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Traditional spacecraft attitude control often relies heavily on the dimension
and mass information of the spacecraft. In active debris removal scenarios,
these characteristics cannot be known beforehand because the debris can take
any shape or mass. Additionally, it is not possible to measure the mass of the
combined system of satellite and debris object in orbit. Therefore, it is crucial to
develop an adaptive satellite attitude control that can extract mass information
about the satellite system from other measurements. The authors propose using
deep reinforcement learning (DRL) algorithms, employing stacked observations
to handle widely varying masses. The satellite is simulated in Basilisk software,
and the control performance is assessed using Monte Carlo simulations. The
results demonstrate the benefits of DRL with stacked observations compared to
a classical proportional–integral–derivative (PID) controller for the spacecraft
attitude control. The algorithm is able to adapt, especially in scenarios with
changing physical properties.
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varying masses, space debris, active debris removal

1 Introduction

With increased access to space, the challenge of space debris is becoming an increasingly
relevant topic. To keep space useable for future generations, space debris must be
mitigated. The most effective mitigation measure includes active debris removal (ADR) of
approximately five objects per year. This research investigates the challenge of the attitude
control system (ACS) inADR.Thedifficulty here is that often, the exact size, shape, andmass
of the targeted debris objects are unknown. Furthermore, through the capturing process,
the mass and inertia of the satellite system are changed, making it difficult for the ACS to
maintain a stable position. In spacecraft attitude control, proportional–integral–derivative
(PID) control remains a cornerstone due to its simplicity and computational efficiency
(Show et al., 2002). For more complex, nonlinear attitude problems, more sophisticated
algorithms, such as model predictive control or dynamic programming, can be used.
Model predictive control implements a predictive model of the system to anticipate future
behavior over a finite time horizon (Iannelli et al., 2022).The control inputs are optimized by
minimizing a specific cost function.This generally performs better than PID algorithms but
also requires more computational resources. In this research, a deep reinforcement learning
(DRL) approach is investigated to solve this satellite attitude problem. DRL has the benefit of
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being very computationally efficient once the networks are trained.
During the process of an ADR, the ACS system must handle the
unknown and changing mass. To simulate this, the agent is trained
with varying masses and must develop an appropriate control
strategy using torques on the reaction wheels of the satellite. This
application of DRL to the satellite attitude problem is not new and
has shown great promise in the past. An overview can be found
in Tipaldi et al. (2022). The partially known space environment,
the time-varying dynamics, and the benefits of autonomy make
it the perfect candidate for reinforcement learning (RL). Research
on this topic has been mainly constricted to training the agent
to develop a general algorithm independent of the inertia of the
satellite. Allison et al. (2019) investigated the use of a proximal
policy optimization (PPO) algorithm to find an optimal control
strategy for the spacecraft attitude problem. The spacecraft was
modeled as a rigid body, and the state space was defined by the error
quaternion vectors. Even though the controller was trained with a
single mass, the control policy obtained was able to achieve good
performance for a range between 0.1 kg and 100,000 kg. Specifically,
the DRL approach is suitable to develop a general solution that
can handle a wide array of different masses. Although a general
solution is suitable for many applications, some maneuvers require
adaptability in attitude control. In an ADR scenario, the mass of the
spacecraft system changes drastically, both after capture and after
the release of the debris object. Due to the nature of the general
approach, it is limited by the edge cases of very small or very high
masses. An algorithm developed to perform optimally for masses
between 500 kg and 1,000 kg might develop problems at very low
masses, applying forces that are too large. In the ADR scenario,
considerable research effort has been devoted to the rendezvous
maneuver and the pre-docking proximity control. Xu et al. (2023)
investigated a DRL approach to optimize rendezvous trajectories for
fuel consumption. It is shown that the DRL approach is suitable for a
large number of impulses. Jiang et al. (2023) solved an interception
strategy with high uncertainty using a one-to-one DRL algorithm.
The algorithm can develop a universal interception strategy, even in
random environments. These works demonstrate the suitability of
DRL for changing conditions and uncertain conditions. This work
instead focuses on the scenario after the capture, where a detumbling
must be performed. In this scenario, the mass of the spacecraft
system changes drastically, both after capture and after the release
of the debris object. This research aims to develop an approach that
adapts its control strategy depending on the mass of the satellite.
Because the mass of the spacecraft system cannot be measured
directly, the algorithm must extract this from other measurements.
The authors compare different strategies and investigate whether
they improve the performance of the algorithm, especially for the
previously described edge cases. In particular, stacked observations
are employed. Stacked observations are the result of stacking several
observations into one single state. The authors show that all control
strategies effectively detumble the system. Controllers that cannot
extract the dynamics of a system struggle to handle situations in
which the masses are very low. In contrast, RL agents with stacked
observations can master the situation even with small masses.
A more detailed description of the theory behind the developed
algorithms can be found in Section 2. The methodology needed
to reproduce the results is presented in Section 3. In addition, the
robustness of each approach is examined using a Monte Carlo

