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MACRPO: Multi-agent
cooperative recurrent policy
optimization

Eshagh Kargar* and Ville Kyrki

Intelligent Robotics Group, Electrical Engineering and Automation Department, Aalto University,
Helsinki, Finland

This work considers the problem of learning cooperative policies in multi-agent
settings with partially observable and non-stationary environments without a
communication channel. We focus on improving information sharing between
agents and propose a new multi-agent actor-critic method called Multi-
Agent Cooperative Recurrent Proximal Policy Optimization (MACRPO). We
propose two novel ways of integrating information across agents and time in
MACRPO: First, we use a recurrent layer in the critic’s network architecture
and propose a new framework to use the proposed meta-trajectory to train
the recurrent layer. This allows the network to learn the cooperation and
dynamics of interactions between agents, and also handle partial observability.
Second, we propose a new advantage function that incorporates other agents’
rewards and value functions by controlling the level of cooperation between
agents using a parameter. The use of this control parameter is suitable for
environments in which the agents are unable to fully cooperate with each other.
We evaluate our algorithm on three challenging multi-agent environments
with continuous and discrete action spaces, Deepdrive-Zero, Multi-Walker, and
Particle environment. We compare the results with several ablations and state-
of-the-art multi-agent algorithms such as MAGIC, IC3Net, CommNet, GA-
Comm, QMIX, MADDPG, and RMAPPO, and also single-agent methods with
shared parameters between agents such as IMPALA and APEX. The results show
superior performance against other algorithms. The code is available online at
https://github.com/kargarisaac/macrpo.

KEYWORDS

cooperative, policy, multi-agent, information sharing, interaction, reinforcement
learning

1 Introduction

While reinforcement learning (RL) (Kaelbling et al., 1996) has gained popularity
in policy learning, many problems that require coordination and interaction between
multiple agents cannot be formulated as single-agent reinforcement learning. Examples
of such scenarios include self-driving cars (Shalev-Shwartz et al., 2016), autonomous
intersection management (Dresner and Stone, 2008), multiplayer games (Berner et al.,
2019; Vinyals et al., 2019), and distributed logistics (Ying and Dayong, 2005). Solving
these kinds of problems using single-agent RL is problematic because the interaction
between agents and the non-stationary nature of the environment due to multiple learning
agents can not be considered (Hernandez-Leal et al., 2019; Lazaridis et al., 2020).
Multi-agent reinforcement learning (MARL) and cooperative learning between several
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interacting agents can be beneficial in such domains and has
been extensively studied (Nguyen et al., 2020; Hernandez-
Leal et al., 2019).

However, when several agents are interacting with each other
in an environment without real-time communication, the lack
of communication deteriorates policy learning. To alleviate this
problem, we propose a meta-trajectory-based communication
scheme during training, where agents indirectly share information
through a centralized critic. By aggregating trajectories from all
agents into a meta-trajectory, the critic is able to learn the
cooperative dynamics between agents, even in the absence of direct
communication during execution. This scheme enables the agents
to implicitly learn from each other’s observations and rewards,
allowing them to better predict each other’s behavior and adapt
accordingly. For example, in applications like autonomous driving at
intersections, agents can anticipate the actions of others, improving
performance, safety, and cooperation.

A standard paradigm for multi-agent planning is to use the
centralized training and decentralized execution (CTDE) approach
(Kraemer and Banerjee, 2016; Foerster et al., 2016; Lowe et al.,
2017; Foerster et al., 2018; Xiao et al., 2021), which we also
adopt in this work. During centralized training, the critic receives
global information, including observations and actions from all
agents, allowing it to model the inter-agent dynamics. During
decentralized execution, each agent uses its own local observations
to act independently.

In this work, we propose a new cooperative multi-agent
reinforcement learning algorithm,which is an extension to Proximal
Policy Optimization (PPO), called Multi-Agent Cooperative
Recurrent Proximal Policy Optimization (MACRPO). MACRPO
enhances inter-agent coordination through two key mechanisms:
First, it uses a recurrent long short-term memory (LSTM) layer in
the critic network, trained with a meta-trajectory that combines
trajectories from all agents (see Figure 1). This enables the critic
to capture the temporal dynamics and interactions between agents
over time, while also handling the partial observability of each
agent. Second, MACRPO introduces a novel advantage function
estimator that incorporates both the rewards and value functions
of other agents, controlled by a cooperation parameter. This allows
MACRPO to adjust the level of cooperation, which is particularly
useful in environments where agents cannot fully cooperate,
balancing individual and collective rewards.

MACRPO operates under the centralized training and
decentralized execution paradigm. During training, the centralized
critic leverages the meta-trajectory to sequentially predict the
value of a state for each agent, enabling it to learn the cooperative
strategies between agents. During execution, the decentralized actor
networks use only local observations, ensuring that each agent acts
autonomously without requiring real-time communication.

Moreover, in environments where multiple agents are
simultaneously learning during training, each agent’s policy
and the environment’s dynamics are constantly changing from
the perspective of other agents, resulting in non-stationarity
(Hernandez-Leal et al., 2019; Xiao et al., 2021). To mitigate this
issue, MACRPO employs an on-policy approach, ensuring that the
most recent data collected from the environment is used for training.

In summary, our contributions are as follows: (1) We propose
a cooperative on-policy centralized training and decentralized

execution framework that is applicable to both discrete and
continuous action spaces. (2) We introduce two novel mechanisms
for information sharing across agents: (a) a recurrent LSTM
component in the network architecture that integrates meta-
trajectories to capture inter-agent cooperation over time, and (b)
an advantage function estimator that combines individual rewards
and value functions with a control parameter, which allows the
level of cooperation between agents to be dynamically adjusted.This
dual mechanism enables superior policy learning and adaptability
compared to prior approaches, as demonstrated in our experiments.
(3) We evaluate MACRPO on three cooperative multi-agent
tasks: DeepDrive-Zero (Quiter, 2020), Multi-Walker (Gupta et al.,
2017), and Particle (Mordatch and Abbeel, 2018), showing that it
achieves comparable or superior performance against state-of-the-
art methods.

