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Oral administration is a convenient drug delivery method in our daily lives.
However, it remains a challenge to achieve precise target delivery and ensure
the efficacy of medications in extreme environments within the digestive system
with complex environments. This paper proposes an oral multilayer magnetic
hydrogel microrobot for targeted delivery and on-demand release driven by a
gradient magnetic field. The inner hydrogel shells enclose designated drugs and
magnetic microparticles. The outer hydrogel shells enclose the inner hydrogel
shells, magneticmicroparticles, and pH neutralizers. The drug release procedure
is remotely implemented layer-by-layer. When the required gradient magnetic
field is applied, the outer hydrogel shells are destroyed to release their inclusions.
The enclosed pH neutralizers scour the surrounding environment to avoid
damaging drugs by the pH environment. Subsequently, the inner hydrogel shells
are destroyed to release the drugs. A set of experiments are conducted to
demonstrate the wirelessly controllable target delivery and release in a Petri
dish and biological tissues. The results demonstrated attractive advantages of
the reported microrobot in microcargo delivery with almost no loss, remote
controllable release, and drug protection by the pH neutralizers. It is a promising
approach to advance next-generation precision oral therapies in the digestive
system.

KEYWORDS

magnetic microrobot, target delivery, on-demand release, multilayer hydrogel
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1 Introduction

Oral delivery is themost commonly used route for drug absorption in disease treatments
(Jain, 2008; Gupta et al., 2009; Alqahtani et al., 2021). Drug formulations within a human’s
complex digestive system will reach various tissues and environments, ranging from the
buccal cavity to the intestine and from acid to alkaline environments. However, drugs
under standard oral delivery cannot succeed in reaching designated lesions and achieving
precise release in the target site. Considering several specific physicochemical properties
of drug formulations, strong acid environments will affect the drug’s efficacy or make it
useless (Ahadian et al., 2020; Brown et al., 2020; Lang et al., 2020). How to deliver drugs
to lesions precisely, achieve on-demand release of them, and protect the drugs in extreme
environments is essential to improve the treatment efficiency.

At present, capsule structures are widely utilized in oral drug delivery. It helps to
protect the enclosed drug formulations, modify the drug dissolution and stability, and
control the release to some extent. There are two steps for the release and absorption
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of enclosed drug formulations: the disintegration of the capsule’s
shell and the drug diffusion. This procedure severely relies on the
environmental properties and processing time, which is almost
impossible to be precisely controlled. For example, after the patient
swallows a capsule, obtaining an accurate predictive model of the
capsule disintegration is inaccessible. Thus, researchers have paid
great attention to target drug delivery and on-demand release.
Since the magnetic actuation has the merits of high penetration,
harmless, and high controllability, it is widely applied to navigate
drugs toward the target site (Yang and Zhang, 2020; Wang et al.,
2021; Wu et al., 2022). After arriving at the target site, the next issue
lies in how to release the drugs on demand. Normally, wireless on-
demand release can be achieved by different response mechanisms.
For the response mechanisms using environmental responses, e.g.,
biological reaction response (Shigemitsu et al., 2020;Mo et al., 2021)
and pH response (Qian et al., 2019; Bhattacharyya et al., 2020;
Han et al., 2020), they trigger the drug release by environment
factors at the target site. However, similar environments outside the
target site may also trigger the drug release. Hence, such release
mechanisms are highly dependent on the specificity of the target
site. Another type of response mechanism is to control the drug
release through external stimuli. The typical response mechanisms
are ultrasound response (Arrizabalaga et al., 2022; Yeingst et al.,
2022) and light-heat response (Zhao et al., 2020; Zhu et al., 2020).
However, they are challenging to achieve controllable release in
the deep digestive tract due to the defects of low conductivity of
acoustic field and low penetration of light. Recently, our group
utilized an alternating magnetic field with a high magnetic gradient
to achieve a controllable release of themagnetic hydrogelmicrorobot
in deeper regions (Xu et al., 2023). After the breakage of the capsule’s
shell, the drug tends to be affected by external environments
within the digestive system, which reduces the therapy efficiency.
In the literature, researchers attempted to solve this problem
by chemical modifications (Cao et al., 2019; Durán-Lobato et al.,
2020) or mechanical injection (Hashim et al., 2019; Lee et al., 2020).
However, the effectiveness of chemical modification and the damage
caused by mechanical injection remain controversial. Hence, it is
desirable to introduce a new method, which imposes no additional
chemical modification and mechanical damage. To this end, in this
paper, we introduce a novel microrobot with step-by-step release
of different inclusions, which enables establishing a suitable local
environment around the lesions before releasing the drugs.

