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Realistic 3D human saccades
generated by a 6-DOF
biomimetic robotic eye under
optimal control

A. John Van Opstal1†*, Reza Javanmard Alitappeh2†, Akhil John3

and Alexandre Bernardino3

1Section Neurophysics, Donders Center for Neuroscience, Radboud University, Nijmegen,
Netherlands, 2University of Science and Technology of Mazandaran, Behshahr, Iran, 3Instituto Superior
Técnico, Institute for Systems and Robotics, Lisbon, Portugal

We recently developed a biomimetic robotic eye with six independent tendons,
each controlled by their own rotatory motor, and with insertions on the eye
ball that faithfully mimic the biomechanics of the human eye. We constructed
an accurate physical computational model of this system, and learned to
control its nonlinear dynamics by optimising a cost that penalised saccade
inaccuracy, movement duration, and total energy expenditure of the motors.
To speed up the calculations, the physical simulator was approximated by a
recurrent neural network (NARX). We showed that the system can produce
realistic eye movements that closely resemble human saccades in all directions:
their nonlinear main-sequence dynamics (amplitude-peak eye velocity and
duration relationships), cross-coupling of the horizontal and vertical movement
components leading to approximately straight saccade trajectories, and the 3D
kinematics that restrict 3D eye orientations to a plane (Listing’s law). Interestingly,
the control algorithm had organised the motors into appropriate agonist-
antagonist muscle pairs, and the motor signals for the eye resembled the
well-known pulse-step characteristics that have been reported for monkey
motoneuronal activity. We here fully analyse the eye-movement properties
produced by the computational model across the entire oculomotor range and
the underlying control signals. We argue that our system may shed new light on
the neural control signals and their couplings within the final neural pathways
of the primate oculomotor system, and that an optimal control principle may
account for a wide variety of oculomotor behaviours. The generated data are
publicly available at https://data.ru.nl/collections/di/dcn/DSC_626870_0003_
600.

KEYWORDS

oculomotor system, main-sequence dynamics, listing’s law, pulse-step control, muscle
synergies, component crosscoupling, pulse generation, biomimetic robotic eye

1 Introduction

Motion of the human eye is controlled by six extra-ocular muscles that
enable the globe to rotate around a fixed center with three degrees of freedom
(DOF) through intricate synergistic action: the lateral (LR) and medial rectus
(MR) pair induces horizontal rotations of the eye, whereas the superior (SR)
and inferior recti (IR), together with the inferior (IO) and superior (SO) oblique

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2024.1393637
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2024.1393637&domain=pdf&date_stamp=2024-05-21
mailto:john.vanopstal@donders.ru.nl
mailto:john.vanopstal@donders.ru.nl
https://doi.org/10.3389/frobt.2024.1393637
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2024.1393637/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1393637/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1393637/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1393637/full
https://data.ru.nl/collections/di/dcn/DSC_626870_0003_600
https://data.ru.nl/collections/di/dcn/DSC_626870_0003_600
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Van Opstal et al. 10.3389/frobt.2024.1393637

FIGURE 1
The human eye and its biomimetic robotic equivalent. (A) Lateral view of the right human eye showing the insertions of the six extra-ocular muscles.
The lateral rectus muscle is partly opened to allow a view of the medial rectus at the nasal side. (B) Top view of the biomimetic robotic eye where the
muscles are represented by elastic strings. Each string is actuated by its own rotatory motor that rapidly winds the string around a spindle (not shown
here, but see Figure 2). The superior and inferior obliques (SO,IO) pull at the eye through pulleys (reminiscent to the SO trochlea of the human eye).
The four recti muscles (LR, MR, SR, IR) originate from the annulus of Zinn, which is translated leftward with respect to the center of the eye.

muscles, are needed for vertical and cyclo-torsional eye rotations
(Figure 1A) (Robinson, 1975; Miller and Robinson, 1984; Hepp and
Henn, 1985; Suzuki et al., 1999; Snell and Lemp, 2013).

As the six muscles provide the system in principle with six
DOF, measurements of all types of voluntary and involuntary eye
movements, like rapid saccades, eye fixations, smooth-pursuit eye
tracking, as well as vestibular and optokinetic nystagmus, eye-
head coordination, or binocular vergence, have indicated that the
instantaneous orientation of the eye only uses two DOF to specify
the line of sight at any point in the visual field. Thus, the rotation
around the visual axis (cyclo-torsion; Figure 2A) is a task-dependent
function of the horizontal and vertical gaze angles: ψ = ftask(θ,ϕ),
a property that is known as Donders’ Law (DL; Donders (1870)).
Through DL, the oculomotor system would account for the non-
commutativity of 3D rotations (Tweed and Vilis, 1987; Tweed et al.,
1998). Donders’ Law holds that somehow the redundancy of the
oculomotor system regarding its cyclo-torsional state is dealt with
by a task-dependent neural control that ties in with the intricacies
of the oculomotor plant (Tweed et al. (1998; 1999)). Understanding
the underlying mechanisms of how the brain deals with the
biomechanics of the eye to control its motions poses an interesting
problem for neuroscientists (Robinson, 1975; Miller and Robinson,
1984; Lee et al., 2007), and has also raised considerable controversy
in the literature. On the one hand, the emergence of DL has been
considered the result of a neural strategy that allows the eye to use
the three rotational DOF to control all types of eye movements to
optimize both visual and oculomotor function (Tweed and Vilis
1987; Hepp 1990; Van Opstal et al., 1991; Van Opstal et al., 1996;
Tweed et al., 1998). In contrast, it has been proposed that the non-
commutativity problem is avoided altogether by specific mechanical
constraints imposed by the oculomotor plant, e.g., through precisely
positioned ‘pulleys’ that guide the muscle trajectories (and hence
their effective pulling directions and forces) in an appropriate, eye-
orientation dependent, way (Schnabolk and Raphan, 1994; Quaia

and Optican, 1998; Demer, 2006; Klier et al., 2006, but see Misslich
and Tweed, 2001; Lee et al., 2007). Clearly, the 6DOF neural control
and biomechanics of the oculomotor plant form an inseparable
duality. Despite the wealth of behavioral measurements of 3D eye-
and eye-head movements in human and nonhuman primates, and
neural recordings at various levels in the oculomotor system of
macaque monkeys, the issue is still not resolved.

Recently, we have adopted a biomimetic approach to study
the control of the oculomotor plant (Cardoso, 2019; Dias, 2021;
John et al., 2021; Javanmard Alitappeh et al., 2023). We designed
a realistic robotic prototype of the human eye with six DOF,
which incorporates human-like muscle insertions and properties
(Figure 1B). This novel robotic system is driven by six independent
rotatory motors that pull at each of the six elastic strings (Figure 2B)
to generate a rapid change in eye orientation. To better understand
its properties, we derived a detailed computational physical model
for this systemby applying theNewton-Euler equations for a rotating
rigid body (see Supplementary Material).

We investigated how this system could be controlled such
that it would generate ocular rotations that resemble human eye
movements across the full 3D oculomotor range, in particular, goal-
directed saccades. For this type of voluntary eye movement, like
for smooth pursuit and steady eye fixations with the head upright
and gaze directed at infinity, Donders’ Law reduces the 2Dmanifold
that specifies cyclo-torsion to a plane, which is known as Listing’s
Law (LL; Donders (1870); Tweed and Vilis (1987); Van Opstal et al.
(1991)).