The rest of this paper is organized as follows. The review of
related works in Section 2 demonstrates that while MARL has
been extensively studied, existing approaches do not address the
dynamics of interaction between agents in detail. In Section 3,
we provide the required background in Markov Games and
Proximal Policy Optimization. The problem definition and the
proposed method are described in Section 4, with emphasis on
the two innovations, meta-trajectory for recurrent network training
and joint advantage function. Then, Section 5 presents empirical
evaluation in three multi-agent environments showing superior
performance of the proposed approach compared to the state-of-
the-art. Finally, in Section 6 we conclude that implicit information
sharing can be used to improve cooperation between agents while
discussing its limitations in settings with a high number of agents.

2 Related work

Themost straightforward andmaybe themost popular approach
to solving multi-agent tasks is to use single-agent RL and consider
several independent learning agents. Some prior works compared
the performance of cooperative agents to independent agents and
tried independent Q-learning (Tan, 1993) and PPO with LSTM
layer (Bansal et al., 2017), but they did not work well in practice
(Matignon et al., 2012). Also, Zhao et al. (2020) tried to learn a joint
value function for two agents and used PPO with an LSTM layer to
improve the performance in a multi-agent setting.

In order to use single-agent RLmethods formulti-agent settings,
improve the performance, and speed up the learning procedure,
some works used parameter sharing between agents (Gupta et al.,
2017; Terry et al., 2020). Especially in self-play games, it is common
to use the current or older versions of the policy for other agents
(Berner et al., 2019). We will compare our proposed method with
several state-of-the-art single-agent RL approaches with shared
parameters between agents proposed in Terry et al. (2020) in the
experiments section. Our way of training the LSTM layer in the
critic differs from parameter sharing used in the literature such that
instead of using separate LSTMs for each agent, the LSTM layer
in our method has a shared hidden state, which is updated using
a combination of all agents’ information. This lets the LSTM layer
learn about the dynamics of interaction and cooperation between
agents across time.
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FIGURE 1
Overview of the Multi-Agent Cooperative Recurrent Proximal Policy Optimization (MACRPO) Framework. This figure illustrates the key components of
our proposed method (shown with full opacity) compared to conventional approaches in the literature (shown with transparency). In our method, each
agent collects trajectories consisting of observations (o), actions (u), and rewards (r) over multiple time steps. These individual trajectories are then
combined into a meta-trajectory, which is fed into both the advantage function estimator and the centralized critic’s LSTM. The advantage function
estimator (added in our method) calculates each agent’s advantage by considering both individual and shared rewards, thereby allowing us to control
the cooperation level between agents. This calculated advantage helps the centralized critic’s LSTM to better learn the dynamics and cooperation
between agents. During decentralized execution, only the actor networks are used, trained independently for each agent. In contrast, conventional
approaches use separate trajectories and do not incorporate meta-trajectory or cooperative advantage estimation.

In addition to using single-agent RL methods with or without
parameter sharing, some works focus on designing multi-agent
RL algorithms that incorporate communication between agents to
enhance coordination in multi-agent settings. Communication in
multi-agent environments can significantly improve learning and
performance by enabling agents to share information (Niu et al.,
2021; Singh et al., 2019; Liu et al., 2020; Sukhbaatar et al., 2016;
Dutta et al., 2005; Da Silva and Costa, 2019; Kash et al., 2011).
However, the effectiveness of communication often depends
on the availability and optimization of the communication
channels. IC3Net (Singh et al., 2019) introduces a communication
gating mechanism, allowing agents to learn when to communicate
with each other during cooperative and competitive tasks. While
IC3Net leverages communication between agents to improve
coordination, it assumes that a communication channel is available
during execution. In some real-world scenarios, such as autonomous
driving, direct communication between agents may not be feasible.
In such environments, agents must learn to cooperate without
explicit communication. Unlike IC3Net, MACRPO addresses
this challenge by enabling indirect information sharing during
the training phase through a meta-trajectory that combines the
experiences of all agents. This meta-trajectory allows agents to

implicitly learn cooperation strategies without requiring explicit
communication during execution, making MACRPO well-suited
for environments where communication is restricted or absent.

A recently popularized paradigm for sharing information
between agents is the use of centralized training and decentralized
execution. In general, we can categorize these types of approaches
into two groups: value-based and actor-critic-based. In value-based
methods, the idea is to train a centralized value function and
then extract the value functions for each agent from that to act
in a decentralized manner in the execution time (Sunehag et al.,
2018; Rashid et al., 2018). On the other hand, the actor-critic-
based methods have actor and critic networks (Lowe et al., 2017;
Foerster et al., 2018). The critic network has access to data
from all agents and is trained in a centralized way, but the
actors have only access to their local information. They can act
independently in the execution time.The actors can be independent
with individual weights (Lowe et al., 2017) or share the policy
with shared weights (Foerster et al., 2018). In this work, we
use an actor-critic-based method with centralized training and
decentralized execution, providing two innovations to improve
information sharing without a communication channel between
agents during execution.
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FIGURE 2
Actor Network Architecture for agent i. The actor network processes
its own collected trajectory, consisting of local observations (ot

i ) and
actions (ut

i ) over time. It outputs the agent’s action at each time-step
based on its observations and learned policy.

RMAPPO (Yu et al., 2022) is a method close to ours, which
uses the CTDE framework. They make no mention of recurrent
neural networks (RNNs) in their paper, but their code contains
recurrent layers. RMAPPO focuses primarily on adapting PPO
components such as clipping, mini-batching, batch size, value
normalization, and value function input representation for multi-
agent environments. However, the main distinction between our
work and theirs lies in the meta-trajectory we generate from the
data of all agents, and the specific manner in which we employ
the RNN layer. RMAPPO employs CTDE and RNNs as usual
without a combined trajectory as input, which limits its ability to
model interactions between agents over time. In addition to the
meta-trajectory, another difference is in the way information is
shared. While both methods share policy parameters across agents,
RMAPPO uses a shared reward function for all agents that is the
sum of individual rewards, without any control over the degree of
cooperation. In contrast, MACRPO introduces a novel advantage
function estimator that incorporates a control parameter, allowing
us to dynamically adjust the level of cooperation between agents.
This provides greater flexibility in environments where the degree of
cooperation must vary dynamically over time. Furthermore, while
RMAPPO is tested primarily in environments with discrete action
spaces, MACRPO is evaluated in both discrete and continuous
action spaces, demonstrating its broader applicability.

