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The importance of simulating patient behavior for medical assessment training
has grown in recent decades due to the increasing variety of simulation
tools, including standardized/simulated patients, humanoid and android robot-
patients. Yet, there is still a need for improvement of current android robot-
patients to accurately simulate patient behavior, among which taking into
account their hearing loss is of particular importance. This paper is the first
to consider hearing loss simulation in an android robot-patient and its results
provide valuable insights for future developments. For this purpose, an open-
source dataset of audio data and audiograms from human listeners was used
to simulate the effect of hearing loss on an automatic speech recognition (ASR)
system. The performance of the system was evaluated in terms of both word
error rate (WER) and word information preserved (WIP). Comparing different
ASR models commonly used in robotics, it appears that the model size alone
is insufficient to predict ASR performance in presence of simulated hearing loss.
However, though absolute values ofWER andWIP do not predict the intelligibility
for human listeners, they do highly correlate with it and thus could be used, for
example, to compare the performance of hearing aid algorithms.

KEYWORDS

hearing loss simulation, automatic speech recognition, android robot-patient,
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1 Introduction

Worldwide the life expectancy is increasing in most regions (Buskens et al., 2019). As
a consequence, despite the decrease in birth rates, the global population is both expanding
and aging (Gu et al., 2021).This demographic shift towards an aging population necessitates
greater attention to medical care. This care should be adapted to the needs of the elderly,
including hearing loss that affects more than half of them (Dalton et al., 2003).

The prevalence of hearing loss is even larger for patients suffering from heart failure or
delirium (Morandi et al., 2021; Baiduc et al., 2023). Delirium is a significant neurocognitive
disorder that may arise due to a medical condition, a drug-induced psychotic disorder,
or following a surgical procedures performed under anesthesia on geriatric patients
(Association. and Association., 2013; Devlin et al., 2018; Ely et al., 2004; Ely et al., 2001a;
Rudolph et al., 2010; 2009). The Confusion Assessment Method for the Intensive Care
Unit (CAM-ICU) is an established assessment for the diagnosis of delirium (Ely et al.,
2001b; Guenther et al., 2010). The training of assessment methods, like the CAM-ICU, is
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FIGURE 1
Android robot-patient (ARP) simulating realistic patient behavior.

FIGURE 2
Overview of the signal processing chains used in the experiments. (A) Binaural anechoic signals are processed through the hearing loss simulator
before applying ASR. (B) Multichannel noisy and reverberant signals are enhanced through hearing aid processing before being input to the hearing
loss simulator and applying ASR.

complex and time consuming. In addition to the need for a
sufficient number of patients with different types of delirium and
without delirium, training is only possible on a small scale due

to the stress of the patients. An alternative to real patients are
standardized human patients/simulated patients (SP) (Barrows,
1968; Pourebadi and Riek, 2022). SPs, i.e., specially trained actors,
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TABLE 1 Full names and labels of the Vosk models used throughout the
paper. Larger models are typically expected to yield better performance,
as shown here with their respective size and WER using the
LibriSpeech corpus.

Model Size WER [%]

A small-en-us-0.15 40 M 9.85

B en-us-0.22-lgraph 128 M 7.82

C en-us-0.22 1.8 G 5.69

D en-us-0.42-gigaspeech 2.3 G 5.64

TABLE 2 Number of listeners per category of hearing loss.

Category Number

Normal to moderate 8

Moderately severe 17

Severe 22

Profound 2

Total 50

are considered an effective learning method, but they are scarce
and expensive (Tengiz et al., 2022; Cleland et al., 2009). Beyond the
value of the SPs, there are significant concerns about comparing
the experiences of different training groups. For example, in the
evaluation of SPs there is evidence of numerous differences between
cases in the behavior of SPs over a number of simulations, and
it is simply not possible to compare the experiences of one
group with those of another (Austin et al., 2006). As a result
of these concerns, educational institutions have a strong interest
in the robotic simulation of patient behavior to reduce reliance
on patients who are suitable for medical assessment training
(Buchanan, 2001; Gaba, 2004).