Several theoretical considerations suggest that saccades may
result from a neural speed-accuracy trade-off strategy that aims
to direct the fovea as fast and as accurately as possible to a
peripheral target (Harris and Wolpert, 2006; Tanaka et al., 2007;
Van Beers, 2008; Shadmehr and Mussa-Ivaldi, 2012; Vasilyev, 2019;
Varsha et al., 2021). Computational studies on simple models of
the oculomotor system with a linear plant have shown that the

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2024.1393637
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Van Opstal et al. 10.3389/frobt.2024.1393637

FIGURE 2
(A) The right-handed Cartesian laboratory frame to describe rotation vectors: x̂ is the frontal axis for cyclo-torsional rotations (ψ, clockwise positive), ŷ
the horizontal axis for vertical rotations (ϕ, downward positive), and ẑ the vertical axis for horizontal rotations (θ, leftward positive). According to
Listing’s Law, rotation vectors that describe 3D eye orientations all lie in Listing’s Plane (tentatively indicated; (11)). (B) The physical prototype with its six
motors and spindles that control the eye’s 3D orientation by pulling at six thin elastic wires. Four motors are positioned at the back, the other two at the
left side of the encasing. The strings representing the SR and IR muscles are identified by the white arrows. The inside of the eyeball contains a camera,
with its black cable (‘optic nerve’) leaving the eye at its backside. The eight white supports serve to keep the center of the eye at a fixed location and to
provide dynamic friction (after John et al. (2023)).

dynamics of saccades can be understood from such a principle
(Harris and Wolpert, 2006; Van Beers, 2008; Shadmehr and Mussa-
Ivaldi, 2012). However, whether and how such a strategy also suffices
for the full complexity of the 3D eye plant controlled by six muscles,
including the emergence of LL and other realistic saccade properties,
is not obvious. Although several biomimetic designs of the eye
have been described and tested in previous studies (e.g., Peng et al.,
2000; Biamino et al., 2005; Beira et al., 2006; Maini et al., 2008;
Metta et al., 2010; Oh et al., 2010; Saeb et al., 2011; Schulz et al.,
2012; John et al., 2021), none of these works investigated the full
dynamics and kinematics of rapid eye movements in 3D with a
realistic 6 DOF system.

To drive our 6DOF biomimetic system, we thus implemented an
optimal-control algorithm for its physical simulator that minimized
a cost function that consisted of the weighted sum of three sub-costs
with the differentweightings expressing their relative importance: (i)
the localization error of the final eye orientation with respect to the
goal (any target within the horizontal/vertical oculomotor field); (ii)
the total movement duration needed to reach the goal, and (iii) the
total energy expenditure of the sixmotors during the eye-movement
trajectory.

In Javanmard Alitappeh et al. (2023) we showed that the system
can generate eye-movement trajectories resembling human saccades
in 3D with realistic neural control synergies. However, as the
simulations were performed on a limited number of saccades, we
could not fully report on its eye-movement properties in sufficient
detail for lack of statistical rigor. For the present paper, we therefore
generated nearly 700 eye movements of the robot’s simulator in
three different paradigms and performed a detailed analysis of
the movement properties and underlying controls across the 3D
oculomotor range. We here quantify the accuracy, trajectories, 3D
kinematics, and dynamics of fast goal-directed eyemovements, their
dependence on movement direction and initial eye orientation,

as well as the properties of the underlying motor-control signals
(‘neural’ commands) of the six elastic tendons (the extra-ocular
‘muscles’), and compare our results with human and monkey data.

We demonstrate that the resulting movements closely resemble
human and monkey saccades that obey the 3D kinematics
prescribed by Listing’s Law, the nonlinear main-sequence relations
between saccade amplitude and its peak velocity and duration
(Bahill et al., 1975; Robinson, 2022), and a nearly complete dynamic
synchronization of the motor controls to guarantee nearly-straight
saccade trajectories in all directions (Van Gisbergen et al., 1985;
Smit and Van Gisbergen, 1990; Van Opstal, 2023). We further show
that themuscles become organized in synchronized and appropriate
agonist-antagonistic pairs (Sherrington, 1906), and that the ‘neural’
commands resemble the well-known pulse-step control signals that
underlie saccade generation at the motor-neuron level in monkey
(Fuchs and Luschei, 1970; Fuchs and Luschei, 1971; Robinson and
Keller (1972); Suzuki et al. (1999)).

2 Methods

2.1 The eye model and the nonlinear
simulator

Table 1 provides the hierarchical nomenclature used to address
the different hardware and software components of our biomimetic
robotic system.

2.1.1 The model
Similar to the human eye, the robotic eye rotates around its

fixed center as soon as the six elastic tendons apply a net torque.
The tendons are affixed to the globe at contact points that enable
rotationalmovementswith three degrees of freedom (see Figures 1B;
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TABLE 1 The hierarchical nomenclature of our biomimetic robotic
system.

Nomenclature

Prototype the hardware implementatation of the biomimetic eye

Model the set of physical equations that describe the prototype

Simulator the numerical (Matlab) implementation of the model

Approximator the NARX neural network approximation of the simulator

Figure 2B).These contact points were determined and appropriately
scaled from measurements of the human eye (Miller and Robinson
(1984); Supplementary Material). Employing a dedicated rotatory
motor for each tendon that pulls the tendon around its spindle
allows for a fast control of the eyeball in six directions, which
approximate left-right, up-down, and cyclo-torsional rotations
in clockwise and counterclockwise directions. The Newton-Euler
equations describing the dynamics of the oculomotor plant result
to be highly nonlinear, which is due to several factors: (i) to changes
in the cable pulling directions as function of the 3D orientation of
the eye, (ii) to the associated eye-orientation dependent changes in
themoment of inertia of the globe, and (iii) to the inherent limitation
thatmuscles can only exert pulling forces, and not push. Further, (iv)
the relationship between the 3D orientation of the eye, its angular
velocity, and its rate-of-change of orientation is nonlinear because it
includes the vector product (below, (3). The quantitative details of
the underlying equations and their computational implementation
are provided in Javanmard Alitappeh et al. (2023) and in the
Supplementary Material.

2.1.2 The optimal control algorithm
In the Optimal Control of the nonlinear simulator, we included

three sub-costs that jointly served to minimize the total movement
cost. Finding the optimal control for a given saccade involves two
computational loops (Shadmehr and Mussa-Ivaldi, 2012): in the
first loop, the total movement cost is optimized for saccades of
different durations,D, between 30 and 210 ms, which we sampled in
relatively coarse steps of 20 ms. The second loop finds the duration
for which the total cost reached a minimum (Eq. 1). The three
costs were.

(i) The accuracy cost (JA(D); quadratic) quantifies the squared
error of the movement endpoint at time D with respect to the target
goal. The larger the error, the higher the cost.

(ii) The duration cost (JD(D); hyperbolic, Shadmehr et al.
(2010)) expresses the desire that the time needed to reach the goal
(‘reward discount’) should be as short as possible.

(iii)The energy cost (JE(D); quadratic) quantifies the total kinetic
energy consumed by the six motors during the trajectory for time
t ∈ [0,D].

The optimal saccade is the one for which the duration has the
lowest total cost, calculated as

DOPT = arg min
D
[JMOV (D)] = arg min

D
[λAJA (D) + λDJD (D) + λEJE (D)] (1)

where the three weighting factors, λα,α ∈ {A,D,E}, were obtained
by trial and error, to ensure a convex JMOV (D) function1

with a clear minimum. Details of the algorithm are given
in Javanmard Alitappeh et al. (2023) and summarized in the
Supplementary Material.

2.1.3 Neural-network (NARX) approximation
Finding the optimal controls for the nonlinear Newton-Euler

equations from the discretized simulator of the robotic prototype
is computationally hard, as it requires tedious calculations of local
derivatives that need to be redone for every change made to the
prototype. Further, these derivatives only provide accurate local
first-order approximations for a few degrees around the evaluation
point (Dias, 2021). To significantly speed up and generalize
this procedure, we instead used an alternative approach with a
recurrent neural network (aNonlinear AutoregressiveNetworkwith
Exogenous inputs, or NARX Thuruthel et al. (2017)). The NARX
architecture acts as a general, model-free, and flexible approximator,
than can be readily trained on any complex nonlinear system.

To train the network, we obtained an extensive input-output
data set, sampled at every 1 ms, with a total length of 2 ⋅ 106 ms.
Inputs to the muscles were generated as a pseudo-random binary
step sequence (PRBS) that was passed through the simulator.
PBRS signals are useful for systems identification because they
have a white spectrum and cover a broad workspace. The NARX
network was trained until it approximated the input-output
sequence of the simulator with sufficient accuracy (see Figure 3A;
Javanmard Alitappeh et al. (2023)). Once the NARX approximator
was trained, the optimal controls for the tendons were found by
using the NARX as an accurate and flexible approximator for the
nonlinear physical simulator (Figure 3B).