In Foerster et al. (2018), which is another work near ours, the
actor is recurrent, but the critic is a feed-forward network, whereas
our actor and critic are both recurrent, and the recurrent layer in
our critic has a crucial role in our method. Their method is also for
settings with discrete action spaces, whereas we test our method on
three environmentswith both discrete and continuous action spaces.

ROLA (Xiao et al., 2021) is another work near ours. They
use LSTMs in both actor and critic networks. Additionally, ROLA

employs both centralized and individual asymmetric critics that
estimate individual advantage values using local history and/or
state information. However, we construct the meta-trajectory which
has not only the history of each agent but also the history of the
interaction between agents and the environment’s dynamics. In
addition, we propose a novel advantage function estimator which is
a combination of all agents’ advantage functions and the cooperation
level of agents can be changed based on the problem using a control
parameter.

Durugkar et al. (2020) is also a work that combines an agent-
specific reward and an environment-specific reward to accomplish
the shared task. They consider a framework that uses a linear
mixing scheme to balance individual preferences and task rewards.
They demonstrate that in their test environments, a small amount
of selfishness and not full cooperation can be advantageous
and facilitate team learning. In our test environments and with
our framework, full cooperation among agents yields superior
performance. Depending on the environment, the amount of
cooperation and selfishness can be different.

The other similar work to ours, which is one of the most
popular MARL methods, is the multi-agent deep deterministic
policy gradient (MADDPG) (Lowe et al., 2017) that proposed
similar frameworks with centralized training and decentralized
execution.They tested their method on some Particle environments
(Mordatch and Abbeel, 2018). Their approach differs from ours
in the following ways: (1) They do not have the LSTM (memory)
layer in their network, whereas the LSTM layer in the critic
network plays a critical role in our method. It helps to learn the
interaction and cooperation between agents and also mitigate the
partial observability problem. (2) They tested MADDPG on Multi-
Agent Particle Environments with discrete action spaces. However,
we test our method in both continuous and discrete action space
environments. (3) They consider separate critic networks for each
agent, which is beneficial for competitive scenarios, whereas we
use a single critic network and consider the cooperative tasks. (4)
Their method is off-policy with a replay buffer, and they combat the
non-stationarity problem by centralized training. In contrast, our
approach, in addition to centralized training, is an on-policymethod
without a replay buffer allowing the networks to use the most
recent data from the environment. We will compare our method
with MADDPG and show that ours has comparable or superior
performance. Wang et al. (2020) extends the MADDPG idea and
adds a recurrent layer into the networks, but they have separate
actors and critics for agents, similar to MADDPG, and recurrent
hidden states of critics are isolated, and there is no combination
of information in them. They also tested their method on one
environment with a discrete action space.

We target problems where agents attempt to collaboratively
maximize the sum of all agents’ expected rewards but where each
agent receives its reward. We do not specifically consider the credit
assignment problem for multi-agent games where all agents have a
shared team reward.The proposed algorithm can be applied to such
problems, but it is not designed for them.

To provide a clearer comparison, Table 1 summarizes the key
differences between MACRPO and other state-of-the-art methods.
The table highlights the distinctive features of MACRPO, such
as the use of meta-trajectories and a novel advantage estimation
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mechanism with a cooperation control parameter, which are not
present in other approaches.

3 Background

3.1 Markov games

In this work, we consider a multi-agent extension of
Partially Observable Markov Decision Processes (MPOMDPs)
(Gmytrasiewicz and Doshi, 2005), also called partially observable
Markov games (Littman, 1994). It can also be modeled as Partially
Observable Stochastic Games (POSGs) (Hansen et al., 2004). A
Markov game for N agents is defined by a set of states S describing
the possible configurations of all agents, a set of actions U1,…,UN
and a set of observations O1,…,ON for each agent. The probability
distribution of the next state as a function of the current state and
actions is determined by a Markovian transition function T :S×
U1 ×⋯×UN→ S. Each agent i uses a stochastic policy πθi :Oi ×
Ui→ [0,1], parametrized by θi, to choose an action. Upon the
state transition, the agent receives a scalar reward ri:S×Ui→ℝ.
We consider games where the total reward can be decomposed
to individual agent rewards ri. Each agent i aims to maximize the
rewards for all agents in a cooperative way (Lowe et al., 2017).

3.2 Proximal policy optimization

Proximal Policy Optimization (PPO) is a family of policy
gradient methods for solving reinforcement learning problems,
which alternate between sampling data through interaction with
the environment and optimizing a surrogate objective function
using stochastic gradient descent while limiting the deviation
from the policy used to collect the data (Schulman et al., 2017).
PPO aims to maximize the clipped expected improvement of
the policy (Equation 1).

LCLIP (θ) = 𝔼t [min( ft (θ) Ât,clip( ft (θ) ,1− ϵ,1+ ϵ) Ât)] (1)

where Ât is the advantage obtained by Generalized Advantage
Estimation (GAE), ϵ is a hyperparameter, and ft(θ) denotes the
probability ratio ft(θ) ≡

πθ(ut|ot)
πθold(ut|ot)

for importance sampling. The
clipping prevents excessively large policy updates.

In addition to the expected improvement, the total
objective function for PPO incorporates a loss function for
a critic network required for GAE and an entropy bonus
term to encourage exploration, resulting in the total objective
(Equation 2) (Schulman et al., 2017).

LCLIP+V F+S
t (θ) = 𝔼t [L

CLIP
t (θ) − c1L

VF
t (θ) + c2S[πθ](ot)] (2)

where c1, c2 are weight factors, S denotes the entropy bonus, and L
VF
t

is a squared-error loss for the critic

LVFt (θ) = (Vθ (ot) −V
targ
t )

2 (3)

In the above equations, Vθ(ot) is the state-value function and θ
denotes the combined parameter vector of actor and critic networks.
PPO uses multiple epochs of minibatch updates for each set of
sampled interactions.

4 Methods

In this section, we introduce the problem setting and provide an
overview of our proposed solution. We then describe the two key
components of our approach in detail: (1) a centralized critic based
on a recurrent neural network (RNN), which utilizes a novel meta-
trajectory to capture inter-agent dynamics, and (2) an advantage
estimation technique that incorporatesweighted rewards, controlled
by a parameter to adjust the level of cooperation between agents.
Finally, we present a summary of the proposedMACRPO algorithm.