analysis. The agents are presented with different scenarios. The
analyzed strategies are then compared to a classical PID controller,
a well-established feedback control strategy, in Section 4.

2 Theory

This chapter provides the necessary theoretical background
for the spacecraft attitude control problem. Furthermore, an
introduction to deep reinforcement learning and the applied
algorithms is given, and the spacecraft attitude problem is described
in detail.

2.1 Dynamic framework

2.1.1 Coordinate frames
Before specifying the spacecraft dynamics, a common reference

frame needs to be defined. Two different coordinate frames are used
in the simulation.The first one is the earth-centered inertial frame
(ECI) N . The center of its origin is at the center of the earth.
For inertial coordinate frames, a fixed reference direction must be
defined. Here, the vernal equinox is used. This describes the line
of intersection between the equator and the ecliptic plane. The sun
passes this point twice per year. Following the specification given
by Vallado and McClain (2001) in the ECI, the I axis points toward
the vernal equinox, the J axis is 90°C to the east in the equatorial
plane, and the K axis extends through the North pole. Another
coordinate frame used is the spacecraft body frame B. According
to Alcorn et al. (2018), this describes a reference frame that is fixed
to the rigid body of the spacecraft.The origin of the frame is denoted
as B. Bc describes the center of mass of the hub. rB/N describes the
position of the spacecraft in reference to the inertial ECI frame N .
The angular velocity ωB/N between the ECI N and the spacecraft
body frame B is given by Eq. 1.

ωB/N = [ω1,ω2,ω3]
T. (1)

2.1.2 Spacecraft dynamics
The spacecraft is modeled as a rigid body. The satellite is

equippedwith three balanced reactionwheels, each alignedwith one
spin axis ĝsi .This enables each reactionwheel to control one spin axis
without influencing the others. The equation of motion (EoM) used
tomodel the rotational behavior in the simulation is displayed in Eqs
2, 3:

msc [ ̃c] ̈rB/N +([Isc,B] −
3

∑
i=1

Jsiĝsiĝ
T
si
) ω̇B/N , (2)

= −[ω̃B/N ][Isc,B]ωB/N

−
3
∑
i=1
(ĝsiusi +ωB/N × JsiΩiĝsi) − [I

′
sc,B]ωB/N .

(3)

The tilde operator designates the skew symmetric matrix, that
is, [ω̃]v = ω× v. This notation has the benefit of being frame-
independent and represents the cross product in a compact manner.
A more detailed description can be found in Alcorn et al. (2018)
and Schaub and Junkins (2018). The contributions to the EoM are
summarized in Table 1.
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TABLE 1 Contributions to the EoM for the spacecraft equipped with
reaction wheels. The EoM depends heavily on the mass and inertia of the
spacecraft. The attitude rate and the wheel speed influence the effect
the motor torque has on the spacecraft.

Contributions to the equation of motion

Inertial forces on the center of mass c of the spacecraft (SC). [msc ̃c] ̈rB/N

Inertia matrix of the SC and the reaction wheels (RWs) [Isc,B], Jsi

Attitude rate of the SC ωB/N

Combined torques generated by the RWs

Effect of the motor torque usi

Effect of the attitude rate ωB/N

Effect of the wheel speed Ω

2.2 Deep reinforcement learning

The reinforcement learning problem can be characterized
through the interaction of the agent with an environment. The
agent is the learner and decision maker, while the environment
provides the background and gives feedback to those decisions.
The agent interacts with the environment in a discrete time step
t through an action at . Afterward, the agent receives feedback in
the form of the subsequent state st+1, which contains information
about the environment. To evaluate the action, the agent also
receives a numerical reward rt+1. The goal is to maximize the sum
of discounted rewards in the long run. The sum of these rewards
r is called the return R. Mathematically, the RL problem can be
represented as aMarkov decision process (MDP). If an environment
satisfies the Markov property, it generally means the present state
is only dependent on the immediate previous state. The MDP is
defined by Eqs 4–9