2.1.4 Numerical implementation
Figure 3 illustrates the different steps involved in the numerical

implementation of our algorithms for the robot’s simulator. By
specifying the initial and desired final eye orientations, (as shown
in Figure 3C), the optimal control algorithm included several
computational modules: An i) optimizer function that searches for
the best set of motor commands to move the eye from the initial
to the final desired gaze direction. ii) A cost-evaluation module
that assesses the quality (cost) of candidate motor commands by
calculating and adding the three sub-costs. The cost will depend on
the trajectory of the eye movement, which is found by simulating
the iii) NARX approximator module. After finding the optimized
muscle commands for a specific goal with the NARX through1,
we utilized the actual physical simulator to generate the model’s
eye movements. We subsequently evaluated the performance of the
system by analyzing the different properties of a resulting set of eye
movements (See Figure 3D), as described in the next sections.

In the present Matlab implementation of the simulator and
NARX approximator (TheMathworks, version 2022b), running on a
MacBook Pro (2019) with a 2.3 GHz, 8-Core Intel Core i9 processor
and 32 Gb RAM, finding the optimal controls for a single saccade
took approximately 180 s.

1 The fact that JD is non-convex does not ensure a convex JMOV for all

possible choices of λα.
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FIGURE 3
The control algorithm for the simulator of the physics model of the robotic prototype. (A) First, a long series of pseudo-random binary step-control
signals (PRBS) to the muscles is passed through the physics simulator to generate a large input-output data base. (B) Subsequently, this data base is
used to train the NARX as an accurate approximator for the nonlinear physics simulator. (C) After training, the NARX approximator is used to optimize
eye-movement trajectories by minimizing the costs of the optimal control for each target-saccade pair. (D) Finally, the optimized controls are used to
drive the physics simulator, from which the various eye-movement properties are extracted. Taken together, this procedure is far more efficient than
optimizing the trajectories directly from the physical simulator.

2.2 Simulations

We generated three eye-movement data sets with the trained
and optimized physical simulator: (1) The Zero-Initial Paradigm
generated a data set of 199 saccades, where every saccade started
from [0,0,0], and the 2D goals were drawn at random from the range
within [Gy,Gz] ∈ [−0.3,+0.3] rad/2 and Gx = 0. (2) The Continuous
Paradigm yielded a data set of 298 saccades, where again the 2D
targets were drawn at random within the same range as in the zero-
initial paradigm, but now each saccade started where the previous
saccade ended. In this way, the saccade amplitudes ranged between
[0, 50] deg, starting from a wide range of initial eye orientations.
(3) AHorizontal Continuous Paradigm elicited 202 purely horizontal
saccades where all target locations were drawn at random on the
horizontal axis fromGz ∈ [−0.3,+0.3] rad/2 in 0.012 rad/2 intervals,
keeping [Gx,Gy] at zero (for data access, see Data Availability
Statement).

In Figure 4 we provide some illustrative examples of the eye-
movement dynamics of the simulated biomimetic eye. We here
selected vectorial velocity profiles from 10 purely horizontal (red)
and 13 purely vertical (blue) eye movements from the zero-initial
paradigm, with their corresponding eye-position traces (inset). In
the analyses that follow, we extracted a set of parameters from
these profiles such as the peak velocity of the vector, but also of
its components, the eye-movement duration, the curvature of the
spatial trajectory, as well as the properties of the motor-control
signals that underlie these dynamics.

In the Results, we primarily show the data from the
Continuous Paradigm across the oculomotor range. The
data from the Zero-Initial Paradigm resulted to be very
similar and are provided as Supplementary Material. The
data from the Horizontal Continuous Paradigm served to
generate Figure 12.

FIGURE 4
Example vectorial velocity profiles (in rad/s) and corresponding
eye-position traces (inset shows the associated rotation-vector
components) of purely horizontal (red) and vertical (blue) eye
movements from the zero-initial paradigm. Note that the movements
do not overshoot and that vertical movements reach higher peak
velocities than the horizontal movements. Furthermore, all profiles are
single-peaked.

2.3 Data analysis

The state of the eye (Eq. 2) is described by its 3D orientation
in a right-handed, head-fixed Cartesian coordinate system [x,y,z]
(Figure 1A), in which x= frontal axis (ocular cyclotorsion, clockwise
positive), y = horizontal axis (vertical eye orientations, downward
positive), z = vertical axis (horizontal eye orientations, left positive)
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in Euler-Rodrigues rotation-vector notation, and the associated 3D
angular velocity vector (Eq. 3):

x (t) ≡ [rx (t) , ry (t) , rz (t) ,ωx (t) ,ωy (t) ,ωz (t)] = [r (t) ,ω (t)] (2)

where

ω (t) =
2 ( ̇r (t) + r (t) × ̇r (t))

1+ ‖r (t)‖2
(3)

with ̇r ≡ dr/dt (coordinate velocity, or the rate of change of
orientation) and × is the vector cross product (Hepp, 1990;
Hess et al., 1992; Haslwanter, 1995; Van Opstal, 2002).

Time t ∈ [0,D] is sampled in 1 ms time steps, withD the saccade
duration, which was discretized in 20 ms intervals in the optimal
control algorithm (see above). The goal for the eye (Eq. 4) was
specified by a stationary target state, expressed in the laboratory
frame:

xG (t) ≡ [rG,ωG] = [0,Gy,Gz,0,0,0] (4)

The goal served directly as target for the zero-initial paradigm,
but for the continuous paradigms it was re-calculated as the rotation,
qROT , that brings the eye from the initial position, ron (i.e., the final
position of the previous eye movement), to the goal, rG. It was
calculated by (Hepp, 1990):

qROT ≡ rG◦r
−1
on =

rG − ron + ron × rG
1− ron • rG

(5)

with ◦ the rotation-vector product and • the vector dot-product.
Note that from Eq. 5 qROT◦ron = rG.

We quantified eye-movement accuracy by determining least-
squared error linear regression lines (Eq. 6) for the horizontal
(azimuth) and vertical (elevation) angles of the final eye orientation
vs. the target location:

θH = a+ b ⋅TH

ϕV = c+ d ⋅TV
(6)

with azimuth, θH ≡ −2arctan(rz), elevation, ϕV ≡ −2arctan(ry), and
the associated target angles TH,V ≡ −2arctan(Gz,y), all in deg (where
we adopt the convention that rightward and upward angles are
taken positive). [a,b,c,d] are the regression parameters found
by minimizing the mean squared error with Matlab’s regstats
routine. The quality of the fit was specified by the coefficient
of determination, r2, which indicates the variability in the data
explained by the regression (with r Pearson’s linear correlation
coefficient).

To investigate the main-sequence dynamics of the eye
movements, we fitted the following two affine relations (Bahill et al.,
1975; Van Opstal and Van Gisbergen, 1987):

D = e+ f ⋅R

VPK ⋅D = k+m ⋅R
(7)

where the saccade vector in Eq. 7 is determined by its amplitude
R = √θ2H +ϕ

2
V, and its direction Φ = arctan(ϕV/θH), both in deg.

Combination of these relations predicts for the peak eye velocity the
following relationship with amplitude:

VPK =
k+m ⋅R
e+ f ⋅R

≈
m/e

1/R+ f/e
(8)

Note that Eq. 8 saturates for large amplitudes at m/f deg/s; in the
right-hand side we ignored the small offset k, thus assuring that
VPK = 0 for R = 0.

To characterize the saccade trajectories, we estimated their
curvature by the normalized maximum distance of eye orientation
from the line connecting the start- and end orientations (Smit
and Van Gisbergen, 1990). To that end, we first translated all
saccade trajectories in the horizontal-vertical plane to the origin
by subtracting the initial eye orientation, [θH(0),ϕV (0)], and then
rotated all translated saccade trajectories towards the horizontal axis
with

θrotH (t) = cosΦ ⋅ θHTR
(t) + sinΦ ⋅ϕVTR

(t)

ϕrotV (t) = − sinΦ ⋅ θHTR
(t) + cosΦ ⋅ϕVTR

(t)
(9)

We subsequently determined the maximum absolute vertical
deviation of the rotated trajectory of Eq. 8, [θrotH (t),ϕ

rot
V (t)]

T,
normalized by the saccade amplitude, and distinguishing clockwise
(positive) vs. anticlockwise (negative) curvatures by Eq. 10 as in Smit
and Van Gisbergen (1990), by:

C ≡ −sign(ΔθrotH ) ⋅
max‖ϕrotV (t)‖

‖ΔθrotH ‖
(10)

In this way, a rightward semicircular trajectorywith its arc in the first
quadrant yields C = −0.5. We considered trajectories to be straight
when |C| < 0.03 and really curved for |C| > 0.15.