Robotic systems and android robot-patients (ARPs) have
been introduced for teaching purposes (Abe et al., 2018;
Tanzawa et al., 2012; Tanzawa et al., 2013; Hashimoto et al., 2013;
Pourebadi and Riek, 2022; Gaumard Scientific Company, 2022a;
Gaumard Scientific Company, 2022b; CAE, 2022; Haley et al., 2017;
Schwarz and Hein, 2023; Röhl et al., 2022; 2023). With the focus
on medical dental education, especially the communication and
risk management, an ARP was evaluated by using a student’s
questionnaire, which showed that 95% of the students recognized
the usefulness to train the risk management with the ARP
(Tanzawa et al., 2012; Tanzawa et al., 2013). An other ARP, called
SAYA, simulates a depressed patient for diagnostic training
(Hashimoto et al., 2013). With a focus on nursing procedures and
communication with patients, there are various simulators, which
can move their head or simulate human facial expressions, vital
signs, and specific diseases, and are promising tools for clinical
training (Pourebadi and Riek, 2022; Gaumard Scientific Company,
2022a; Gaumard Scientific Company, 2022b; CAE, 2022;
Haley et al., 2017). Furthermore, there are already efforts to use

high-end robots like AMECA in training and continuing education
programs for medical staff with a focus on depression (Schwarz
and Hein, 2023). With ongoing work on an ARP (see Figure 1)
to simulate a critically ill nonverbal patient, it has already been
shown in an initial simulation with an ARP, that it has the ability to
reproduce human behavior (Röhl et al., 2022). Since the detection of
delirium is important, there have been efforts in simulating patients
with and without delirium via an ARPs for the education of medical
staff in delirium-assessment methods (Röhl et al., 2023).

As delirium assessment is a verbal (medical experts) to
nonverbal (patient) communication, the ARP should be able to
listen. Therefore, an automatic speech recognition (ASR) was
implemented. ASR is often implemented in robotic simulators
using small weight models, typically using Vosk (Glauser et al.,
2023; Fadel et al., 2022; Paul et al., 2022). Since elderly patients
often present with hearing loss, the effect of hearing loss on ASR
performance has to be carefully considered. The evaluation of this
impact is the focus of this paper, whose remainder is structured as
follows.The usedmethodology is described in Section 2.This entails
the description of the used dataset, of the hearing loss simulation and
ASR implementation, and of the considered evaluation metrics. The
results, obtained using simulated hearing loss based on audiograms
from real listeners, are presented in Section 3 before presenting the
conclusions.

2 Methods

The experimental framework presented in this paper had two
objectives. First, it aimed at quantifying the impact that hearing loss,
simulated usingmeasurements from real listeners,might have on the
performance of an ASR system in presence of clean anechoic speech.
Second, it aimed at evaluating the joint impact of hearing loss and
hearing aid processing on the performance of an ASR system in
presence of noisy reverberant speech, i.e., in realistic conditions.
The experiments were conducted using data made available as part
of the second edition of the clarity prediction challenge (CPC)
(Graetzer et al., 2021) and publicly available ASR models to be used
with the Vosk toolkit (Shmyrev, 2023). An overview of the signal
processing chains used for both objectives is depicted in Figure 2 and
summarized in the remainder of this section.

2.1 Auditory scene generation

The audio signals from the CPC used in the experiments
were generated as follows. Anechoic speech signal s(n) at a
sampling frequency fs = 48 kHz, where n denotes the sample index,
containing 7 to 10words and forwhich text prompts are known,were
used as the target signals to be recognized (Graetzer et al., 2022).
Input signals ym(n) were generated described in Equation 1.

ym(n) = s(n) ∗ hm(n)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
xm(n)

+vm(n), (1)

where hm(n) denotes the room impulse response (RIR) between the
source and the m-th of M microphones, xm(n) denotes the clean
reverberant signal and vm(n)denotes the additive noise signal.When
considering clean binaural signals hm(n) denotes a RIR between the
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FIGURE 3
Example of audiograms, left and right ear, for one listener of each of the four considered hearing loss categories. Each of these four examples was
randomly selected from the audiograms available in the dataset. The individuality of hearing loss can clearly be seen, though the fact that hearing loss
is typically larger at higher frequencies is apparent in all examples.

speech source and theM = two eardrums of the listener. In this case
vm(n) = 0 ∀ n. When considering noisy reverberant signals to be
processed by hearing aids, M = 6 and hm(n) denotes a RIR between
the speech source and one of the front, middle or back microphone
of either left or right hearing aid. In this case vm(n) is generated
from recordings of daily noises, e.g., washing machine, scaled to
obtain various signal to noise ratios (SNRs) ranging from −6 to
6 dB. In all cases the reverberant signal xm(n) is generated using
geometric models of rooms with various characteristics using the
method described in (Schröder and Vorländer, 2011) and binaural
RIRs from (Denk et al., 2018).