The main contribution of this paper is the design of a novel oral
multilayer magnetic hydrogel microrobot (MMHM) for digestive
tract treatment (see Figure 1). It encloses the pH neutralizers
and drugs in the outer and inner hydrogel layers, respectively.
By applying different programming magnetic fields, the proposed
hydrogel microrobots can be navigated in the digestive tract or
disintegrated at the target site. Under an external magnetic field
with high rotating frequency and high magnetic gradient, the
outer layer can firstly release the pH neutralizers to scour the
surrounding environment to avoid damaging the drugs by the pH
environment. Subsequently, the inner layer releases its enclosed
drugs for precise treatment of diseases. Potential microcargoes
include drugs, particles, and other desirablematerials.The proposed
hydrogel microrobot is safe, easier, and can provide more efficient
and precise drug formulation release than the current capsule drug,
advancing next-generation target delivery by oral administration.

2 Materials and methods

2.1 Materials

The magnetic particles were iron oxide (Fe3O4) particles
(diameter: < 0.5 µm). Sodium alginate ((C6H7NaO6)n, 99.5%),
sodium carbonate ((Na2CO3, 99.8%)) and calcium chloride (CaCl2,
99.7%) were purchased from SinopharmChemical Reagent Co., Ltd.
Approval of all ethical and experimental procedures and protocols
was granted by the Research Ethics Committee of the University of
Macau under Application No. APP-ARE-057 and performed in line
with the Animal Protection Act enacted by the Legislative Council
of Macao Special Administrative Region under Article 71 (1) of the
Basic Law.

2.2 Fabrication

Without other specifications, the concentrations of sodium
alginate solution and CaCl2 solution were 0.375% and 0.25%,
respectively; the weight ratio between Fe3O4 and CaCl2 solution
(0.25%) was 1: 1.

2.3 Simulation study

The software COMSOL 5.6 was utilized for the two-dimensional
(2D) computational fluid dynamic simulation studies. To further
compare the results of locomotion study, there was a circle placed
in a cuboid with a length of 35 mm and a width of 10 mm.
The circle was 100 µm close to the bottom. The cuboid was
filled with pure water. The boundary conditions of the right,
left, and bottom planes of the cuboid were defined as no-slip.
The initial state of the pure water was set as static. The solver
was determined to find the state of the fluid when it reached
steady state.

2.4 Magnetism study

A custom-built three-axis Helmholtz coils device (see
Supplementary Figure S1, Supplementary Material) was utilized
to provide a uniform magnetic field. In addition, the generated
maximum magnetic intensity and workspace size are 10 mT
and 10 cm cube, respectively. The current of each coil was
controlled through six servo amplifiers (model: ESCON 70/10,
from Maxon Motor AG.) with signal input from a personal
computer (model: OptiPlex 9020, from Dell Technologies Inc.)
fitted with a driving board (model: PCIe-6259, from National
Instruments Corp.). The velocities were measured by image
processing.

2.5 Disintegration study

A permanent magnet of a NdFeB cylinder with circular
axial magnetization (30 mm in length and 30 mm in
diameter) was utilized to provide the magnetic gradient (see
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FIGURE 1
Schematic diagram of the differences between the common capsule and the proposed MMHM in the digestive tract.