We determined Listing’s plane (LP) according to Eq. 11 by
fitting the following relation through the instantaneous 3D eye-
orientation data, expressed as Euler-Rodrigues rotation vectors
(Van Opstal et al. (1991); Hess et al. (1992); Figure 2A),

r (t) = [rx (t) , ry (t) , rz (t)]
T withLP: rx (t) = α ⋅ ry (t) + β ⋅ rz (t)

(11)

According to the so-called common-source model of the
saccadic system (e.g., Van Gisbergen et al., 1985; Smit et al., 1990;
Van Opstal, 2023), oblique saccades are generated by a central
nonlinear vectorial pulse generator, causing the horizontal and
vertical velocity commands to be scaled versions of each other
through linear vector decomposition of the velocity command
(Eq. 12). This simple model predicts that, as a consequence of the
nonlinear main sequence (Eq. 8), the peak velocity of a component,
i.e., either ΔH or ΔV, should vary with the direction of the saccade
vector, according to:

VPK (ΔH,Φ) =
(m/e) ⋅ cosΦ
1/ΔH+ f/e

and VPK (ΔV,Φ) =
(m/e) ⋅ sinΦ
1/ΔV+ f/e

(12)

where we here simply assume a single main-sequence
relation for all saccade directions (i.e., m, e and f are
not Φ-dependent). Note that Eq. 12 directly follows from
Eq. 7 and has no independent free parameters. For a fixed
component amplitude, the peak velocity is then predicted
to vary according to VPK(ΔH,Φ) = VPk(ΔH,0) ⋅ cosΦ, and
VPK(ΔV,Φ) = VPk(ΔV,0) ⋅ sinΦ, respectively.

In the Results, we explore and quantify these behavioral
relationships for the eye movements generated by our biomimetic
eye simulator.
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FIGURE 5
Accuracy of the model eye movements (continuous paradigm). (A) Target locations (red dots) and eye-movement end points (blue squares) as
azimuth/elevation angles in deg. Associated stimulus-response pairs are connected by solid lines. Note that most saccade end points fall close to the
target location. (B) Stimulus-response relations for the horizontal (red) and vertical (blue) saccade vector components. Both relations are well
described by linear regression lines with a slope close to one and an offset near zero deg. The coefficient of determination, r2 > 0.99. (C) Signed
localization errors from the data in (A) (in deg) as function of horizontal (red) and vertical (blue) target angles. The mean errors are close to zero deg,
with a standard deviation of around one deg.

3 Results

3.1 Eye-movement accuracy

In Figure 5 we quantify the accuracy of the responses from
the Continuous eye-movement paradigm. The accuracy of the eye
movements was high. Figure 5A shows the eye-movement end
points (blue), connected to the associated target locations (red),
indicating that the localization errors were typically small. In
Figure 5B we quantified the accuracy of the horizontal and vertical
gaze directions by linear regression (Eq. 6) of the data in Figure 5A.
Both regression lines have slopes close to 1.0 and offsets close to
zero deg, while the coefficient of determination was very close to
1.0, indicating little variability. In Figure 5C we show the errors of
each eye movement, on an expanded scale. The standard deviations
of the errors for the two components were close to one deg. A
similar sacade accuracys is reported for saccades made by humans,
monkeys, or cats (Robinson, 2022). The results for the Zero-Initial
Paradigm were similar (Supplementary Material).

3.2 3D eye-movement kinematics

Figures 6A,B shows two planar projections of the 3D kinematics
of the instantaneous eye orientations (expressed as Euler-Rodrigues
rotation vector components) for the eye movements of the
Continuous Paradigm (N = 34,875 data points). Note that the data
are expressed in the laboratory frame where r=(0,0,0) is the straight-
ahead orientation of the eye. The xy-projection in Figure 6B shows
that the eye-orientation data are confined to a plane (Eq. 11), which
is well described by

rx = −0.116 ⋅ ry − 0.020 ⋅ rz (r2 = 0.695) (13)

The width of the best-fitted plane in Eq. 13 is σ = 0.075 rad/2, which
corresponds to 0.86 deg. This precision is quite similar to that

reported for monkey eye movements (e.g., Hess et al., 1992). As the
plane is slightly tilted leftward in the xy projection, a horizontal
rightward rotation of 6.6 deg aligns the data with Listing’s frame of
reference (Eq. 14), where rL = [0,0,0] refers to the physiologically
defined primary position (i.e., 6.6 deg to the right of straight ahead
in the laboratory frame), and Listing’s Law simply reads

rLx = 0 (14)

The observed tilt of Listing’s Plane within the laboratory frame
is due to mechanical asymmetries in the pulling directions of
the muscular system with respect to the frame’s origin (Haustein,
1989; John et al., 2021). This phenomenon is also observed in
human and monkey data (Hess et al., 1992; Van Opstal et al., 1996).
Very similar results were obtained for the Zero-Initial Paradigm
(Supplementary Material.

3.3 Eye-movement dynamics

To check whether the model’s responses indeed resembled
saccades, we quantified themain-sequence relationships for the eye-
movement data (Bahill et al., 1975). Figure 7A shows that, despite
the relatively coarse sampling of testedmovement durations at 20 ms
intervals (see Methods, Optimal Control), the optimal movement
duration increased in a nearly affine way with the eye-movement
amplitude. As the saccade velocity profiles are predominantly single-
peaked (e.g., Figure 4), they are expected to obey a tight linear
relation between the saccade amplitude and the product of its peak
velocity and duration (in deg), with a slope that ranges between 1.5
and 1.8 (Van Opstal andVan Gisbergen, 1987). Figure 7B shows that
this was indeed the case for the biomimetic eye movements. The
offset (0.028 deg) is practically zero, and the slope of 1.583 is close
to that reported for human data. The linear relation explains > 94%
of the variability in the data. This indicates that the biomimetic eye
movements are indeed reminiscent to human andmonkey saccades.
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FIGURE 6
3D kinematics of the 298 eye-movement trajectories (almost 35,000 data points) generated by the continuous paradigm. (A) Trajectories in the
horizontal (rz) - vertical (ry) plane were expressed as rotation-vector components in half-radians. Red open symbols represent the target locations. (B)
The same trajectories seen in the torsional (rx) - vertical (ry) plane. Note that the 3D trajectories are confined to a 2D manifold, well-described by a
plane, Listing’s Plane (r = 0.83), with a width (std) of less than one deg. The plane is slightly tilted (leftward rotation around the z-axis, which sticks out
of the image plane) by about 6.6 deg (θLP = −arctan (0.116)).

Combining the results of panels (A) and (B) then leads to the
prediction that the peak velocity of the saccades (Eq. 8) should vary
with amplitude according to

VPK =
34.88

1/R+ 0.0706
deg/s (15)

which saturates at 494 deg/s for R→∞. This relation is shown by
the dashed blue line in Figure 7C and Eq. 15 is in line with reported
human data (Bahill et al., 1975; Robinson, 2022).The relatively wide
scatter of the data around the predicted line is due to the fact that
the saccade peak velocity does not only depend on amplitude, but
also on the saccade direction and the initial eye orientation (further
analysed below). The simple equation therefore only describes the
average behavior of the saccades across all initial conditions and
directions. The Supplementary Material provides the results for the
zero-initial paradigm, in which the variability due to the changes in
initial orientation is absent.

3.4 Curvature of trajectories

To assess whether the saccade trajectories were straight, we
quantified their curvature by applying Eq. 10. Figure 8A shows
the applied procedure in Eq. 9 and the result of this analysis as a
histogram in Figure 8B for the pooled Zero-Initial and Continuous
sets of nearly 500 saccades. A large number of saccade trajectories
(239/498; 48%) had |C| < 0.03 and could be qualified as virtually
straight. Only a small minority of 39/498 (∼7%) of the trajectories
had |C| > 0.15, and were therefore characterized as substantially
curved. The obtained curvature values fall well within the range
reported for human saccades (Smit and Van Gisbergen, 1990). None
of the 199 zero-initial saccades belonged to the latter category, as can

be seen in Figure 8C (red). Saccades from the continuous paradigm
were more variable in their curvature, especially for those with
near-horizontal directions (Figures 8A,C, black traces).