MDP≔ (S,A,T,P, r) (4)

with

S≔ Statespace, (5)

A≔ Actionspace, (6)

T ⊆ ℕ≔ Setof timesteps, (7)

P:S×A×T× S→ [0,1] ≔ State− transitionprobability function,
(8)

r:S×A×T× S→ℝ≔ Rewardfunction. (9)

The core RL objective is the maximization of the expected
discounted return. A discount factor γ is used to weigh the future
rewards and, therefore, determine how these are considered. The
return Rt can then be written according to Eq. 10.

Rt = rt+1 + γrt+2 + γ2rt+3 +⋯ =
∞

∑
k=0

γkrt+k+1,with0 ≤ γ < 1. (10)

A policy π(at , st) is defined as the probability of selecting action at
in state st . To evaluate the policy, the state-value function Eq. 11
is defined. Informally, this is the expected discounted return when
starting in state st and following a policy π. From this, the action-
value function Eq. 12 is defined. This is the expected return when
starting in state st and taking action at and from there on following
policy π

Vπ (st,at) = 𝔼π [Rt|S = st] = 𝔼π[
∞

∑
k=0

γkrt+k+1|S = st], (11)

Qπ (st,at) = 𝔼π [Rt|S = st,A = at]

= 𝔼π[
∞

∑
k=0

γkrt+k+1|S = st,A = at]. (12)

The state and the action-value function can be defined
recursively. These recursive definitions are called the
Bellmann and are displayed in Eqs 13 and 14:

Vπ (st,at) = 𝔼at∼π(⋅|st),st+1∼P(⋅|st,at) (rt+1 + γV
π (st+1)) , (13)

Qπ (st,at) = 𝔼st+1∼P(⋅|st,at)
× (rt+1 + γ𝔼at+1∼π(⋅|st+1) (Q

π (st+1,at+1))) . (14)

The expected return J(π) associated with a policy is displayed in
Eq. 15

J (π) = 𝔼t∼P(⋅|π) {Rt} . (15)

The reinforcement learning problem can then be written in Eq. 16 as

π∗ = argmax
π

J (π) , (16)

where π∗ describes the optimal policy.

2.3 Soft actor-critic algorithm

The soft actor-critic (SAC) (Haarnoja et al., 2018) algorithm
is an off-policy maximum entropy deep reinforcement learning
algorithm. The goal is to maximize the expected reward and the
entropy of the selected actions. SAC makes use of three major
concepts.

2.3.1 Actor-critic algorithm
Actor-critic algorithms are usually based on policy iteration.

Policy iteration describes the alternation between policy evaluation
and policy improvement. In the policy evaluation step, the Q-value
function (critic) is updated on the basis of the actor. In the policy
improvement step, the parameters Φ of the policy πΦ are updated
with the critic.

2.3.2 Off-policy algorithm
The off-policy paradigm helps increase sample efficiency

through the reuse of previously collected data. Off-policy algorithms
have the advantage of distinguishing between the current policy
and the behavioral policy. The current policy can be updated with
collected transitions (st ,at , rt , st+1) that are sampled by another
policy. Therefore, it is possible to use data that were collected by an
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old policy to update the current policy. The SAC algorithm makes
use of an experience replay buffer, which is a set D of previous
experience.

2.3.3 Entropy maximization
Entropy is a metric that describes the randomness of a random

variable (Open AI, 2018b). The entropy H of a random variable x
with probability or density function P is defined in Eq. 17.

H (P) = 𝔼x∼P [− log P (x)] . (17)

Entropy-regularized reinforcement learning extends the
objective function by an entropy objective H(π(⋅|st)). The expected
return is then rewritten according to Eq. (18).