Supplementary Figure S2, Supplementary Material). In addition,
a brushless motor (model: 57BL06Y55-230D, from Hai Chuang
Jia Jie (Beijing) Technology Co., Ltd.) was utilized to rotate
the permanent magnet with the rotatory axis perpendicular to
the circular axis. The magnetic gradient was changed through
increasing or decreasing the distance between the microrobot and
the rotation axis of the permanentmagnet. In addition, themagnetic
gradient was derived by the measured magnetic flux density
from a 3D magnetic sensor (model: TLV493D-A1B6, Infineon
Technologies AG). The given magnetic gradients in this study are
the mean values of one rotation cycle (see Supplementary Figure S3,
Supplementary Material).

2.6 Drug protection study

Calcium hydroxide (Ca(OH)2, 95%, Tianjin Bodi Chemical
Co., Ltd.) was utilized to create alkaline environments.
Hydrochloric acid (HCl, 1 M, Yida Technology (Quanzhou)
Co., Ltd) was utilized to create acid environments. A constant-
temperature heating device (DXY-1515, Shenzhen Dingxinyi
Experimental Equipment Co., Ltd) was used to create 40°C
environments.

2.7 pH-neutralizing study

The concentration of CaCl2 solution to the suspension of the
outer hydrogel shell was 0.5%, then Na2CO3 was ultrasonically
mixed into the CaCl2 solution with the concentration of 0.25% to
generate highly dispersed calcium carbonate (CaCO3) powders. 7-
hydroxy coumarin (5.0 µM) was mixed into the CaCl2 solution to
the suspension of the inner hydrogel shell.

2.8 Data analysis and statistics

Unless otherwise specified, all experimentswere repeated at least
three times independently.

3 Results

3.1 Fabrication of the multilayer hydrogel
microrobot

To deliver drugs to lesions and protect and release them
precisely, the concept design of a multilayer microrobot is proposed
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FIGURE 2
Fabrication of the MMHM. (A) Schematic diagram of the fabrication procedure. (B) Prototype of the multilayer hydrogel microrobot.

by containing the pH neutralizers and the relatively small magnetic
hydrogel microrobots (with drugs enclosed) in a larger hydrogel
shell. The fabrication procedure of the multilayer microrobot is
shown in Figure 2A.

First, the CaCl2 solution, drugs, and Fe3O4 magnetic
microparticles were added together to produce a suspension. Then,
the suspension droplet was added to the sodium alginate solution to
generate the inner hydrogel shell (Figure 2A, inserted picture in the
upper-left corner). Pure water was used to rinse the inner hydrogel
shell. These microrobots are relatively smaller than the outer
hydrogel shells so that the outer hydrogel shells can enclose them.
Afterward, a suspension with the inner hydrogel microrobot, CaCl2
solution, pH neutralizers (CaCO3), and magnetic microparticles
were added to the sodium alginate solution again to generate
the outer hydrogel shell, namely, the relatively larger magnetic
hydrogel microrobots. Rinsed by pure water again, a MMHM
was obtained. Notably, the CaCl2 solution and sodium alginate
solution are biocompatible. In addition, the Fe3O4 microparticles
are biocompatible, innocuous, and biodegradable.

To demonstrate the success of enclosing the inner hydrogel shell,
the outer hydrogel shell was peeled off to show its inclusions. As

shown in Figure 2B, the inner hydrogel shell was revealed, verifying the
effectiveness of the fabrication procedure.The verification procedure is
demonstrated in Supplementary Material S1, Supplementary Material.