For clarity, a detailed description of all symbols and variables
used in the equations throughout the manuscript is provided in the
Nomenclature (Supplementary Appendix A1).

4.1 Problem setting and solution overview

Multi-agent systems operating in partially observable
environments face significant challenges due to limited information
and the absence of direct communication between agents. These
factors hinder agents’ ability to coordinate effectively and learn
optimal policies, which can lead to suboptimal performance in
cooperative tasks. Effective information sharing among agents is
critical for improving performance and accelerating learning in
multi-agent reinforcement learning (MARL) (Gupta et al., 2017;
Foerster et al., 2018; Terry et al., 2020). In this work, we aim to
enhance information sharing in multi-agent environments, going
beyond the traditional approach ofmerely sharing parameters across
actor networks.

We introduce the Multi-Agent Cooperative Recurrent Proximal
Policy Optimization (MACRPO) algorithm, a cooperative MARL
approach based on the centralized training and decentralized
execution (CTDE) paradigm. MACRPO addresses the partial
observability and lack of direct communication by integrating two
novel mechanisms that significantly improve information sharing
and cooperation between agents:

• Recurrent Critic Architecture: The critic network leverages a
recurrent neural network (RNN) trained on a meta-trajectory,
which is constructed by combining the trajectories collected
fromall agents (detailed in Section 4.2).This allows the critic to
model the interactions and dependencies between agents over
time, capturing both agent-specific and collective behavior
effectively.
• Advantage Function Estimator: A novel advantage
function estimation approach that combines the individual
agents’ rewards and value functions. This estimator
incorporates a control parameter to dynamically adjust
the level of cooperation between agents, enabling
MACRPO to flexibly handle different cooperation strategies
(explained in Section 4.3).

By combining these two components, MACRPO enables more
effective cooperation and improves policy learning in complex,
partially observable multi-agent environments, addressing the core
challenges of coordination, partial observability, and dynamic
cooperation.
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4.2 MACRPO framework

The proposed MACRPO framework consists of one recurrent
actor, similar to Foerster et al. (2018), and one recurrent critic
network, as illustrated in Figure 1. To consider the partial
observability of multi-agent settings, we use recurrent LSTM
layers in both actor and critic networks to allow the integration
of information over time.

The actor-network architecture is composed of a stack of
Embedding, LSTM, and Linear layers and is trained using
trajectories collected by all agents. We denote the shared weights
of actors with θa and use the same, latest weights for all agents.
The behaviors of different agents vary because of stochasticity and
differences in their inputs. Denoting the trajectory data for episode
k with length T for agent i as

τki = (o
i
1,u

i
1, r

i
1,…,o

i
T,u

i
T, r

i
T) ,

where o, u, and r represent the observations, actions, and
rewards of the agents, respectively. The training data for the actor
is then DA = (τ11,…,τ

k
i ,…).

To enable the critic network to integrate information across
both agents and time, we introduce a meta-trajectory, which
concatenates the trajectories of all agents during each roll-out.
The critic network, consisting of Embedding, LSTM, and Linear
layers, is trained on this meta-trajectory, allowing it to capture
the interactions between agents and the temporal dynamics of the
environment (see Figure 1).

To ensure that the critic network does not develop a dependency
on a specific ordering of agents, we randomize the order of agents
each time we generate a meta-trajectory. Specifically, for each
meta-trajectory, we fix a random order of agents throughout the
trajectory’s time steps, ensuring consistency within the trajectory.
However, a different random order of agents is chosen for
each new meta-trajectory. This randomization prevents the critic
from associating certain positional patterns with specific agents,
thereby reducing any positional bias in the learned policy. By
varying the order of agents in each meta-trajectory, the critic
is encouraged to focus on the agents’ observations, actions, and
rewards independently of their positional index, resulting in a more
generalized and robust policy that is less sensitive to the order in
which agents are presented.

The training data for the critic network is structured similarly
to the actor’s training data, but with the meta-trajectory as input.
Let the meta-trajectory for episode k of length T for N agents be
represented as:

μk = (o11,…,o
N
1 ,u

1
1,…,u

N
1 , r

1
1,…, r

N
1 ,… ,o

1
T,…,o

N
T ,u

1
T,…,u

N
T , r

1
T,…, r

N
T)

The complete training data for the critic is then DC =
(μ1,…,μk,…).

By leveraging the above meta-trajectory, the critic network
receives information from all agents to capture the agents’ history,
the interactions between them, and the environment dynamics,
all captured by the hidden state. In other words, MACRPO is
able to consider temporal dynamics using the LSTM layer, which
incorporates a history of states and actions across all agents.

1: Randomly initialize actor and critic networks’

parameters θc and θa

2: for iteration = 1, 2, … do

3:   for environment = 1, 2, …, E do

4:     Run all N agents with the latest trained

weights in the environment for T time steps

and collect data

5:     Combine collected trajectories by all

agents according to Figure 1

6:     Compute discounted returns and advantage

estimates using Equations 4, 6

7:   end for

8:   for epoch = 1, …, K do

9:     for minibatch = 1, … , M do

10:      Calculate the loss functions using

Equations 8, 9

11:      Update Actor and Critic parameters

via Adam

12:     end for

13:  end for

14: end for

Algorithm 1. MACRPO.

Modeling temporal dynamics allows the latent space to model
differential quantities such as the rate of change (derivative) between
the distance of two agents and integral quantities such as the running
average of the distance.

Additionally, the hidden state of recurrent networks can be
viewed as a communication channel that allows information to flow
between agents to create richer training signals for actors during
training. The network will update the hidden state in each time
step by getting the previous hidden state and the data from the
agent i in that time step. The network architectures for actor and
critic are shown in Figures 2 and 3. It is important to note that
the critic network is only needed during training and that the
optimized policy can be deployed using only the actor such that
the agents are able to operate in a fully distributed manner without
communication.