J (π) =
T

∑
k=0
𝔼(st,at)∼ρπ [r(st,at) + αH (π(⋅|st))] , (18)

where α describes the temperature parameter. This determines the
relative importance of the entropy term against the reward term.
Therefore, it controls the stochasticity of the optimal policy. The
extension by the entropy objective has the advantage of incentivizing
the policy to explore the state-action space and make the policy
more robust.In practice, SAC uses neural networks as function
approximators for the parameterized soft Q-function Qθ(st ,at) and
the tractable policy πΦ(at , st), where θ andΦdescribe the parameters
of the neural networks.The softQ-function is trained byminimizing
the soft Bellmann residual error, displayed in Eq. 19.

JQ (θ) = 𝔼(st,at)∼D [
1
2
(Qθ (st,at) − (r(st,at)

+ γ𝔼st+1∼p [V(st+1)]))
2] . (19)

The value function Eq. 20 is implicitly parameterized through the
soft Q-function

V(st) = 𝔼at∼π [Q ̄θ (st,at) − α log π(at, st)] . (20)

The target network function, denoted by Q ̄θ, is introduced to
stabilize training in the algorithm. In order to achieve this, a
second network is used, which is updated through the use of polyak
averaging, a technique that involves computing a moving average of
theQ-network.This is updated once per update of themain network
and lags behind it. To prevent overestimation of the Q-values, two
Q-functions are trained independently, and the minimum of their
respective target networks is used to update the actor.Theparameters
ϕ of the policy network are updated by minimizing the return in
Eq. 21.

Jπ (ϕ) = 𝔼st∼D [𝔼at∼πψ [α log(πψ (at|st)) −Qθ (at, st)]] . (21)

2.4 Proximal policy optimization

Proximal policy optimization (PPO) (Schulman et al.,
2017; Open AI, 2018a) is an often-used reinforcement learning
algorithm. The core idea of PPO is to take policy updates that are
as far apart as possible without causing the performance to diverge.
PPO is an actor-critic on-policy algorithm.

2.4.1 On-policy algorithm
An on-policy algorithm iterates through two phases. At first,

the agent samples data. In the second step, the agent updates its
policy with the sampled data. Because the samples need to be
generated with the policy that should be updated, all the training
data are obsolete after an update has been performed.The agentmust
sample data again after every update.PPO updates its policy with an
advantage functionA(st ,at); such as the ones given in Eqs 22 and 23.

A(st,at) = Q(at, st) −V(st) (22)

= (r(st,at) + γV(st+1)) −V(st) . (23)

The advantage function A(st ,at) provides a measure of how good
action at is compared to the expected value of being in state st .
Because A(st ,at) can be defined by the value function V(st), PPO
uses an actor network and a value function network. The value
network is trained using the Bellmann equation. The policy is
updated via Eq. 24.

θk+1 = argmax
θ
𝔼(st,at)∼ρπ [L(st,at,θk,θ)] . (24)

Here, L is given in Eqs 25 and 26.

L(st,at,θk,θ)

=min(
πθ (at|st)
πθk (at|st)

Aπθk (st,at) , g(ϵ,A
πθk (st,at))), (25)

where

g (ϵ,A) =
{
{
{

(1+ ϵ)A, A ≥ 0

(1− ϵ)A, A < 0
. (26)

The hyperparameter ϵ controls the deviation between the old and
the new policy and is, therefore, responsible for ensuring the update
steps are not too large.

2.5 Stacked observations

Reinforcement learning is often influenced by hidden variables.
Hidden variables are properties of the environment that are not
present in the state of the RL problem but that have an influence on
the dynamics of the system, such as the mass of an object. Although
the hidden variables are not part of the state, the agent must be
able to derive them in order to control the system optimally. In this
work, we use stack past observations and actions tomake the system
dynamics accessible to the agent. Using this metric, the agent can
analyze the historical states to infer details about how the system’s
behavior changes over time.

3 Methodology

This section describes the simulation setup and the application
of the RL algorithms to the spacecraft attitude problem.