2.2 Hearing aid processing

Modern hearing aids are typically equipped with multiple
microphones whose input is processed to obtain the signal to

be played in each ear of the listener. When considering the
noisy reverberant signals from the CPC, the M = 6 channel
signal ym(n) (3 microphones per hearing aid) was reduced
to two channels to be played to the left and right ear. All
20 algorithms considered in this paper were submitted to the
clarity enhancement challenge (CEC) (Graetzer et al., 2021), 10
during its first edition (CEC1) and 10 during its second edition
(CEC2). This selection of speech enhancement algorithms covers
a wide range of approaches, including single-channel source
separation, multichannel beamforming and various deep-learning
based methods. All algorithms aimed at improving the speech
intelligibility of the signals and their performance was evaluated
using listening tests. They all aimed at realistic hearing aid
applications and used causal signal processing with an algorithm
latency of maximum 5 m. Most of these algorithms used the
audiogram (see Subsection 2.5) to tailor the processing to each
hearing impaired listener in the considered corpus. The same
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FIGURE 4
WER and WIP obtained after applying hearing loss simulation to the
clean binaural signals, using the four considered models. The black
dots denote the score obtained when applying no simulator, i.e.,
without hearing loss.

audiograms were used in this paper to simulate the effect of
hearing loss.

2.3 Hearing loss simulator

The hearing loss simulator aims at simulating the detrimental
effect of the hearing loss of each particular listener to the processed
signal zm(n). The simulator used in this paper relies on the
implementation provided as part of the CPC that is based on the
well-recognised Cambridge MSBG hearing loss model, named after
the authors of the various papers describing it (Moore and Glassber,
1994; Baer and Moore, 1993; 1994; Nejime and Moore, 1997; 1998).
This simulator can be briefly described as follows. First, a filter is
applied to simulate the acoustic effect of sound propagating to the
eardrum before applying spectral smearing to mimic the reduced
frequency selectivity of hearing impaired listeners. Then, loudness
recruitment simulates the reduced response in the speech frequency
range, typical of hearing impairment. A gammatone filterbank is
used to extract envelopes at different frequency bands and each
envelope is compressed according to the audiogram of the target
listener. These compressed envelopes are finally used as gain to
adjust the amplitudes of the input signal before resynthetizing the
time-domain signal ̂sm(n).

2.4 Automatic speech recognition

This paper focuses on the application of ASR in an ARP.
Consequently, the chosen ASR system is designed with the
limitations typically present in such systems. First, speech is
often recorded using a single microphone. Consequently, for each
recording, both channels ̂s1(n) and ̂s2(n) are input separately to the
ASR system, as depicted in Figure 2. Additionally, ASR in a ARP

often has to rely onmodels that can be used offline, potentially using
hardware of limited capabilities. For this purpose, the Vosk toolkit
(Shmyrev, 2023) is chosen in this paper due to its capabilities and
its ubiquitousness in robotic applications. The Vosk toolkit provides
numerous models for 20 different languages. Four of the available
English language models are used in this paper. They are referred to
as A, B, C, and D in the remainder of this paper and their full names,
sizes and performance using the clean test data from the LibriSpeech
(Panayotov et al., 2015) corpus are summarized in Table 1. Larger
models are typically expected to yield better performance. It should
as well be noted that in order to conform to the requirements of the
Vosk toolkit, all signals were downsampled to a sampling frequency
of 16 kHz prior to the ASR stage.

2.5 Evaluation

The performance of the ASR system using the four considered
models was assessed in terms of (WER) and (WIP) defined in
Equations 2, 3, respectively.

WER = 100 ⋅ S+D+ I
N
, (2)

where S, D, I, and N denote the number of substitutions, deletions,
insertions and number of words to be recognized, respectively, and
the WIP is defined as

WIP = 100 ⋅ (C
N
+ C
P
), (3)

where C and P, denote the number of correctly recognized words
and the number of words in the predicted utterance, respectively.
The design of ASR systems aims at a lowerWER but a higherWIP. In
case of many insertions, WER can be higher than 100%. Both WER
and WIP are computed using output from the whole dataset.