Straight oblique saccade trajectories entail that the profiles of
their horizontal and vertical velocity components should be highly
synchronized and scaled versions of each other: θ̇H(t) ∝ ϕ̇V(t), ∀t.
To verify that this was indeed the case, we correlated θ̇H(t) vs. ϕ̇V(t)
for all oblique saccadeswith vector directions,Φ, at least 20 deg away
from the cardinal directions (N = 108).

Figure 9 shows these correlations as the green negatively
skewed histogram with a clear peak near r = +1.0 (mean:
μ = 0.82, std: σ = 0.23). The gray histogram shows the correlations
for the saccades that remained closer to the cardinal axes;
correlations now vary considerably more because one of the
components is small, yielding a low signal-to-noise ratio (μ = 0.57,
σ = 0.38). The inset suggests that the curvature measure and
velocity-profile correlations correlate for the population of
oblique saccades, (r = −0.56), although the straight saccades all
cluster near (r, |C|) ≈ (1,0). For the zero-initial paradigm this
correlation was indeed insignificant as even a larger proportion
of saccades was straight (no curvatures |C| > 0.15; see above, and
Supplementary Material).

3.5 Component cross-coupling

As a consequence of the high component correlations, the
signals responsible for these components will have to be tightly
coupled in order to synchronize all underlying motor commands.
The duration of a horizontal component of a fixed amplitude, ΔH,
should then match the duration of the vertical component, and
consequently, its peak velocity should systematically depend on the
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FIGURE 7
Main-sequence dynamics (continuous paradigm). (A) The models’ eye movements follow the main-sequence relations of saccades. Saccade duration
has an affine relation with movement amplitude. Note that durations were sampled at 20 ms intervals in the optimal control algorithm (see Methods).
(B) The product of peak eye velocity with saccade duration is strongly related to saccade amplitude, in line with single-peaked velocity profiles. (C) The
relations in (A) and (B) predict that the saccade peak eye velocity saturates at large saccade amplitudes at 34.88/0.0706 = 1.583/0.0032 = 494 deg/s.
The predictions are shown as solid black and blue-dashed lines. Note that the scatter around the predictions is due to the fact that saccade velocities
vary with the saccade direction and initial eye orientation (see Figures 11, 12).

FIGURE 8
Saccade curvature. (A) Saccade trajectories of the continuous paradigm were translated to the origin (black traces), and subsequently rotated by their
overall vector angle towards the horizontal axis (see Methods; red traces). Curvature is then calculated by applying Eq. 10 to the rotated trajectories. (B)
The distribution of curvature for the 498 trajectories of the pooled zero-initial and continuous paradigms peaks strongly around zero, indicating that
the far majority of saccade trajectories is approximately straight. (C) Curvature varies in a systematic way with the saccade direction, here shown
separately for the zero-initial (red) and continuous (black) paradigms. Curvature and its variability are higher for the latter saccade population. Means
(solid dots) and standard deviations were calculated over the data points falling in a sliding window of 20 deg wide and 10 deg overlap.

saccade vector direction, Φ. The same holds for a fixed vertical
component. Figure 10 analyses these properties for saccades of
our biomimetic simulator. Figure 10A shows a selection of oblique
saccades with a fixed leftward horizontal component of ΔH = -
12.4 deg, with vectors varying widely in direction between 110
and 250 deg. It can be immediately appreciated that the horizontal
components vary greatly in their durations between about 70 and
155 ms, while their associated velocity profiles vary substantially in
shape and peak velocity from about 220 deg/s for the pure leftward
saccade down to about 100 deg/s for the extreme downward oblique
ones. The lower-right panel shows the relationship between the
saccade direction and the peak velocity of the horizontal component,
together with the predictions from two opposing models: the

horizontal dashed line is from the ‘independent control model’, which
holds that the velocity components are controlled by independent,
non-interacting saccade circuits.The solid line is the cosine curve of
(12), predicted by the ‘common-source model’ of Van Gisbergen et al.
(1985); Smit et al. (1990), described above. In Figure 10B a similar
analysis is shown for oblique saccades with a fixed upward
vertical component of ΔV = +15.4 deg. For these saccades, the
common-source model predicts a sine-shaped relation for the
component peak velocities. Clearly, the common-source model
better accounts for the data than the independent control model for
either component.

Note that deviations from the common-source predictions can
be observed in Figure 10 as well. These deviations are caused
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FIGURE 9
Correlations between the horizontal and vertical velocity profiles of
the saccades from the continuous paradigm. Green histogram:
oblique saccades, at least 20 deg away from the cardinal directions (N
= 150). Gray historgram: saccades within 20 deg of the cardinal
directions (N = 148). Inset: relation between the correlations and
absolute curvature. Note that for straight saccades data points are
found at [1,0].

by three factors: First, the prediction assumes perfectly straight
saccade trajectories, which is clearly not the case for all saccades
(see Figure 8). Second, the predicted relationships are based on
the simplifying assumption that the vectorial peak velocity is
independent of saccade direction.Third, the prediction also assumes
that the saccade peak velocity is independent of the eye’s initial
orientation. However, also the latter two assumptions are violated,
as the saccades generated by our biomimetic simulator resulted to
be faster in vertical directions than in horizontal directions, which
is illustrated in Figure 4 and further quantified in Figure 11 for the
population of saccades, shown separately for five different amplitude
bins and for both paradigms. A similar direction-dependency of
human and monkey saccade main-sequence dynamics has been
documented in detail by Van Gisbergen et al. (1985).

The velocity profiles also varied with changes in the initial eye
orientation, which partly accounts for differences in the dynamics
and kinematics observed between the continuous and zero-initial
paradigms. Figures 12A, B illustrates this property for a selected
group of purely leftward horizontal saccades of identical size that
were elicited by ourHorizontal Continuous Paradigm fromdifferent
initial eye orientations along the horizontal axis. Figure 12A shows
the eye-orientation trajectories (red) and associated velocity profiles
(black, normalized).The center panel in Figure 12B shows how their
peak velocities changed as a function of the initial horizontal eye
position. Typically, the peak velocity increased when the eye started
from a contralateral position. In this example, the leftward saccades
were faster when starting at rightward orientations. Conversely,
rightward saccades were typically faster when starting from leftward
eye orientations. In Figure 12C, we quantified the effect of initial
horizontal eye orientation on the peak velocity by comparing
two linear regressions (Eq. 16) on the dimensionless z-scores of
amplitude, ΔH, and initial orientation, HON , of 165 saccades whose
amplitudes were ≥6 deg, for which peak velocity increased nearly

linearly with amplitude:

V̂PK = gR1ΔĤ

V̂PK = gR2ΔĤ+ gHonĤON

where ̂z ≡
z− μz
σz

(16)

with gR1,2 and gHon the partial correlations of the regressions.
Figure 12C provides the results of both regressions. While gR1 ≈
gR2 ∼ 0.75, the contribution of initial eye orientation (gHon = 0.39)
was an independent factor that significantly increased the quality of
the fit from r2 = 0.59 to r2 = 0.74 (p < 10–6).

Similar eye-position influences on the dynamics of saccadic gaze
shifts have been reported in the psychophysical literature, e.g., in
Robinson (2022); Van Opstal (2023).

3.6 Muscle synergies

Straight oblique trajectories (Figures 8–10) and a nonlinear
main sequence (Figure 7) both result from the six synergistic
command signals that drive the motors to generate the appropriate
torques for the tendons. As the eye has only three rotational
DOF, infinitely many possible control combinations of the 6 DOF
system could generate identical saccade trajectories. For example,
a horizontal rightward saccade could be elicited by having the four
vertical/torsional muscles all inactivated, with the lateral andmedial
rectus muscles both activated such that the net result is a rightward
rotation of the eye. Yet, the amount of co-contraction of the LR/MR
and SO/IO/SR/IR muscles remains unspecified and could take on
any combination as long as the total net torque corresponds to an
appropriate rightward eye rotation. Our optimal control algorithm
does not explicitly penalize the amount of co-contraction. It is
therefore interesting to analyze how the different eye trajectories are
actually implemented by this redundant control system.