3.1 Simulation architecture

The attitude problem is simulated within the astrodynamic
framework Basilisk (2024). This framework provides Python
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FIGURE 1
Simulation architecture and agent interface. The simulation (SIM) and flight software (FSW) modules communicate through the message-passing
interface (MPI). The agent receives the state st from the environment. The state contains the attitude σB/N , the attitude rate ωB/N , and the wheel speed
Ω. The agent then gives an action at in the form of a torque vector into the environment. The communication between the agent and the environment
is based on an OpenAI Gym interface. Modified from Schaub (2023).

TABLE 2 Training parameters for the SAC algorithm, including the RL
hyperparameters and the environment parameters. The learning rates
refer to three different learning rates: The actor network, the Q-value
network, and the α parameter. The rectified linear unit (ReLU) is chosen
as the activation function. This function returns the input if the input is
positive and zero otherwise.

Parameter Value

Learning rates 3 ⋅ 10–4

Discount γ 0.99

Replay buffer size 1,000,000

Number of hidden units 256

Entropy target −dim(A) = −3

Nonlinearity ReLU

Target update interval 1

Target smoothing coefficient τ 5 ⋅ 10–3

Time step 10s

Episode length 600s = 10 min

modules written in C/C++. It is being developed by the University
of Colorado Autonomous Vehicle Systems (AVS, 2023) and the
Laboratory for Atmospheric and Space Physics (LASP, 2023).
The simulation environment has no aerodynamic, gravitational,
or solar radiation pressure effects. The simulations are visualized
by the accompanying software, Vizard (2023). The simulation

TABLE 3 Training parameters for the PPO algorithm. For the RL
hyperparameters and the environment parameters, see Table 2.

Parameter Value

Horizon 60

Learning rate 5 ⋅ 10–5

Number of epochs 500

Clipping parameter 0.2

Number of hidden units 256

Batch size 128

Nonlinearity ReLU

software is connected to the RL framework RLlib (2023) through
OpenAI Gym.

The simulation architecture is shown in Figure 1. The spacecraft
module describes the spacecraft as a rigid body. The gravityEffector
module provides the necessary orbital dynamics for a low earth
orbit. The simpleNav module provides the current attitude, attitude
rate, and position of the spacecraft. The inertial3Dmodule provides
the attitude goal. In the attTrackingError module, this goal is used
to compute the difference between the desired attitude and the
current attitude. The result is then given as feedback to the agent.
The agent provides a torque input to the rwMotorTorque module,
which maps these onto the three reaction wheels. The reaction
wheel speed Ω is then given as feedback to the agent. The different
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TABLE 4 Evaluation metrics for the SAC, PPO, and PID algorithms.

Return |σB/N final| [°] σiB/N final [°] CI for σiB/N final [°] Settling time [s]

SAC 0.95± 0.98 5.36± 5.19 −1.96± 3.84 [−5.69,1.82] 232.77± 74.97

PPO 1.16± 0.90 9.83± 1.78 1.68± 5.52 [−7.86,7.85] 217.52± 81.91

SAC stacked 1.95± 0.69 3.92± 2.58 −0.38± 2.68 [−6.46,4.31] 195.77± 61.80

PPO stacked 2.23± 0.76 4.53± 1.21 0.98± 2.53 [−3.84,5.12] 166.48± 12.46

PID −0.64± 4.30 6.77± 16.75 −0.12± 10.43 [−4.62,2.11] 229.42± 48.54

FIGURE 2
Return for the different algorithms plotted over the mass of the satellite. The PPO stacked algorithm achieves the best return overall. The algorithms
with no stacked observations have difficulty in the low mass range. For visibility purposes, only returns to a minimum of −11 are shown.

scenarios described in the following sections were implemented
through the initialConditionsmodule. The agent and the simulation
communicate through an OpenAI Gym interface. The agent is
trained using the SAC (2023) and PPO (2023) algorithms included
in RLlib.