4.3 Objective function

In addition to the LSTM layer, we propose a novel advantage
function estimator based on weighted discounted returns using a
parameter that controls the agents’ cooperation level and integrates
information across agents. We consider the Vtarg

t in Equation 3 as
discounted return and propose to calculate it for agent i at time t as

Ri
t = rt + γrt+1 +⋯+ γ

T−t+1V(oiT) (4)

where

rt =

rit + β∑
j≠i

rjt

N
, V(oiT) =

V(oiT) + β∑
j≠i

V(ojT)

N
(5)
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where rit is the reward for agent i at time t, γ is the discount factor, β is
the cooperation control parameter used for rewards of other agents,
and V(oiT) is the value for the final state of agent i. The advantage for
each agent i is then calculated as

Âi
t = δ

i
t + (γλ)δ

i
t+1 +⋯+ (γλ)

T−t+1δiT−1 (6)

where

δit =
1
N
[rit + γV(o

i
t+1) −V(o

i
t) + β∑

j≠i
(rjt + γV(o

j
t+1) −V(o

j
t))]

(7)

where λ is the temporal difference factor of the GAE algorithm, and
V(oit) is the state-value at time t for agent i.

The intuition behind the weighting is that each agent’s rewards
are likely to be affected most by its own action choice but that the
actions taken by other agents can also affect the reward. In addition,
the β parameter can be interpreted as a control parameter for the
cooperation level between agents, which is manually tuned based
on the cooperative nature of the task. This heuristic is related to
credit assignment between agents and provides a trade-off between
optimizing the policy considering only individual rewards (β = 0
and no cooperation between agents), which could lead to sub-
optimal total reward when individual rewards are in conflict with
each other, and optimizing the policy using the sum of all rewards
(β = 1 and full cooperation between agents), which could lead to
challenging assignment of credit between agents. One should note
that policy optimization is performed across all agents such that
in the end, the expected rewards over all agents are maximized,
independent of the choice of β.

MACRPO uses separate networks for actors and critics.
Therefore, the objective functions of the actor and critic networks
are separate, in contrast to PPO.The actor’s objective function in the
case of the shared weight is defined as

LCLIP+St (θa) = 𝔼t [L
CLIP
t (θa) + cS[πθa](ot)] (8)

and the critic’s objective function is

LVFt (θ) = (Vθc (ot) −V
targ
t )

2 (9)

where θc are the parameters of the critic A parallelized version of the
MACRPO algorithm is shown in Algorithm 1.

5 Experiments

This section presents empirical results to evaluate the
performance of our proposed method, MACRPO. We provide
a comprehensive evaluation by testing MACRPO across
three diverse and well-established multi-agent environments:
DeepDrive-Zero (Quiter, 2020), Multi-Walker (Gupta et al., 2017),
and Particle (Mordatch and Abbeel, 2018). These environments
were selected to represent a range of cooperative multi-agent tasks,
differing in terms of action spaces (continuous and discrete), task
dynamics, and cooperation requirements, ensuring a thorough
assessment of MACRPO’s generalizability.

In addition to evaluating MACRPO, we compare its
performance against several state-of-the-art (SOTA) algorithms,

including MADDPG (Lowe et al., 2017), RMAPPO (Yu et al.,
2022), and QMIX (Rashid et al., 2018), which are widely regarded as
benchmarks in cooperativemulti-agent reinforcement learning.The
results demonstrate the effectiveness of MACRPO in addressing the
challenges posed by these diverse environments. Furthermore, we
conduct ablation studies to analyze the impact of each component
of our approach, focusing on the meta-trajectory and cooperative
advantage function, which are key to improving coordination
between agents.

Together, these experiments provide a robust evaluation
of MACRPO’s capabilities, demonstrating its adaptability
and effectiveness across different settings without the need
for additional static experiments. The comprehensive set of
results, combined with the comparisons to SOTA methods,
illustrates the advantages of our approach in multi-agent
reinforcement learning.

5.1 Test environments

We evaluate MACRPO in three benchmark multi-agent
environments: DeepDrive-Zero (Quiter, 2020), Multi-Walker
(Gupta et al., 2017), and Particle (Mordatch and Abbeel,
2018). These environments were chosen for their diversity
in task dynamics, action spaces (continuous and discrete),
and cooperation requirements. They provide a comprehensive
evaluation of our method’s generalizability across different
multi-agent settings..

• DeepDrive-Zero Environment: Several autonomous
driving simulators can be used for multi-agent simulation
(Dosovitskiy et al., 2017; Santara et al., 2021; Quiter, 2020). In
this work, we use DeepDrive-Zero (Quiter, 2020), because
we do not need to deal with image data and also need a
fast simulation environment for training. DeepDrive-Zero
is a very fast and 2D simulation environment for self-
driving cars that uses a bike model for the cars. We use
the unsignalized intersection scenario in this work, which
is shown in Figure 4A. To test our algorithm, we consider two
cars in the environment, one starts from the south and wants
to follow the green waypoints to do an unprotected left-turn,
and the other one starts from the north and wants to go to
the south and follow the orange waypoints. The agents need
to learn to cooperate and negotiate to reach their destination
without any collision.
• Multi-Walker Environment: The multi-walker environment
is a multi-agent continuous control locomotion task
introduced in Gupta et al. (2017). The environment contains
agents (bipedal walkers) that can actuate the joints in each of
their legs and convey objects on top of them. Figure 4B shows
a snapshot from the environment.
• Cooperative Navigation in Particle Environment: Using the
particle environment package from OpenAI (Lowe et al.,
2017), we created a new environment based on the cooperative
navigation environment. This new environment consists of N
agents and N landmarks, and agents must avoid collisions and
cooperate to reach and cover all landmarks. Figure 4C shows
the simulation environment.
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FIGURE 3
Centralized Critic Network Architecture, which utilizes the created meta-trajectory composed of the observations, actions, and rewards from all agents
over multiple time-steps. The meta-trajectory allows the critic to evaluate the value function (vti ) by considering the joint experiences of all agents,
capturing the interactions and dependencies between them. The centralized critic is used during training to improve cooperation between agents,
while the actor networks operate independently during execution. Note that u, v, o, and r denote action, value, observation, and reward respectively,
and the superscripts and subscripts represent the agent number and time-step.

FIGURE 4
Considered MARL simulation environments (A) DeepDrive-Zero environment: an unprotected left turn scenario, (B) Multi-Walker environment, (C)
Particle environment: cooperative navigation.

Each environment presents unique challenges related to agent
cooperation, partial observability, and decentralized decision-
making, allowing for a thorough evaluation of MACRPO’s
performance. Check Supplementary Appendix A2 for more details
about the environments.