3.2 Characterization of toxicity and
magnetism property

To examine the toxicity of the fabricated MMHM, different
concentrations of hydrogel microrobots were disintegrated and co-
cultured with zebrafish embryos in pure water (Figure 3A). By
observing and recording the survival number of the embryos, the
biocompatibility of the proposed hydrogel-based microrobot design
is evaluated. The survival rate was calculated as the percentage of
the survived over total numbers of zebrafish embryos. Three groups
of experiments were conducted with the microrobot suspensions at
different concentrations.The suspensionwas produced by pounding
microrobots into pieces within the water. The results indicate that
the generated microrobot is biocompatible without toxicity because
the survival result exhibits no significant reduction with increasing
co-cultured concentrations of hydrogel microrobots (Figure 3B).
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FIGURE 3
Toxicity and magnetism test results of MMHM. (A) Experimental setups of the toxicity test. (B) The survival rates of the co-cultured zebrafish embryos at
various co-cultured concentrations of disintegrated MMHMs. (C) Force analysis of an MMHM rolled in a fluid. (D) Simulation results of the pressure and
flow rate distributions around the hydrogel microrobots. (E) The 2D fluid-based resistance torque (τf, torque per unit depth) for the hydrogel
microrobots with various diameters versus rotating frequency. τf is normalized with respect to a constant τ0 = 6.27× 10−8 N, i.e., resistance torque of
the microrobot with a diameter of 1 mm at a rotating frequency of 1 Hz. (F) Relationship of velocity of hydrogel microrobots with different diameters
versus the rotating frequency.

For precision delivery, the microrobots are driven to roll on
the digestive tract surface by a rotating uniform magnetic field
produced by a custom-built three-axis Helmholtz coils device. The
hardware connection scheme is shown in Supplementary Figure S4,
Supplementary Material. The force analysis procedure of the
microrobot is shown in Figure 3C. The buoyancy and gravity
are presented as Fl and G, respectively. According to Bernoulli’s
principle, the fluidic pressure is decrease as the nearby flow rate
increases. Thus, with the flow rate distributions in this case (see
Figure 3D), there is a vertical flow force (Fv) and a horizontal flow
force (Fh), which can be expressed as:

(Fv,Fh) ∝ (Pv,S) ∝ ω2D4 (1)

where Pv and S are the equivalent vertical pressure difference
and surface area of the microrobot, respectively. ω and D
are the rotation frequency and diameter of the microrobot,
respectively. In addition, Fh represents as the drag force
obtained from the fluidic environment. Then, the supporting

force of the bottom to the hydrogel microrobot (T) can be
derived as:

T = G− Fl − Fv = (ρr − ρ f)Vg− Fv (2)

where ρr and ρf are the densities of the hydrogel microrobot and
the fluid, respectively. Besides,V is the volume of the hydrogel
microrobot, and g is the gravity coefficient.

The equivalent friction coefficient is assigned as μ. Thus, the
friction can be denoted as μT. Assume that the rotation frequency
is equal to the step-out frequency of the microrobot, the torques can
be expressed as follows.

{{{{{
{{{{{
{

τ = τ f

τ f =
1
2
FhD =

1
2
μTD

τ = (moV) ×B = (
1
6
moπD

3)×B

(3)

where τ and τf are the magnetic torque and flow-resistant torque,
respectively. mo is the equivalent magnetization of the hydrogel
microrobot. B is the applied magnetic field.
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FIGURE 4
Controllable release test results of MMHM. (A) Schematic diagram of the experimental setup. (B) Succeeded or unsucceeded disintegrations in different
environments under the rotating gradient magnetic field with different frequencies and intensities. (C) Succeeded or unsucceeded disintegrations at
various concentrations of sodium alginate under the rotating gradient magnetic field with different frequencies and intensities. (D) Succeeded or
unsucceeded disintegrations of the microrobots with different diameters (size) under different rotating gradient magnetic fields with different
frequencies and intensities. Red circle and yellow area: succeeded disintegration. Blue cross: unsucceeded disintegration.

The simulation results of the pressure and flow rate distributions
of a rotating hydrogel microrobot are depicted in Figure 3D. Based
on the simulation results, the tendencies of τf with various diameters
of the microrobot and rotating frequencies of the magnet are shown
in Figure 3E. It is observed that the flow-resistant torque increases as
the microrobot diameter rises, which is consistent with the theoretical
prediction by Eqs 1–3. Therefore, the magnetic actuation ability of the
hydrogel microrobot is characterized by its step-out frequency.