3.2 State and action space

A satellite equipped with reaction wheels used for attitude
control is simulated. Three reaction wheels are set up to control
the three axes of the satellite. The attitude tracking error
σB/N and the attitude rate ωB/N are described by modified
Rodrigues parameters (MRP) Schaub and Junkins (2018). The

resulting attitude is always given as the shortest rotational
path. The MRP have a bounded maximum norm of 1, which
allows the interpretation of the feedback gained from the
attitude error. As action a, the torque vector u on the reaction
wheels is used. The final action vector is then
given in Eq. 27.

a = [u1,u2,u3] . (27)

The reaction wheels are modeled after a standard set of reaction
wheels like the Honeywell (2023) HR16. In compliance with
this, the action space boundaries are set to umin = −0.2Nm and
umax = 0.2Nm. The state s is defined with the reaction wheel speed
Ω in the following Eq. 28.
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FIGURE 3
Attitude error and the applied motor torques for the mass of m = 15 kg with the SAC agent with and without stacked observations. Using stacked
observations enables the agent to stabilize the satellite, even at low masses. (A) Attitude error for the SAC algorithm. (B) Attitude error for the SAC
stacked algorithm. (C) Applied torques for the SAC algorithm. (D) Applied torques for the SAC stacked algorithm.

s = [σB/N ,ωB/N ,Ω] . (28)

3.3 Training

In the training scenario, a fixed initial attitude σB/N Init = [1,0,0]
(rotation by 180° around the x-axis) and attitude rate ωB/N Init =
[0,0,0] rad

s
are set. The goal state is σB/NDesired = [0,0,0]. The mass

is sampled uniformly between 10 kg and 1,000 kg.

3.4 Reward modeling and RL parameters

The main objective of the agent is to reach the desired
orientation. For this purpose, an attitude error is defined on which
the reward is based.The attitude error σB/N is defined in Eqs 29 and
30 as the difference between the desired orientation and the current
orientation of the satellite for each coordinate.

σB/N = [σ1B/N ,σ
2
B/N ,σ

3
B/N ] , with (29)

σiB/N = (σ
i
B/NDesired − σ

i
B/NCurrent) . (30)

Using this definition, the reward is defined in Eq. 31.

r =

{{{{{{{{{{{
{{{{{{{{{{{
{

−1, if |Ωi| ≥Ωmax = 6000 rpm

−|σB/N |2 + 0.1, ifσ
i
B/N < 0.05, ∀i

−|σB/N |2 + 0.05, ifσ
i
B/N andσjB/N < 0.05, ∀i ≠ j

−30andepisodeover, ifωi
B/N > 0.85

rad
s
, ∀i

−|σB/N |2, else.

(31)

The first term of the reward function is to avoid saturation of the
reaction wheels at their maximum wheel speed Ωmax. The main
objective is to minimize the norm of the attitude error −|σB/N |2.
Empirically, it could be observed that these two conditions alone
do not achieve the desired orientation in each coordinate because
the norm of the attitude error is in a similar small range, even
if only one coordinate is near the desired orientation. Therefore,
conditions were added, which consider the coordinates separately
and give additional incentive to the agent to bring all coordinates
below a certain threshold. These are represented in the second and
third rows. The condition in the second row gives an additional
reward if all coordinates are below 0.05. The condition in the third
row gives a smaller additional reward if at least two coordinates
are below the threshold. The fourth row prevents the satellite from
spinning out of control. Especiallywith smallmasses, exerting a large
torque can cause the satellite to spin uncontrollably, making further
attitude control impossible. With −1 ≤ r ≤ 0.1 and the number of
steps = 60, the minimum and maximum return R can be calculated
to −60 ≤ R ≤ 6. The reward function is the same throughout all
scenarios. The RL hyperparameters used for the training are shown
in Tables 2 and 3.The training of the SAC agent was carried out on a
desktop computer with a GeForce RTX 3090 GPU and an Intel Core
i9-12900 KF CPU. A GeForce RTX 3090 GPU with an Intel Xeon
Gold 6140 CPU was used for the PPO agent.

3.5 PID controller

To evaluate the performance of the DRL algorithms, a simple
PID controller is implemented and interfaced with Basilisk. The
PID controller is tuned with a spacecraft mass of m = 300 kg.
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FIGURE 4
Attitude error, attitude rate error, and the applied motor torques for the mass of m = 300 kg with the SAC agent with stacked observations and the PID
controller. (A) Attitude error for the SAC stacked algorithm. (B) Attitude error for the PID controller. (C) Attitude rate error for the SAC stacked algorithm.
(D) Attitude rate error for the PID controller. (E) Applied torques for the SAC stacked algorithm. (F) Applied torques for the PID controller.