Figure 13A shows an example of the muscle activation patterns
for a left-upward saccade with an amplitude of about 24 deg in a
direction of 110 deg. The lower panel shows the vectorial change
in eye orientation (black) and its instantaneous velocity (red) on
normalized scale.Themuscle control signals are all shown relative to
their initial pretension, so that the activation of eachmuscle is shown
as a change with respect to its tension at (0,0,0). Interestingly, the
six muscles appear to be organized into two agonist and antagonist
groups, formed by a positive change in activation of the MR/IO/SR
muscles vs. a negative change for the LR/SO/IR, respectively. It
can also be observed that the three agonist muscles show a pulse-
step activation pattern, with the antagonists an anti-pulse/anti-step
profile. The pulses and antipulses all end at the saccade offset, and
seem to synchronize to a considerable degree their rapid increase or
decrease at the start of the saccade, which convert to a more gradual
change for all muscles near the moment of saccade peak velocity.

This pattern resulted to be representative for all saccades in
both eye-movement paradigms. Figure 13B shows the antagonistic
behavior of the lateral (black) and medial (green) recti for all
near-horizontal rightward and leftward saccades selected from the
continuous data base (directions within 10 deg from horizontal). It
can be appreciated that the pulse-durations of the muscle pair are
synchronized, but also that these pulse-durations vary considerably
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FIGURE 10
Component cross-coupling in oblique saccades (continuous paradigm). (A) Top-left: Ten oblique saccades with a fixed horizontal component of 12.4
deg. Top-right: 2D trajectories. Red-dashed lines: mean ± std of the end points. Lower-left: Horizontal velocity profiles. Note that the peak velocity and
duration of this component vary strongly with the different oblique trajectories, indicating component cross-coupling. Lower right: peak velocity of the
horizontal components varies systematically with the saccade direction. Solid line: cosine prediction of the common-source model (Eq. 12). Dashed
line: prediction of the independent model (see text). (B) Ten oblique saccades with a fixed vertical component of 15.4 deg. Now the CS model predicts
that the peak velocity of the vertical components varies as the sine of saccade direction (lower-right panel).

from saccade to saccade. The latter point underlines the fact
that despite the considerable nonlinearities that determine the
mechanics of the eye plant, the main-sequence nonlinearity of
Figure 7 is already observable in the pulse control signals of the
muscles. Figure 13C shows the activations of the vertical/torsional
muscles for near-vertical (up/down) saccades (directions within
10 deg from the vertical axis). Here it can be seen that the
SR/IO and SO/IR muscles form agonistic pairs for upward and
downward saccades, respectively. Similarly, SR/IR and SO/IO act
antagonistically for these eye movements. Note also that the
maximum changes in muscle activation for the vertical/torsional
muscles reach higher levels than the horizontal muscles, which
underlies the result that the vertical saccades of our biomimetic
eye reached higher peak velocities than horizontal saccades
(Figure 11). Similar results were obtained for the zero-initial
paradigm (Supplementary Material).

To quantify the amount of synchronization among the muscle
activation patterns, we calculated the correlations between the
muscle control signals during each saccade. It is then expected
that, for agonist muscles, these correlations should be positive
and, ideally, close to one, whereas for antagonists they should
be negative, ideally close to minus one. Figure 14 shows the
distributions of these correlations between five different muscle
pairs for all 298 saccades of the continuous paradigm, inspired
by the patterns shown in Figure 13. Figure 14A shows the three
groups of muscles that were identified as antagonists: the LR/MR
(top), the SR/IR (center), and the SO/IO (bottom). Note that
the former two pairs indeed have most of their correlations
close to −1.0, while the SO/IO pair seems to be more variable.
The latter is due the fact that the saccades obey Listing’s Law
(Figure 6B) and therefore the saccade trajectories show only a
limited amount of cyclotorsion. Some variability is also seen in
the LR/MR pair, which is due to the low signal-to-noise ratio for

these muscles for near-vertical saccades. Figure 14B quantifies the
correlations for two agonist muscle pairings: SR/IO and SO/IR.
These correlations indeed peak close to +1.0, where here the
lower correlations result from their weak involvement for near-
horizontal saccades.

Taken together, the control algorithm for our biomimetic
eye yielded oculomotor behaviors and muscle-control signals that
highly resembled those observed for the primate saccadic eye-
movement system (Fuchs and Luschei, 1970; Fuchs and Luschei,
1971; Robinson and Keller (1972); Hepp and Henn (1985);
Suzuki et al. (1999)).

3.7 Motor code for 3D eye movements

The pulse in the pulse-step motor commands is related to
the dynamics of the eye movement, but it could encode the eye’s
angular velocity around the axis of rotation, ω(t), the 2D dynamic
change in orientation (also called the coordinate velocity), ̇r(t) (e.g.,
Van Opstal et al. (1991); Van Opstal et al. (1996); Klier et al. (2006);
Suzuki et al. (1999)), or some hybrid combination of these signals.
Note that the coordinate velocity vector is confined to LP (since r
is in LP), but that the angular velocity vector tilts out of the plane
whenever the coordinate velocity-, ̇r(t), and initial eye orientation
vectors, ron, are not parallel, because of the vector cross product
in (3). Here we show how our simulator can be used to investigate
this question in similar ways as has been done in neurophysiological
experiments.

Suppose that the eye has a vertical initial orientation, ϕ0
(i.e., ron = tan (ϕ0/2) ⋅ ŷ), and that a horizontal eye movement is
made in LP, described by ̇r(t) = θ̇H(t) ⋅ ẑ, with θ̇H(t) its horizontal
velocity profile.

The eye’s angular velocity is then given in Eq. 17 as:
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FIGURE 11
Peak velocity of the saccade vector varies with the saccade direction. Top: continuous paradigm. Bottom: zero-initial paradigm. Saccade amplitudes
(R) were grouped into bins of at least nine responses (legend). Horizontal saccades (near 0 and 180 deg directions) are slower than vertical saccades
(near 90 and 270 deg). Differences between values obtained for the two paradigms are due to additional changes in initial eye orientation for the
continuous paradigm (e.g., Figures 5A; Figure 12). Note also that in the continuous paradigm saccade amplitudes covered a much wider range (up to
50 deg), thus reaching higher peak velocities than the zero-initial paradigm (amplitudes ≤30 deg).

FIGURE 12
Saccade peak velocity also varies with initial eye orientation. (A) Thirteen equal-sized leftward saccades from the horizontal paradigm (red;
ΔH = −7.9±0.9 deg) that started from different initial eye orientations on the horizontal meridian (Methods). Black traces show the associated velocity
profiles, all normalized with respect to the fastest saccade. Note that the peak velocities varied considerably. (B) The peak velocities of the saccades in
(A) systematically depend on the initial horizontal eye orientation (r = 0.81), as leftward saccades were faster when starting from the right. (C) Regression
results on the z-scores of peak velocity for all horizontal saccades with R ≥6 deg (Eq. 16). Black: VPK only as function of amplitude yields r =0.77; red: as
function of amplitude and initial eye orientation gives r =0.86. Parameters gR and gHon are the partial correlation coefficients of the regressions.

ω (t) ≈ 2( ̇r (t) + ron × ̇r (t)) = 2θ̇H (t) (ẑ + tan(ϕ0/2) x̂) (17)

which specifies a fixed-axis rotation of the eye, and the angle, ρ,
between ω(t) and ̇r(t) is

ρ = ϕ0/2 (18)

Eq. 18 is known as the ‘half-angle rule’ (Tweed and
Vilis (1987); Van Opstal et al. (1991); Klier et al. (2006); see
Supplementary Figure S10B).