To demonstrate the influence of the actuation frequency of
rotating magnetic field on the velocity of the hydrogel microrobot,
the microrobots with different diameters in a Petri dish (filled
with pure water) are driven by the rotating magnetic field with
a magnitude of 10 mT and various actuation frequencies. The
velocities at different actuation frequencies are measured, as
shown in Figure 3F. It is seen that the step-out frequency of
the hydrogel microrobot increases with the microrobot diameter
rising. Therefore, considering the theoretical models in Eqs 1–3,
it is found that with the increase in microrobot diameter, the

growth of magnetic torque (τ∝ D3) is larger than the resistant
flow torque (τf ∝ TD,T∝ (V,−Fv),V∝ D3,Fv ∝ D4). In addition,
we can obtain a faster rolling speed by applying a larger magnetic
intensity. Moreover, it is observed that there are large fluctuations
in these velocity-frequency curves. This may result from the
continuous shape change of the hydrogel shell due to the magnetic
field actuation in the experimental test.

3.3 Results of on-demand release by a
gradient magnetic field

The hydrogel microrobot can be regarded as a soft hydrogel shell
enclosing magnetic fluids inside. In this work, gradient magnetic fields
are utilized to actuate the magnetic microrobots, which apply the
induced forces to break the hydrogel membranes. The more magnetic
microparticles aremagnetized, the stronger forces will be applied to the
hydrogel membrane by the same gradient magnetic field.

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2024.1392297
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Xu et al. 10.3389/frobt.2024.1392297

FIGURE 5
Drug protection test results of MMHM in the extreme environments. (A) Structure stability test result of hydrogel microrobot in an acidic environment,
an alkaline environment, and a 40°C environment. (B) Fluorescent images of the pH-sensitivity fluorescent probes in a pH = 4 environment under the
on-demand releasing with or without carrying the pH neutralizers.

According to the positions of the microparticles relative to
the hydrogel membrane, the magnetic microparticles can be
divided into two types: microparticles connected with hydrogel
structures and microparticles inside the internal fluid (see
Supplementary Figure S5, Supplementary Material). When the
magnetic fields actuate the microparticles associated with the
hydrogel shell, their movement will contribute to the aperture of
the hydrogel shell and destroy it. For the microparticles inside
the internal fluid, the disintegration procedure can be regarded
as the microparticles applying stress on the hydrogel shell and
destroying it. The above two procedures contribute to the physical
disintegration of the hydrogel microrobots.

To demonstrate the influences of the magnitude and rotating
frequency of the gradient magnetic field on the disintegration of
the hydrogel microrobot, the microrobots at different conditions
are placed in the rotating gradient magnetic fields with various
frequencies and intensities (Figure 4A). The succeeded or
unsucceeded disintegrations under different conditions are
illustrated in Figures 4B–D. It is found that in a dry environment,

the hydrogel microrobot is much easier to disintegrate (Figure 4B)
because there is no buoyancy to keep its shape stable, and the friction
at the bottom increases. With the increase in the concentration
of sodium alginate, the hydrogel microrobot becomes difficult to
disintegrate (Figure 4C), because a high concentration of sodium
alginate will increase the reaction intensity to enhance the strength
of the hydrogel shell. Moreover, the hydrogel microrobot with a
larger size (Figure 4D) is easy to disintegrate because the magnetic
force is enhanced with the increasing level of Fe3O4 microparticles.
It proves that the outer hydrogel shell will be disintegrated before
the inner hydrogel shell under a programming magnetic field.