5.2 Ablation study

Four ablations were designed to evaluate each novelty.The name
of the method and the explanation shows which ablation has Feed-
forward or LSTM or how information is shared in that ablation. In
all cases, the parameter sharing proposed in Gupta et al. (2017) and
Terry et al. (2020) was used:

• FF-NIC: (Feed-forward multi-layer perceptron (MLP) network
+ no information combination): two feed-forward neural
networks for actor and critic. The GAE is calculated using the

single-agent PPOGAE equation (Schulman et al., 2017).There
is no LSTM layer or reward and value functions combination
for information sharing in this case.
• FF-ICA: (Feed-forward MLP network + information
combination using the advantage estimation function):
This case is similar to the previous case, but the GAE is
calculated using Equation 6 to show the effect ofmixing reward
and value functions for information sharing.There is no LSTM
layer in this case too.
• LSTM-NIC: (LSTM network + no information combination):
two networks with LSTM layers for actor and critic.There is no
information sharing between agents through GAE calculation
or the LSTM’s hidden state. The GAE is calculated using the
single-agent PPO GAE equation (Schulman et al., 2017).
• LSTM-ICA: (LSTM network + information combination using
the advantage estimation function but not through the LSTM
layer): This case is identical to the previous case, but the GAE
is calculated using Equation 6.
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FIGURE 5
Mean episode reward for different ablations in the DeepDrive-Zero
environment. The shaded area shows one standard deviation.

• LSTM-ICF: (LSTM network + information sharing using
both the advantage estimation function and an LSTM layer
in the critic network (full proposed method)): two networks
with LSTM layers for actor and critic. In addition to
parameter sharing between actors, the information integration
is done through both the advantage estimation function
and the LSTM’s hidden state in the centralized critic
network, shown in Figure 1.

Also, in order to see the effect of the β value in
Equation 5 and Equation 7, the proposed method was evaluated
with different β values which shows different cooperation levels
between agents.

All experiments were repeated with identical random
seeds for each method to reduce the effect of randomness.
Hyperparameters used in MACRPO for three environments are
detailed in Supplementary Appendix A4.

5.2.1 DeepDrive-Zero environment
We ran all ablations for ten random seeds in the DeepDrive-

Zero environment to test our proposed method. We used self-play
in simulations and used the latest set of parameters for actors in
each episode. The results are shown in Figure 5. The x-axis shows
the number of training iterations. In each iteration, we ran 100
parallel environments for 3,000 steps and collected data. Next,
we updated actors and critic networks using the collected data.
After each iteration, we ran the agents for 100 episodes, took the
mean of these episodes’ rewards (the sum of all agents’ rewards),
and plotted them. The shaded area shows one standard deviation
of episode rewards. The hyperparameters used in the MACRPO
algorithm are listed in Supplementary Table 2 (Supplementary
Appendix A4).

The proposed algorithm, LSTM-ICF, outperforms the ablations.
The next best performances are for LSTM-ICA and FF-ICA, which
are almost the same. Moreover, information integration in the
advantage function, in both FF-ICA and LSTM-ICA, improves the
performance compared to FF-NIC and LSTM-NIC; however, the
achieved performance gain in the fully connected case is higher.

FIGURE 6
Mean episode reward for different β values in the DeepDrive-Zero
environment. The shaded area shows one standard deviation.

The FF-ICA surpasses LSTM-NIC, which shows the effectiveness of
sharing information across agents through the proposed advantage
function, even without an LSTM layer. The addition of the LSTM
layer in LSTM-ICF further enhances performance by capturing
temporal dependencies between agents’ actions and observations,
which are crucial in dynamic multi-agent environments like
DeepDrive Zero. The LSTM enables the critic to remember past
interactions and predict future dependencies, which provides a
more holistic understanding of agent dynamics over time. This
temporal information allows for more informed decision-making
and improves the ability of agents to anticipate and respond to each
other’s actions effectively. Consequently, the use of LSTM leads to
a more coordinated and adaptive behavior across agents, which is
reflected in the superior performance of LSTM-ICF compared to
other ablations.

Figure 6 shows the analysis of the effect of different β values in
Equation 4, Equation 5, and Equation 7. The best performance is
achieved with β = 1, which corresponds to full cooperation between
agents. In the DeepDrive Zero environment, full cooperation
enables agents to make decisions that maximize collective
rewards, which is particularly advantageous in tasks that require
closely coordinated actions to avoid collisions and optimize
traffic flow.

As β decreases, the level of cooperation between agents is
reduced, leading to a decline in performance. Lower values of β
(closer to 0) encouragemore independent behavior, which can result
in suboptimal coordination in this environment, as agents prioritize
their own rewards over group performance. This trend illustrates
the importance of cooperation in achieving optimal outcomes in
tightly coupled tasks, where synchronized actions among agents
are critical.

The β parameter provides MACRPO with flexibility to adapt to
different task requirements by adjusting the degree of cooperation.
While higher β values are suitable for tasks requiring full
cooperation, lower β values may be advantageous in settings where
agents have individual objectives but can benefit from limited
coordination. While we demonstrate the effect of different β values
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in this environment, results for other environments are provided
only for β ∈ {0,1}.

To achieve smooth driving performance, a curriculum-based
learning method and a gradual weight increase of reward factors
were used. The weights of Jerk, G-force, steering angle change,
acceleration change, and going out of the lane in the reward
function were gradually increased to 3.3× 10−6, 0.1, 3, 0.05, and
0.3, respectively. We then added termination of episodes for lane
violations to force cars to stay between the lanes. After curriculum
learning and smoothing the driving behavior, the cars follow the
waypoints to reach their destination. The car that starts from the
bottom and wants to make a left turn yields nicely for the other
agent if they reach the intersection simultaneously and then make
the left turn, and if it has time to cross the intersection before the
other agent arrives, it does. A video of the final result can be found
in the supplementary materials.

5.2.2 Multi-walker environment
We ran 20 parallel environments and 2,500 time steps during

each update iteration for the Multi-Walker environment. After each
iteration, we ran agents for 100 episodes and plotted the mean
of these episodes’ rewards. Each episode’s reward is the sum of
all the agents’ rewards. Ten different random seeds are used for
each ablation. We also used the latest set of parameters for all
actors. The hyperparameters used in the MACRPO algorithm are
listed Supplementary Table 2 (Supplementary Appendix A4).