When reporting WER and WIP for a particular category of
hearing loss, it entails applying the previously described methods
to the subset of listeners whose audiogram can be fit into this
category. In this paper, this was done by averaging the loss
over both ears and all frequencies present in the audiogram.
The resulting average loss was then categorized according to the
scale proposed in (Clark, 1981). Normal to moderate degree of
hearing loss (−10–55 dB) were grouped into a single category.
Three other categories were considered, namely,: moderately severe
(56–70 dB), severe (71–90 dB) and profound (≥ 91 dB) hearing loss.
The number of listeners per category of hearing loss is depicted in
Table 2 and audiogram examples, for each hearing loss category, are
depicted in Figure 3. Correlations were reported using the Pearson
coefficient ρ and the adequacy of linear fittings were assessed using
the coefficient of determination R2.

3 Results

This section presents the performance of the ASR system
mentioned above using the four considered models.

First, we observed the performance using the clean binaural
signals. Next, we examined the performance using the processed,
noisy, reverberant signals. Finally, we studied the relation between
the WER from the ASR system and the WER calculated from the
responses of human listeners.
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FIGURE 5
WER (top) and WIP (bottom) per hearing loss category obtained after applying hearing loss simulation to the clean binaural signals, using the four
considered models.

FIGURE 6
WER and WIP obtained after applying hearing loss simulation to the
processed reverberant and noisy signals, using the four
considered models.

3.1 Clean binaural signals

The WER for four models using clean binaural signals
is shown in Figure 4. The largest model D consistently performs
best, whether hearing loss simulation is applied (with a WER of
28.1%) or not (with a WER of 17.5%). The performance of all four
models degrades when hearing loss simulation is applied, with the
largest difference observed for A, the smallest model, for which the
WER degrades from 19.3% to 40.8% when hearing loss simulation
is applied. This confirms that the effect of hearing loss simulation,
even on clean binaural signals, is detrimental to the performance of
ASR systems.

The effect of the degree of hearing loss on performance
is shown in Figure 5. For all fourmodels, performance declined with
increasing severity of hearing loss. Again, the largest discrepancy is
found for model A, with a WER of 23.1% for “mild to moderate”
hearing loss, increasing to 53.1% for “profound” hearing loss.

For all considered categories of hearing loss, the WER decreases
as ASRmodels get larger, with theminor exception ofmodel A andB
in presence of “mild tomoderate” hearing loss. In this case, theWER
was measured at 23.1% for A and at 25.6% for B. This suggests that
model size alone is not always enough to predict the performance of
ASR models. It should be noted that overall performance was poor,
suggesting that the evaluated corpus could pose a challenge for ASR.
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FIGURE 7
WER (top) and WIP (bottom) per hearing loss category obtained after applying hearing loss simulation to the processed reverberant and noisy signals,
using the four considered models.

Even the best performing model, D, only achieved a WER of 19.3%
for moderate hearing loss.

The same trends are seen when analyzing the WIP. Based on
the WIP shown in Figure 4, model D performed best with a WIP of
70.3% on unprocessed binaural signals and 55.6% when the hearing
loss simulation was applied. For all considered categories of hearing
loss, the WIP increased with the size of the ASR model. Looking at
the analysis of the effect of hearing loss severity on WIP in Figure 5,
it is clear that performance declined with increasing severity for
all four models. Again, the most significant contrast was exhibited
by model A, which displayed a WIP of 62.3% for a hearing loss
categorized as “mild to moderate”, and reduced to 28.2% for a
hearing loss categorized as “profound”.

3.2 Processed noisy and reverberant
signals

The WER achieved by the four models under consideration
while using processed noisy and reverberant signals is
illustrated in Figure 6.

The performance of all models significantly decreased compared
to the clean binaural case. Model D (the largest) yielded the
best performance with a WER of 57.7% while model A yielded
a WER of 71.4%. Due to the high WER, this was interpreted

as an unsatisfactory performance of all models rather than a
true superiority of model D. The human listeners were able to
recognize words much more clearly than any of the models, with
a WER of 36.1%.

The effect of hearing loss severity is evident in Figure 7, which
demonstrates the degradation of performance across all fourmodels
as hearing loss severity increases. When considering the effect on
the intelligibility of the listeners, it is noteworthy that the highest
WER does not always occur in cases of profound hearing loss,
which was unexpected. However, this is most likely an anomaly
due to the fact that only two listeners with profound hearing loss
are present in the considered dataset (see Table 2).The same trends
appeared when considering the WIP. The results achieved by the
four examinedmodels using processed noisy and reverberant signals
are shown in Figure 6.

In this case, model D yielded the best performance with a WIP
of 26.8%, while model A had the lowest WIP at 17.4%. The effect
of the severity of the hearing loss on the WIP, as shown in Figure 7,
indicated that the WIP decreased as the severity of the hearing loss
increased, except in the case of “profound” hearing loss, for which
ASR performance appears better then for “moderate” hearing loss.