3.4 Results of drug protection in extreme
digestive environments

To demonstrate the stability of the proposed hydrogel
microrobots in extreme digestive environments, the microrobots
were placed in an acid environment (e.g., in the stomach), an

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2024.1392297
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Xu et al. 10.3389/frobt.2024.1392297

FIGURE 6
Biological tissue environmental test results of MMHM. (A) Schematic diagram of the operation procedure. (B) Snapshots of the experimental test. (C)
pH measurements in the cow’s intestine before and after the local environmental adjustment.

alkaline environment (e.g., in the pancreatic duct), and a 40°C
environment (e.g., at high fever), as detailed in Figure 5A. Acidic
fluid environmentswere formedusing theHCl solution, and alkaline
environments were created by adopting the Ca(OH)2 solution. The
hydrogel structures stayed stable in pH = 1, pH = 14, and 40°C
environments for more than 12 h. These results demonstrate the
stability of the proposed microrobots, enabling further applications
in the digestive system.

To reveal the effectiveness of the pH neutralizers carried by
the microrobots, the inner hydrogel shells enclose the fluorescent
probes with pH sensitivity (7-hydroxy coumarin). The multilayer
microrobots with or without pH neutralizers were released in a pH
= 4 environment. The fluorescent images of the fluorescent probes
are shown in Figure 5B. It is observed that the fluorescent signals
without carrying pHneutralizers aremuchweaker than thatwith pH
neutralizers.The results indicate that the proposed design concept of
multilayer microrobot for carrying pH neutralizers can effectively
prevent drug damage due to the pH environment.

3.5 Targeted delivery and on-demand
release in a biological environment in Vitro

In the digestive system, the irregular tissue morphology and
accompanying secreted mucus are unavoidable, which can lead to
severe microcargo loss during the delivery process. For illustration,
the microrobot-based target delivery and controlled release tasks

have been conducted in a cow’s intestine in vitro, as illustrated in
Figure 6 and Supplementary Material S1, Supplementary Material.
It is evident that under the protection of hydrogel shells, there
is almost no microparticle loss during the navigation procedure.
External gradient magnetic fields can release nearly all the enclosed
materials at the designated position. Moreover, the magnitudes of
pH values at three places in the cow’s intestine (including the target
site) weremeasured. It is found that the carried outer pHneutralizers
(CaCO3 particles) had done an expected targeted environmental
modification, which can avoid the deactivation of carried inner
drugs in acidic environments. In the target area, the proposed
design succeeded in creating a relatively mild environment for
drugs, contributing to better utilization of medications in extreme
environments. In addition, since the pH values of the places (rather
than the target site) had no change after the experimental test, we
can determine that there was no unexpected release outside the
target site.

4 Discussion and conclusion

In this paper, a multilayer hydrogel shell-based magnetic
oral microrobot is designed to achieve targeted delivery
and remotely controlled release when applying proper
external gradient magnetic fields. The release procedure can
be remotely accomplished step by step. The outer layer
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structure helps to release smaller microrobots and pH neutralizers
so that the environments can be modified first and create a mild
condition for drugs. After that, the inner layer structure contributes
to releasing the designated drugs. Multilayer microrobots solved
the problem that microparticles tend to be stuck to the digestive
system’s tissues and mucus. The proposed multilayer microrobots
demonstrate attractive cargo delivery and controllable release
prospects. It also enables plenty of easily inactivated drugs to make
effects in extreme environments.With the help of gradient magnetic
fields, the microrobot can reach almost anywhere in the digestive
system and release the enclosed drug formulations to use the drug
fully. In addition, the enclosed cargoes can be diverse, where it is
possible to deliver designated treatment materials and protect them
from the environmental changes in the gastrointestinal tract and
some ducts of the digestive glands.

At this stage, experimental investigations of the MMHM
performed in vitro have demonstrated the promising capabilities
of targeted cargo delivery and on-demand release. However, the
in vivo application will encounter more situations. In the future,
the influence of other foods inside the digestive system on the
microrobots under different osmotic pressures will be studied. In
reality, the digestive tract experiences peristalsis. Such motion will
be exerted on the microrobots, and its impact on the integrity of
microrobots will be discovered. Moreover, it is hoped to integrate
more functional materials in the microrobots to achieve more
biomedical applications, such as bio-sensing, diagnosis, andmedical
imaging, inspiring novel solutions for next-generation therapies in
the digestive system.
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