Figure 7 shows a massive performance improvement of
our proposed method, LSTM-ICF with β = 1, when compared
to ablations. LSTM-ICF with β = 0, which uses information
integration through only the LSTM layer, has the next best
performance. The LSTM layer enables the critic network to
capture temporal dependencies between agents’ actions and
states, which is crucial in this environment where agents
need to coordinate to balance and move a shared object.
By retaining information about past interactions, the LSTM
facilitates coordinated behavior, allowing agents to anticipate each
other’s movements effectively, which contributes to the superior
performance of LSTM-based methods. After these two, LSTM-
ICA, which performs information integration using the advantage
estimation function, performs better than the FF-ICA, FF-NIC, and
LSTM-NIC cases.

The effect of the β value and information sharing through the
advantage estimation function can be seen in the performance
improvement from LSTM-ICF with β = 0 to LSTM-ICF with β =
1 and from FF-NIC to FF-ICA. In the Multi-Walker environment,
where agents must coordinate to move a shared object without
dropping it, the cooperation level controlled by β plays a critical
role. A higher β value (closer to 1) enables agents to prioritize
collective rewards, fostering synchronized movement and reducing
the likelihood of dropping the object. This emphasis on group
performance is reflected in the superior results for LSTM-ICF
with β = 1, where full cooperation between agents leads to optimal
performance. In contrast, lower β values (closer to 0) encourage
agents to act more independently, which may result in less effective
coordination and increased instability in this task.The improvement
from FF-ICA to LSTM-ICF further demonstrates the impact of
integrating temporal dependencies via the LSTM layer, which is
essential in environments like Multi-Walker that require sustained

FIGURE 7
Multi-Walker simulation results for different ablations. The shaded area
shows one standard deviation.

coordination over time. The β value in FF-ICA is set to 1,
indicating that it also benefits from full cooperation, but lacks
the temporal integration capabilities provided by the LSTM. A
video of the trained model can be found in the supplementary
materials.

5.2.3 Cooperative navigation in particle
environment

In the particle environment, in each iteration, we ran 20
parallel environments to collect data for 2,500 time steps and used
that data to update the network. The agents were then evaluated
using the trained weights for 100 episodes. We ran the simulation
with six random seeds. MACRPO hyperparameters are shown in
Supplementary Table 2 (Supplementary Appendix A4).

The results of this environment are depicted in Figure 8.
Similar to the other two environments, the proposed LSTM-ICF
with β = 1 outperforms all ablations. This environment requires
agents to coordinate their navigation to avoid collisions, making
temporal awareness of others’ trajectories essential. The LSTM layer
significantly enhances performance by allowing agents to capture
these temporal dependencies, leading to smoother coordination
and reduced collision rates. This capability is particularly beneficial
in environments with continuous movement and high inter-agent
interaction.

The effect of the β value is also apparent in the performance
differences between LSTM-ICF with β = 1 and LSTM-ICF with
β = 0. Higher cooperation (achieved with β = 1) enables agents
to prioritize group navigation goals, effectively balancing collision
avoidance and path optimization. Lower cooperation levels, as seen
with β = 0, encourage more independent agent behavior, which can
lead to suboptimal group coordination in this scenario. The next
best performance is achieved with LSTM-ICF with β = 0, showing
that even without full cooperation, the temporal integration from
the LSTM layer provides a significant advantage. The LSTM-ICA’s
performance is almost identical to LSTM-ICF with β = 0, indicating
that both the LSTM layer and the advantage function contribute
similarly to performance improvements, and that information
sharing through these mechanisms provides notable benefits over
the baseline LSTM-NIC.
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FIGURE 8
Particle environment simulation results for different ablations. The
shaded area shows one standard deviation.

The results of the ablation study clearly demonstrate the impact
of both proposed enhancements—information integration through
the advantage function estimation and temporal dependency
capture via the LSTM layer—on improving performance. The
findings confirm that these improvements are not spurious but are
directly attributable to the proposed modifications.

In general, the cases with the LSTM layer consistently perform
better than the feed-forward counterparts, even in the FF-ICA case,
which integrates information solely through the advantage function.
This highlights the importance of capturing temporal dependencies
via the LSTM network for enhanced coordination and navigation in
highly interactive environments.

Our study also explored the role of the cooperation control
parameter β, where β = 1 corresponds to full cooperation by
optimizing the total reward across all agents, which is the primary
objective in these environments. Although values of β less than one
were considered as a potential way to mitigate the credit assignment
problem, the experiments showed that β = 1 consistently provided
the best performance. This suggests that full cooperation is more
beneficial in these fully cooperative settings, as lower values of β did
not improve credit assignment enough to offset the loss in overall
performance.

Additionally, while both proposed ideas yield performance
improvements, their relative effectiveness varies across
environments. In the DeepDrive-Zero environment, information
integration through the advantage function has a slightly greater
impact than the LSTM layer. In contrast, the LSTM layer is
more effective in the Multi-Walker environment, while in the
Particle environment, both enhancements contribute equally to
performance gains.

In our study, the tested environments—DeepDrive Zero, Multi-
Walker, and Particle—are fully cooperative multi-agent settings,
where agents benefit from high β values that encourage full
cooperation. These tightly coupled tasks require agents to work
closely to achieve a common goal, making high cooperation
levels ideal. However, MACRPO is adaptable and could be
applied to partially cooperative environments, where agents have
individual goals but can still benefit from limited coordination.

In such scenarios, lower β values could allow agents to act more
independently whilemaintaining a degree of cooperation, balancing
individual and group objectives.

A video of the trainedmodel can be found in the supplementary
materials.

5.3 Comparison to state-of-the-art
methods

We compared the proposed method with several state-
of-the-art algorithms in each environment. Our method is
compared against several single-agent baselines with shared
parameters across agents (DQN, RDQN, A2C, DDPG, PPO,
SAC, TD3, APEX-DQN, APEX-DDPG, and IMPALA), which
were tested in Terry et al. (2020). We also compared our
method to state-of-the-art multi-agent approaches such as
MAGIC, (Niu et al., 2021), IC3Net (Singh et al., 2019),
GA-Comm (Liu et al., 2020), CommNet (Sukhbaatar et al.,
2016), MADDPG (Lowe et al., 2017), RMAPPO (Yu et al.,
2022), and QMIX (Rashid et al., 2018).

