances. Both model and real
data have a maximum MSE deviation of around 0.02 from the final
steady state cycle, and seem to decay at the same rate, reaching this
steady state after around 7 s. These agreements show good predictive
abilities in limit cycle behaviour.

It is also instructive to understand how the model predicts the
shape change from the actuator inputs directly. Neural networks are
functional approximators and can give insights into the important
features of the system that can be hard to directly model under
constrainedmotion.Figure 3displays theoutputsof thefinal transpose
convolutional network (tcNN) layers that compose the model’s
decoder.We note thatmost of the layers in the trainedmodel are used
to solely predict the background changes, while the shape information
is coded into 1 or 2 channels. This informs us that the model can
be greatly simplified for further computational optimisation via the
removal of unnecessary background information. Furthermore, the
transpose convolutional kernels used in the channels containing the
soft robot information can provide insight into the key aspects of the
function approximation, which is left for potential future work.
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FIGURE 8
Steady state decay from random initial LSTM state. Bottom left plots the MSE relative to the final state with time averaged for multiple tests, together
with the maximum/minimum bounds. Bottom right plots the average on logarithmic scale, allowing for an estimation of the decay parameter.

FIGURE 9
Limit cycle stabilisation in real robot and prediction model. Model and real robot are subjected to two limit cycles with initial noise. The relative MSE
between the two motions between model and model, real and real, are plotted in the radial plots above. One cycle of the radial plot equals to 0.5 s.

Discussion

In this research, we introduce an end-to-end learning-based
approach that enables the comprehensive dynamic modeling of
a broad spectrum of robotic systems. The core concept revolves

around acquiring dynamic models of the robot directly within
the visual domain. To validate the effectiveness of our proposed
method, we apply it to a fully soft robotic manipulator. We showcase
its practicality in controller development through an open-
loop optimization-based controller. Our approach successfully
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accomplishes dynamic shape control, trajectory tracking, and
obstacle avoidance using a model derived from just 90 min of real-
world experience.

In the field of soft robotics, the approach we present is, to the
best of our knowledge, the first instance of a learned controller for
shape control. Unlikemodel-based techniques, ourmethod does not
require any prior knowledge about the system. Furthermore, unlike
other model-free approaches, our framework only requires a simple
setup, consisting of an inexpensive RGB camera and the robotic
system itself. Control targets can be specified by users with minimal
knowledge about the robot’s kinematics and without the need for a
global coordinate system. Additionally, the framework allows users
to draw target points and shapes, making it highly accessible to non-
experts and potentially applicable in the field of robotic surgery and
inspection in tight spaces.

Due to the novelty of the proposed approach, there are no
suitable comparisons to previous works that can be done to evaluate
our model’s effectiveness against literature. Its effectiveness is shown
through a qualitative view and an analysis of the mean squared
error between the real system and prediction, which is again
arbitrary. Further works are encouraged to improve our approach
and introduce better metrics for control effectiveness.

While the presented model is tested on a single robotic system,
the method is applicable to any dynamical system as long as
they do not exhibit highly chaotic behavior. A future extension
of this work would involve learning models for stereo images
and multi-modal dynamic models, such as predicting visual and
contact dynamics. One of the challenges in this setting would be
representing targets for the controller. A possible solution could
involve using the learned model itself to generate target images
conditioned on the VAE parameters. Currently, our results are
validated using an open-loop controller due to the time cost of the
optimization routine. Reducing this computational time is a future
research direction.
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