Examining the recognition performance of human listeners in
terms of both WER and WIP as depicted in and Figures 6, 7,
similar trends appear but with large difference in absolute value
with the performance of ASR models. These findings imply that
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FIGURE 8
Relationship between WER predicted by ASR models and listener response for each of the 20 hearing aid algorithms in the dataset. For each algorithm,
all audiograms available in the dataset were used. The line depicts a linear fit, and the shaded area covers 3 standard deviations above and
below this line.

ASR system performance may not accurately replicate a patient’s
performance in the studied situations regarding absolute values
of WER or WIP. Even so, it is worth considering the correlation
between the performance of ASR systems and WER calculated from
the responses of human listeners.

3.3 Relation between ASR performance
and intelligibility

The relationship between the WER and WIP of the ASR system
and those derived from human listeners’ responses are presented
in Figures 8, 9, respectively. The human listeners (see Table 2) had
to recognize the speech from the signals processed with hearing
aid algorithms as part of the challenge evaluation (Barker et al.,

2022; Graetzer et al., 2022). Figures 8, 9 depict, the value of these
metrics obtained when considering the signals processed with each
of the 20 hearing aid processing algorithms included in the dataset.
Each listener had to listen to a few hours of processed speech. It
seems that both WER and WIP for all four models displayed a high
correlation with those computed from the listeners’ responses, with
ρ ranging from 0.88 to 0.96 when considering WER, and from 0.85
to 0.94 when considering WIP. Furthermore, it was evident that the
correlation could be precisely depicted through linear regression,
as indicated by the high R2 coefficient values ranging from 0.78
to 0.91 when considering WER, and from 0.73 to 0.88 when
considering WIP. A hearing aid processing algorithm consistently
produced results that did not match the linear relationship. This is
the algorithmdescribed in (Cornell et al., 2023), whichwas themost
successful algorithm during the CEC2.
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FIGURE 9
Relationship between WIP predicted by ASR models and listener response for each of the 20 hearing aids algorithms in the dataset. For each algorithm,
all audiograms available in the dataset were used. The line represents a linear fit, and the shaded area covers 3 standard deviations above and
below this line.

4 Conclusion

The simulation of disease-specific patient behavior by ARP
will become increasingly important in the following years. Details
such as the patient’s hearing loss are critical to achieving the
correct ARP behavior for realistic training and education of
medical staff. Therefore, the effects of hearing loss and hearing
enhancement algorithms on ASR systems were evaluated in
this paper.

Experiments were conducted using both clean binaural signals
and noisy reverberant signals processed using hearing aids speech
enhancement algorithms. The impact of hearing loss was simulated
using audiograms measured on real human listeners. All data is
available as part of the CPC and the ASR transcription compared
publicly available models to be used with the Vosk toolkit. The

performance of these different Vosk models was evaluated using
WER and WIP.

In the initial experiment, using binaural signal with and without
applying hearing loss simulation, the largest considered model
outperformed all other models, with the smallest model coming
in second place. Notably, all models yielded lower performance
in presence of hearing loss simulation. When the hearing loss
simulation was applied to processed, reverberant, and noisy signals,
all four models performed worse than human listeners. The biggest
model performed best. Furthermore, a strong correlation was
observed between the WER and WIP of all four models and the
responses of the listeners. Therefore, it can be concluded that the
hearing loss simulation significantly impacts ASR. Moreover, it
appears that the size of the models did not play a significant role
in this experiment, as with increasing model size the performance
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did not increase accordingly. Nevertheless, the biggest model
outperformed the smaller models.

Aiming to use data that was both realistic and publicly available,
all results were obtained using the data from the Clarity Challenge
dataset. However, this choice does come with some limitations. This
dataset does not include reverberant conditions without the use of
hearing aid algorithms or the recognition scores of the listeners to
the clean data, which would be beneficial for future experiments.
Additionally, though realistic, the text content of this dataset was
not designed specifically for patient simulation, i.e., the text content
has no relation to the patient simulation that motivates this paper,
which could be a future target. Furthermore, a dataset of speech
utterances would allow future work to use clean unprocessed speech
that could as well be used to generate speech under various acoustic
conditions. Of course, this will as well allow us to extend the
evaluation considering speech better matching the target use case
of the ARP.

Focusing on the future use of ARPs for medical education and
verbal medical assessments, clinical background noise, weak voices,
and the choice of words used in the assessment should be considered
in following work.
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