The architecture and hyperparameters used for PPO, IMPALA,
A2C, SAC, APEX-DQN, Rainbow-DQN, DQN, APEX-DDPG,
DDPG, TD3, andQMIX are taken fromTerry et al. (2020) which has
an open source implementation 1. ForMADDPG (Lowe et al., 2017),
we used the original source code 2, for RMAPPO (Yu et al., 2022) we
used their open source code 3, and for MAGIC, IC3Net, CommNet,
and GA-Comm we used the open source implementation 4. We
performed hyperparameter tuning using grid search to optimize
performance for each method.

Note that some of the official implementations of baselines we
used here do not support both discrete and continuous action spaces
and we did not modify the code. The non-reported results for
some baselines in the paper’s tables and charts are due to this. In
addition, we tried to use the discretized version of the DeepDrive-
Zero environment for algorithms with discrete action space which
may cause poor performance.

Each agent’s goal in MACRPO is to maximize the total reward
of all agents, while the goal of other methods is to maximize
the total reward of each agent without considering other agents’
rewards in their objective function. In order to have a more fair
comparison, We report the result for our method when β = 0 too.
The results are shown in Table 2. The table contains some empty
fields due to the fact that some algorithms do not support continuous
or discrete action spaces. Check Supplementary Appendix A3 for
more details.

5.3.1 DeepDrive-Zero environment
In this environment, our full method and also the case with β =

0 achieved the highest average reward. The next best was RMAPPO
which performed close to our method in the case of β = 0 and
then PPO with parameter sharing between agents followed by
APEX-DQN and APEX-DDPG. A version of the environment with
discretized action space was used for algorithms with discretized
action space.
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TABLE 2 Comparing performance of our method with state-of-the-art
approaches. Numbers show the average reward in each environment for
ten random seeds, except for the Multi-Walker environment which is
1,000 random seeds.

Method DeepDrive-
Zero

Multi-Walker Particle

DQN 4 −100000 −151.8

RDQN 6 −100000 153.2

A2C 0.5 −27.6 −148.6

DDPG 2 −57.8 —

PPO 16 41 −144.3

SAC −1.5 −16.9 −143.7

TD3 −1 −8 —

APEX-DQN 8 −100000 −136.2

APEX-DDPG 14 −23 —

IMPALA −0.66 −88 −155.2

MADDPG −0.1 −96 −98.3

QMIX −0.9 −24 −155.6

MAGIC 3.1 — −114

IC3Net 2.1 — −117

GA-Comm 1.9 — −119

CommNet 1.6 — −115

RMAPPO 17.06 — −131

Ours (β = 0) 17.3 24.2 −100.7

Ours (full model) 23.7 47.8 −95.8

5.3.2 Multi-walker environment
Similar to the previous environment, the proposed method

outperformed other methods by a large margin with an average
reward of 47.8. Next, PPO with parameter sharing had the second-
best performance with a maximum average reward of 41. Our
method with β = 0 achieved the third-best average reward. Some
algorithms, such as RMAPPO, CommNet, GA-Comm, IC3Net, and
MAGIC, do not support continuous action spaces and are marked
with a dash in the table.

5.3.3 Cooperative navigation in particle
environment

As in both previous environments, our approach outperformed
other approaches in this environment as well, although the
difference was minor compared to MADDPG. Our method
with β = 0 is in the third place after MADDPG with a
small margin. We used a categorical distribution instead of a
multivariate Gaussian distribution in this environment with
discrete action space. Algorithms with continuous action spaces

were not tested in this environment, and are marked with
a dash in the table. Adapting these algorithms for discrete
action environments could be achieved using the same trick,
but we did not change the standard implementation for
baselines.

It is evident from the reported results that RMAPPO
performance in the DeepDrive-Zero environment is satisfactory
and comparable to our method in the case of β = 0 and
that it is average in the Particle environment. As the current
implementation of RMAPPO does not support continuous action
spaces, we could not test this method in the Multi-Walker
environment. Additionally, we conducted hyperparameter searches
for RMAPPO, but since this method aims to recommend a
set of modifications and hyperparameters that will improve
PPO’s performance for multi-agent systems, we did not deviate
too far from the main hyperparameters. The performance of
MADDPG is not also good in DeepDerive-Zero and Multi-Walker
environments. However, it performs well when used in the Particle
environment.

All hyperparameters for each algorithm are included in
Supplementary Appendix A4.

The results show that the performance benefit given by
the two proposed ways of sharing information across agents
is significant such that the method outperforms state-of-the-art
algorithms.

6 Conclusion and future work

In this paper,MACRPO, a centralized training anddecentralized
execution framework for multi-agent cooperative settings was
presented. The framework is applicable to both discrete and
continuous action spaces. In addition to parameter sharing
across agents, this framework integrates information across
agents and time in two novel ways: network architecture and
the advantage estimation function. An ablation study in three
environments revealed that both ways of information sharing
are beneficial. Furthermore, the method was compared to state-
of-the-art multi-agent algorithms such as MAGIC, IC3Net,
CommNet, GA-Comm, QMIX, and MADDPG, as well as single-
agent algorithms that share parameters between agents, such
as IMPALA and APEX. The results showed that the proposed
algorithm performed significantly better than state-of-the-art
algorithms.

While MACRPO demonstrates strong performance in a
range of tasks, there are some limitations. In environments with
high-dimensional discrete action spaces, performance may be
impacted due to the increased complexity of managing agent
interactions. Additionally, MACRPO’s centralized critic, which
processes a meta-trajectory of all agents, may face scalability
challenges as the number of agents grows. For larger agent
populations, integrating an attention mechanism could be
a potential solution, allowing agents to selectively focus on
critical information from others without processing data from
all agents simultaneously. This enhancement could improve
MACRPO’s efficiency and scalability in large-scale multi-agent
environments.
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Despite these limitations, MACRPO’s adaptable cooperation
control parameter, β, makes it highly flexible for diverse multi-
agent tasks, such as autonomous driving and collaborative robotics,
where varying levels of cooperation are essential. Future work
could further explore adaptive cooperation strategies and attention-
based architectures to enhance MACRPO’s application scope and
performance in complex, large-scale multi-agent systems.
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