If the motor signals encode the angular velocity vector of
the eye, one expects that the pulse control signal in the vertical-
torsional system for horizontal saccades would depend in a
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FIGURE 13
Muscle synergies (continuous paradigm). (A) Example of the six motor control signals for a saccade with a small leftward and a large upward
displacement of the eye [R,Φ] = [23.9,110.3]o. Note that the six muscles are recruited as two antagonistic groups of three muscle pairs: the SR/IO/MR
are activated, whereas the IR/SO/MR are inactivated re. pretension during the saccade. The patterns of the excited muscles resemble a pulse-step
activity, while the inhibited group shows an anti-pulse-step activation. Note also the tight synchrony of the pulses with the saccade velocity profile (red
trace in the bottom panel). (B) Control signals of the LR and MR antagonists for horizontal saccades, selected from the population of continuous
saccade traces across the oculomotor range. The activities for the vertical/torsional muscles are not shown for clarity. (C) Control signals for the
agonistic SR/IO (red/cyan) and IR/SO (magenta/blue) muscle pairs for vertical saccades. Here, the LR/MR activations have been omitted for clarity.

FIGURE 14
Muscle correlations (continuous paradigm). (A) The activation signals of antagonistic muscle pairs are expected to be negatively correlated. This is
indeed observed for the LR/MR pair, the SR/IR pair and the SO/IO pair (see also Figures 13A–C). The latter has a wider distribution with some lower
correlations, which is caused by the small range of torsional movements due to Listing’s Law (Figure 6B). (B) For agonists one expects positive
correlations, shown here for the SR/IO muscle pair and the SO/IO muscles, which work as agonists for vertical saccades (see, e.g., Figure 13C).

systematic (linear) way on the vertical initial eye orientation. In
the Supplementary Figure S9, 10) we illustrate this principle for our
biomimetic system. These results indeed indicate that our 6 DOF
system programs a velocity vector that accounts for the non-abelian
properties of 3D rigid-body rotations.

One can also ask what happens if the horizontal eye movement
is not programmed by the brain, but instead elicited by electrical
stimulation of the abducens nerve, which directly innervates the

LR muscle. Exactly this experiment was conducted by Klier et al.
(2006).They reasoned that if LL is implemented by a neural control,
and not by the biomechanics of the plant, the stimulation-induced
movement should violate LL, as it would elicit a signal very close
to ̇r, instead of the required pulse from all agonistic muscles that
will yield ω (Hepp et al., 1989). Instead, the authors showed that the
stimulation-induced eye movement obeyed the half-angle rule, i.e.,
the eye stayed in LP also during the stimulation, from which they
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FIGURE 15
The half-angle rule is not implemented by the oculomotor plant of the robotic eye, contrary to the results from Klier et al. (2006) in monkey. (A)
Experimental paradigm: an eye movement is made from straight ahead to a vertical target location (see also Figure 4), after which either the LR muscle
(red traces) or the MR muscle (blue traces) is stimulated by a Gaussian pulse with a width of 21 ms. This elicits a rightward (top-left) or leftward
(bottom-left) eye movement from 13 different elevations with a small clockwise or counterclockwise torsional displacement (Hepp et al., 1989). The
right-hand panels show an expanded (rx, ry) view of the traces in the laboratory frame (cf. Figure 6B). (B, C) The horizontal movements elicited by the
stimulation produced a coordinate velocity, ̇r, that clearly deviates from Listing’s plane. Red: LR stimulation; blue: MR stimulation. Light-grey traces are
the vertical eye movements before the stimulation, and they define Listing’s Plane (dashed black lines, LP). (D) The total deviation from LP, Δrx = ∫ ̇rxdt,
depends linearly on the initial vertical eye orientation. If the plant would have implemented Listing’s Law, the data should scatter around the
black-dashed line (and the angular velocity vector, ω, of the movements (not shown) would have followed the half-angle rule; see also
Supplementary Figure S10).

concluded that LL has a biomechanical origin (at least for horizontal
eye movements).

To replicate this experiment with the biomimetic eye, we
stimulated either the LR muscle, or the MR muscle, of the
physical simulator from different initial vertical eye orientations,
all in LP (reached by 13 selected trajectories from the zero-initial
paradigm). We tested whether the resulting coordinate velocities
would stay in LP during LR/MR stimulation, like in Klier et al.
(2006). The coordinate velocity (Eq. 19) is calculated from the eye’s
instantaneous angular velocity and orientation (Eqs 3, 17), which are
both obtained from the state of the simulator, by (Hepp, 1990):

2 ̇r = ω+ω× r + (ω • r)r (19)

Figure 15 shows the result of this simulated experiment. In contrast
to Klier et al. (2006), LR or MR stimulation of the biomimetic eye
clearly violates LL, as it brings the eye out of Listing’s Plane in
a way that varies remarkably linearly with the initial vertical eye
orientation. Linear regression yielded:

ΔrLRx = 0.16 ⋅ r
on
y

ΔrMR
x = −0.23 ⋅ rony

with r2 > 0.995.
In the (Supplementary Figure S8) we show the results of

a similar stimulation experiment applied to the trochlear
nucleus fibers that directly innervate the SO muscle, from
different initial horizontal eye positions. The stimulation
of this experiment again shows a tight linear relation
between the initial position and the total amount of cyclo-
torsion. To our knowledge, such an experiment has not yet
been performed.

4 Discussion

4.1 Main results

We analyzed the eye-movement properties of a 6 DOF
biomimetic robotic eye in detail, following similar analysis
approaches as have been applied to real human and monkey eye
movement data.

Our analysis demonstrates that, despite several simplifications
discussed below, many properties closely resemble those of human
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and monkey saccades. The eye-movement dynamics show single-
peaked velocity profiles that obey straight-line relationships between
the saccade amplitude and duration (Figure 7A), and the product
of peak eye velocity and duration (Figure 7B). As a result,
the peak velocity saturates as a function of saccade amplitude
(Figure 7C). Together, these dynamic properties functionally define
saccades (Bahill et al. (1975); Van Opstal andVan Gisbergen (1987);
Robinson (2022)). The latter relation has considerable variability,
which could be largely attributed to the direction-dependence of the
R−D and R−VPK relations (Figure 11), and their dependence on
the initial eye orientation (Figure 12).

A detailed assessment of the curvature of the eye-movement
trajectories shows that themajority of oblique saccades was virtually
straight, with only a minority of about 7% substantially curved
(Figure 8B).The sign and amount of curvature varied systematically
with the saccade direction and also had a strong contribution
from variation in the initial eye orientation (Figure 8C); these
aspects are similar to those reported for human saccades (Smit and
Van Gisbergen, 1990).

As a consequence of the straight trajectories, the horizontal and
vertical velocity profiles are scaled versions of each other, leading to
a considerable amount of cross-coupling between the components,
like stretching of the duration of the smaller component to match
the longer component. The analysis demonstrates that these data
cannot be accounted for by an independent control strategy of the
motor drives. In such a control, the velocity profiles of the individual
components should not depend on saccade direction. Instead, the
data more closely followed the predictions of the common-source
model, which assumes a central vectorial velocity generator that is
subsequently decomposed into its vector components (Figures 9,
10; Van Gisbergen et al. (1985); Smit et al. (1990)). Since the six
motors are physically independent, this vectorial control signal
is an acquired strategy that emerged from the optimal control.
Neurophysiological studies have provided support for the idea that
the midbrain Superior Colliculus could be responsible for sending
this central vectorial velocity command to the brainstem pulse
generators (Van Opstal, 2023).

The 3D orientation of the biomimetic eye obeyed Listing’s Law
with a variability around the best-fit plane of less than a degree,
which is in line with results from voluntary eyemovements reported
for human and non-human primates. The orientation of the right-
eye’s plane was tilted slightly leftward by about 7 deg in the (x,y)
plane, so that its primary position was about 7 deg to the right of
the straight-ahead laboratory frame. This particular location of the
primary position could be related to the fact that the insertion points
of four of the muscles were at the annulus of Zinn (Figure 1B),
and therefore their pulling directions, were shifted leftward with
respect to the center of the right eye. It also explains why the static
tension in the LR muscle at fixation is slightly higher than that of
the MR muscle (Figure 14B), as its length at the (0,0,0) position is
slightly longer.

Interestingly, the control of the six muscles became organized in
clear agonist-antagonist pairs (Figure 14; Sherrington (1906)). For
oblique saccades, the three agonists were LR-SR-IO and MR-IR-SO.
The antagonists were LR-MR for horizontal, and SR-IR with IO-
SO and SR-IO with IR-SO for the vertical/torsional components
(Robinson, 1975; Miller and Robinson, 1984).