This represents roughly the median of the considered mass range
while being slightly optimized for lowermasses.This optimization is
considered because high forces have a stronger effect on lowmasses.
To tune the PID controller, the parameters are first approximated
by hand, after which a Nelder and Mead (1965) optimization is
employed to find the values for which the return is maximized. The
parameters then correspond to: kp,ki,kd = (0.36,0.00015,14.02). As
input to the PID controller, the attitude error σB/N is used.The PID
controller has a control frequency of 1 Hz. In correspondence to the
DRL algorithms, the PID controller outputs a 3-dimensional torque
on the reaction wheels. The PID controller is used for comparison
with the DRL algorithms in the following section.

4 Results

In this section, the respective algorithms are evaluated and
compared in terms of their achieved return and the final attitude
error. First, the evaluation method is presented, and second,
the results are discussed. The evaluation shows that the DRL
algorithms with stacked observations outperform both the DRL

without stacked observations and the classical PID controller.To
evaluate the different algorithms, the trained agent is tested in the
environment for 1,000 episodes. The initial and desired attitudes
are the same as those used in the training. For each episode, the
mass is uniformly sampled between 10 kg and 1,000 kg. The 1,000
episodes are then evaluated on the basis of the following metrics:
Return R: The mean return reached in each episode, including
the standard deviation. |σB/Nfinal|: The mean norm and standard
deviation of the final 3D attitude error vector. σ i

B/Nfinal: All final
attitude vectors are transformed into one list by concatenating their
components.Then, the mean and standard deviation of that list
is calculated. Confidence Interval (CI) for σ i

B/Nfinal: Gives an
indication of where the final attitude error for all components will
lie, with 95% confidence. Settling time: The mean and standard
deviation of the time the satellite takes to get and keep the attitude
error norm below 15°.

The results of the training metrics are listed in Table 4.
The PPO algorithm with stacked observations achieves the

best performance overall. Although the confidence interval of the
attitude error |σB/N final| is slightly lower for the classical PID
controller, the standard deviation of the final attitude error is very
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high. This demonstrates that the RL stacked algorithms achieve
a more robust control. Additionally, the algorithms with stacked
observations have a faster settling time. Noticeably, both the SAC
and the PPO algorithm have a larger CI for the final attitude error
than the PID controller. This indicates that the PID algorithm
provides results that are, in general, more consistent and, therefore,
easier to predict than the other algorithms. Combined with the large
standard deviation of the attitude error, this indicates that the PID
controller achieves a stable and consistent result for most cases but
cannot handle low masses. To further demonstrate this, the return
in correlation to the mass is plotted for the different algorithms
in Figure 2.

For most mass cases, the PID algorithm achieves a return within
the same range. This explains the small CI of the final attitude
error. The PID algorithm provides a very predictable return for
masses m ≥ 100 kg, while for the DRL algorithms, the returns are
higher in general but show a larger spread. The algorithms without
stacked observations are not able to handle masses between 10 kg
and 100 kg. Because the algorithms have no way to extract the mass
from the observations, the agents try to generalize and optimize the
actions for all masses.The algorithmsmaximize the expected return
over all possiblemasses, which is why the return is slightly optimized
for lower masses. By doing this, the agent must find a balance
between applying a force that is too small to move the higher masses
and applying a force that is too strong for the lowmasses. In the end,
the actions are slightlymore optimized toward lowermasses because
the negative effect of wrong actions is stronger here. This is evident
in the shape of the return/mass curve, which starts negative and then
reaches a maximum at approximately 200 kg, after which the return
slightly decreases. The decrease in the return is due to the fact that
the satellite needs a longer time to reach the desired orientation, with
the force optimized for masses approximately 200 kg.

The SAC and PPO algorithms achieve slightly different curves.
Although the mean return is in a similar range, the PPO algorithm
performs slightly better at lowmasses.Theoptimization problemhas
different solutions: The SAC algorithm achieved a more generalized
approach that achieves a consistent return for higher masses. The
PPO algorithm achieves better results at low masses but performs
worse at higher masses. The classical PID algorithm shows a very
stable behavior for a wide array of masses but also fails to stabilize
the satellite in the low mass range. This shows that a PID controller
is not suitable for handling both low and very high masses because
the tuning parameters would be vastly different.