The signals of the agonists could be succinctly described
as pulse-step controls, where the pulse serves to overcome the
overdamped nature of the plant (Robinson (1964); Robinson
(2022)). The antagonists followed the inverse behavior: a rapid
decline in tension during the eye movement, followed by a step
increase to the new equilibrium level, whichwas typically lower than
at the start of the saccade (Figure 13). These motor control patterns
have been observed in all oculomotor neuron pools of abducens
(nVI), oculomotor (nIII) and trochlear (nIV) nuclei in the monkey
brainstem (Fuchs and Luschei, 1970; Fuchs and Luschei, 1971;
Robinson and Keller (1972); Hepp and Henn (1985); Suzuki et al.
(1999)). As also these antagonistic and pulse-step behaviors were not
explicitly pre-programmed in the cost functional, they must have all
emerged from the optimal control.

4.2 Plant mechanics and simplifications

Despite the many similarities of the eye movements produced
by the simulated biomimetic eye with human saccades, there are
also clear differences with results from the literature. A prominent
difference is illustrated in Figure 15. Our simulation of the LR-
(here we also added MR-) stimulation experiment of Klier et al.
(2006) shows that our 6DOF system does not implement Listing’s
Law through plant mechanics. Instead, upon LR/MR stimulation,
the eye clearly violates LL, as the resulting coordinate velocity of
the eye attains 3DOF (Figures 15B,C). Interestingly, the relationship
between the amount of accumulated torsion and the initial vertical
gaze angle was strikingly linear (Figure 15D).This strongly contrasts
with the results from Klier et al. (2006) who demonstrated that
LL is still obeyed during LR stimulation, presumably by a precise
positioning of soft-tissue ‘pulleys’ (Quaia andOptican, 1998; Demer,
2006) for the LR and MR antagonists, which forces the eye’s angular
velocity axis to tilt out of LP by half the angle of the vertical
gaze direction (the ‘half-angle rule’). This prediction assumes that
the stimulation-induced motor command from the LR muscle is a
purely horizontal velocity signal, independent of the vertical initial
position: ̇rLR ∼ vz ⋅ ẑ. Under natural conditions, a horizontal saccade
will have to be accompanied by a vertical-position dependent
torsional control signal from the vertical/torsional muscles, which
is indeed the case for the pulse-step commands of the Continuous
Paradigm (Supplementary Figure S10B). The discrepancy of our
result with the Klier et al. (2006) findings may be resolved by adding
a set of pulleys for the LR/MR pair (Schnabolk and Raphan, 1994;
Quaia and Optican, 1998; Misslich and Tweed, 2001; Demer, 2006;
Lee et al., 2007), but we here deliberately refrained from doing so,
as our main aim was to test the model’s possibilities and properties
without introducing additional mechanical assumptions. Indeed, if
the eye is brought out of LP through torsional-vestibular stimulation,
electrical LR stimulation still resulted to induce the half-angle
rule, even though it is now an inappropriate response, not in line
with normal behavior Klier et al. (2012). Thus, there is a clear 3D
contribution to the neural control of eye movements, where LL
may serve as the default strategy through a simple biomechanical
implementation (Tweed et al., 1999; Klier et al., 2012).

A second difference with human behavioural data is that the
velocity profiles of the model, illustrated in Figure 4, are less
skewed and peaked than reported in the literature (Van Opstal
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and Van Gisbergen, 1987). Human saccade-velocity profiles are
negatively skewed, for which the moment of peak velocity is
roughly fixed for all saccade amplitudes (at ∼20–25 ms). In contrast,
the profiles generated by the model are more symmetrical. In
Cardoso (2019) we showed that by including multiplicative motor
noise in the controls (i.e., ũ ∼ (1+ ε)T ⋅ u, with ɛ(0,σ) Gaussian
noise), the velocity profiles become more skewed with sharper
peaks. Moreover, the energy cost, JE(D), in the cost functional
(Supplementary Material) can then be eliminated, as the quadratic
control term then emerges from the accuracy cost, JA(D) (Shadmehr
and Mussa-Ivaldi, 2012).

Other simplifications in our simulator are: (i) all muscles had
the same elasticity and were treated as simple linear springs, which
is not the case for real muscle (Quaia et al., 2011); (ii) the muscle
trajectories were determined by the insertion points only, defining
straight lines that sometimes could intersect the globe, instead of
wrapping around it; (iii) the muscles were modeled by single-fiber
tendons, rather than multiple-fiber elements that are partially fixed
to a surface on the globe to preventmuscle side-slip (Robinson, 1975;
Miller and Robinson, 1984), and (iv) apart from the SO and IO, we
did not include additional pulleys to change muscle trajectories.

Whether pulleys ensure Listing’s Law for all eye muscles
and for eye movements in all directions, however, remains
unclear. Unfortunately, direct stimulation of muscle fibers is not
possible for the SR, MR, IR and IO, as they all originate in
the oculomotor nucleus (nIII) without a clear neuro-anatomical
topography. The only other muscle for which this type of
experiment could be performed would be the SO (innervated by
the trochlear nerve, nIV), e.g., for different horizontal initial eye
orientations, but to our knowledge, such an experiment has not
been performed. With our simulator, however, it is straightforward
to simulate the result, which is shown in Supplementary Figure S8).
Clearly, as this muscle’s pulling force is not in LP, but in the
vertical/torsional direction, the presence or absence of LL-related
pulleys (besides the trochlea in the eye socket, Figure 1A) that
ensure the half-angle tilt of the angular velocity axis could still
be tested once the effect of SO stimulation from primary position
(i.e., 7 deg to the right) is known.

4.3 Pretension

Anontrivial problem in the saccadic control of six muscles is the
danger of ‘slack’, which would occur if the controlled tension of an
antagonist would go negative. In such a case, the muscle is (albeit
briefly) out of control, which is clearly undesirable. We avoided
this problem by providing a fixed level of pretension to all muscles
when the eye looks at (0,0,0) (Javanmard Alitappeh et al. (2023);
Supplementary Material).We obtained a suitable pretension level by
trial and error, but it is conceivable that including a force constraint
in the cost functional, an optimal pretension that minimizes the
amount of co-contraction, which at the same time avoids slack, may
be found by the optimal control. In a previous study, with a 3DOF
prototype of the biomimetic eye, we found that a quadratic force
constraint across all fixation positions also eliminated the need to
specify the final goal’s cyclo-torsion at zero to keep the eye in Listing’s
Plane (John et al. (2021). How to extend this requirement to the
6DOF system is left for future study.

4.4 Conclusion and future work

The 6DOF biomimetic model of the eye can be used to gain a
better understanding of the neurophysiological and biomechanical
factors that explain eye-movement behaviors over the full 3D
oculomotor range. Conversely, use of an accurate simulator is
also useful to finetune and test potential robotic applications of
the system, or to quickly analyse the effects of changes in the
design. We currently work on an improved implementation that
will significantly reduce the training and computational time of
the system from 180 s down to ±30 ms. The modelling is not
exclusively confined to rapid saccades, but can in principle be
extended to smooth pursuit eye movements, and/or to ocular
nystagmus evoked by vestibular stimulation as well. For pursuit,
it would suffice to also specify the target motion in the 6D goal
vector, as the overall cost will still be dominated by speed-accuracy
trade-off. For involuntary eye movements like vestibular-evoked
nystagmus, for binocular control like in vergence, or for combined
eye-head gaze shifts, the motor behaviors are no longer dictated
by Listing’s Law but by 2D task-dependent constraints that are
governed by Donders’ Law and by visual requirements (Tweed et al.
(1998); Tweed et al. (1999); Misslich and Tweed (2001); Klier et al.
(2012)). Thus, for these more complex sensory-motor synergies,
different task-dependent costs or cost weightings will have to
be considered, like perceived visual orientation, or motor effort.
Moreover, including the head for gaze control further extends
the number of degrees of freedom for the system: not only does
the head allow for combined rotations and translations, but also
the larger number of muscles and their insertions allow for a
richer repertoire of behaviors. It will be interesting to test whether
the optimal control algorithm with a minimum number of costs
may lead to realistic muscle controls and behaviors, such as
demonstrated here for the 6 DOF biomimetic eye. Optimization
of gaze control may further benefit from the inclusion of a
retina-inspired foveate camera, which will automatically enforce
the system to rapidly explore the visual environment through
accurate saccades.
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