When using stacked observation, the agent is able to extract the
dynamics of the spacecraft. By stacking the observations together,
the agent can make a connection between the force applied and
the reaction of the spacecraft over the course of five observations.
This helps to stabilize the satellite, even at low masses. Instead of
developing a generalized algorithm and applying the same actions
to each mass, the agent learns to apply different actions depending
on the mass. To further demonstrate the different behavior of the
SAC agents with and without stacked observations, both agents
are tested in one episode for a mass of m = 15 kg. The resulting
evolution of the attitude error and the applied torques can be
found in Figure 3. The agent without stacked observations reaches a
return of R = −8.91, and the oscillating behavior around the desired
orientation is clearly visible in Figure 3A. The agent applies torques
that are optimized for masses approximately 200 kg. This results

in the satellite overshooting the desired target. To mitigate this,
the agent then applies a torque in the opposite direction. Again,
this torque is too strong, causing another overshoot. The algorithm
is unable to adapt to the fact that the mass is now significantly
lower than those for which the algorithm optimized. The applied
torque does not change in amplitude. On the other hand, the agent
that uses stacked observations instead reaches a return of R = 2.95
and manages to stabilize the satellite with a stabilizing time of t =
260 s. After initially applying a large torque, the agent implements
the feedback gained by the stacked observations to lower the force
of the torque (Figure 3D). This allows the agent to stabilize the
satellite at the desired orientation. The final attitude errors for SAC
are [60.31,−27.02,−47.54]° and |σB/N final| = 81.41°, SAC stacked
instead reaches a final attitude error of [−0.77,3.12,1.14]° and
|σB/N final| = 3.41°. SAC stacked achieves a better result by 78°.

For further comparison, the PID controller is compared to the
SAC stacked algorithm form = 300 kg.Thismass corresponds to the
mass the PID controller was tuned with.This comparison will aid in
explaining the difference between the two algorithms.

Both algorithms bring the attitude error close to zero. The
SAC stacked algorithm reaches a return of R = 2.16, while the
PID controller reaches R = 0.65. The final attitude error of the
SAC stacked algorithm is [0.37, −1.94, −2.57]° and |σB/N final| =
3.24°, while the PID controller achieves [−3.41, 1.23, 2.09]° and
|σB/N final| = 4.19°, respectively. The SAC stacked algorithm also
brings the attitude error close to zero faster, achieving a settling
time of 180 s, while the PID algorithm needs 206 s to achieve the
desired attitude. The PID controller achieves smooth control by
continuously adjusting its output based on the error between the
desired and actual attitude. Once the final attitude is reached, the
controller’s actions converge to zero, resulting in minimal torque
applied. This behavior is a result of its feedback mechanism and
predefined control parameters.In contrast, reinforcement learning
agents use stochastic gradient descent to find the optimal policy.
Therefore, it is only possible to approximate a certain output.
As shown in Figure 4F, the SAC stacked agent cannot output
the action [0,0,0]. For this reason, even if the attitude error is
already very small, a small action is still carried out, which means
that the satellite never comes to a complete rest. In contrast,
the PID controller can output the action [0,0,0] and thus bring
the attitude error very close to 0. This also explains the slight
drop in the return for low masses in Figure 2 for the agents with
stacked observations.

5 Conclusion and further study

This study demonstrated the great promise of DRL techniques,
especially in combination with stacked observations. For scenarios
where a high variation in mass is possible, such as active debris
removal, the satellite ACS system must be highly adaptable for a
wide range of possible masses. DRL algorithms without stacked
observations are already able to handle the attitude control well, but
they achieve similar results as a PID controller. Employing stacked
observations significantly increases the performance of the DRL
controller, especially for a low mass range. This technique enables
the agent to extract mass information without measuring the mass
directly.This is very valuable when dealing with the unknown space
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debris environment. Both the SAC and PPO algorithms achieved
similar results.

These results establish a basis for further study. In the future,
a higher varying mass range in combination with varying initial
attitudes will be investigated. Combining these would lead to
developing a robust attitude controller that can adapt its control
based on the dynamics of the spacecraft. In this study, the mass
variation was set before each episode. In a rendezvousmaneuver, the
mass would change from one time step to the next. The algorithm
would have to adapt immediately. This change in mass during the
episode will be investigated in future works.
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